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Abstract

Background: With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to
analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on
protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function
has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory
regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes
from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these
cancers are disrupted by cis-regulatory mutations.

Results: We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites
(TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory
mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or
growth/proliferation. By integrating gene expression data with mutation data, our computational approach
culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene
expression program. The impact can be measured along with protein-coding mutations to highlight key mutations
disrupting gene expression and pathways in cancer.

Conclusions: Our study yields specific genes with disrupted expression triggered by genomic mutations in either the
coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially
to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled
with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

Background
Tumor genome analyses for mutation and cancer gene
discovery have focused primarily on the protein-coding
exons, spanning approximately 2% of the genome, as they
are readily interpreted and easy to delineate. Large-scale
consortia such as The Cancer Genome Atlas have com-
pleted interrogation of the protein-coding genome and
revealed the mutation prevalence of previously known
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cancer genes across the major tumor types, in addition
to discovery of previously unknown biological processes
disrupted by somatic mutations [1]. However, synthesis of
the vast analyses of The Cancer Genome Atlas projects
has revealed a discovery gap in the search for new cancer
genes [2]. We assert this gap can be partially filled through
analysis of the non-coding genome. In germline genetic
disease studies, evidences for the impact of variations
in the non-coding space of the human genome, includ-
ing in cis-regulatory loci, on human phenotypes have
accumulated over recent decades [3]. Gene-expression
regulation occurs through multiple layers, one of them
mediated by DNA-binding transcription factors (TFs).
Disruption of sequence-specific TF binding sites (TFBSs)
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has been linked to numerous genetic disorders. For exam-
ple, mutation within a HNF4A binding site upstream
of the Factor IX gene is associated with hemophilia B
Leyden [4], and alteration of a GATA binding site in
a regulatory region upstream of the platelet glycopro-
tein gene causes Gilbert’s syndrome [5]. More recently,
human melanoma studies have revealed highly recurrent
mutations in the TERT promoter, potentially impacting
regulatory elements [6-8].
The emergence of whole-genome sequencing studies in

cancer has highlighted the importance of analyzing muta-
tions lying within cis-regulatory elements [6,7,9-13]. How-
ever, the global relationship between somatic nucleotide
variations and the creation or disruption of TFBSs impact-
ing gene expression in cancer is largely unknown [14].
Several attempts have been made to predict the degree

to which mutations disrupt TFBSs with TF binding pro-
files (that is, position weightmatrices, PWMs), population
genetics, phylogenetic footprinting and experimental data
(DNase-seq, epigenetic, etc.) [12,13,15-19]. Mutations at
critical positions of TF binding profiles (corresponding
to high information content) are the most deleterious for
TF–DNA binding [17], thus modelling impact by PWMs
is an effective strategy for predicting the impact of a muta-
tion [20]. However, mutations at the more variable, low
information content positions of TFBSs can also be func-
tionally constrained [17,21]. Furthermore, relating a TFBS
to the gene(s) it regulates presents additional challenges
in predicting cis-regulatory mutations impacting gene
expression. A common simplifying assumption is that a
TFBS regulates its closest gene. This first approxima-
tion does not consider distal regulation; however, recent
analyses of chromatin immunoprecipitation coupled to
high-throughput sequencing data sets [22] (the so-called
chromatin immunoprecipitation sequencing or ChIP-seq
procedure) showed there was accurate prediction of TF
gene targets using this approach [23]. In this study, we
propose that direct measurements of cis-regulatory muta-
tions and gene expression in the same tumor samples will
optimally identify mutations in TFBSs impacting the gene
expression program in cancer cells.
Ultimately, interpretation of mutations in cis-regulatory

regions of the genome requires accurate annotation of
TFBSs. We have taken the approach of coupling experi-
mental data to targeted computational analysis with TF
binding profiles. The ENCODE project [24] and other
independent analyses provide a rich resource for locat-
ing the key regulatory positions by providing genomic
regions bound by TFs derived from ChIP-seq data sets.
This provides unprecedented means by which to investi-
gate altered TFBSs and gene regulation in cancer samples
[12]. Together with matched gene expression profiles,
analysis of mutations in well-annotated TFBS lying in
ChIP-seq regions provides a robust set of complementary

measurements to study the characteristics of dysregula-
tion through mutation of cis-regulatory elements.
We set out to characterize the impact of cis-regulatory

somatic mutations on gene expression. We focused on
two cohorts of patients with B-cell lymphomas (BCLs)
[25,26], for which 84 trios (the cancer genomes, matched
patient normal genomes and RNA expression from RNA-
sequencing (RNA-seq)) were analyzed. We identified
cancer-specific somatic mutations across the genome,
considering single nucleotide variants (SNVs) and small
insertions and deletions (indels) and centered our anal-
ysis on cis-regulatory elements corresponding to TFBSs
predicted within TF-bound regions delineated as ChIP-
seq peaks. The regulatory space defined in this analysis by
predicted TFBSs within ChIP’ed regions covered approx-
imately 2% of the human genome. We analyzed the
location of mutations overlapping TFBSs and revealed
that they frequently target promoter regions of apop-
totic genes. Integrative analysis of the mutations and
gene expression data fromRNA-seq highlighted candidate
regulatory-disrupting variations as potentially altering
expression of genes involved in cancer development.
Mutations in cis-regulatory elements were frequent,
and high-quality candidates in the regulatory set were
observed to target genes mutated in the coding space
in other samples. We conclude that analysis and inter-
pretation of the cis-regulatory genome of cancers will
meaningfully augment biological discovery in future stud-
ies, resulting in novel mechanistic insight into the genesis
malignant phenotypes.

Results
We analyzed somatic mutations extracted from whole-
genome sequencing of 84 BCL samples along with match-
ing normal samples from the same individuals. The full
set of samples is composed of 40 diffuse large B-cell lym-
phomas (DLBCLs) (cohort 1) and 44 patients of mixed
histology (cohort 2: 14 Burkitt lymphomas, 15 DLBCLs,
1 primary mediastinal large B-cell lymphoma (PMBCL)
and 14 follicular lymphomas). RNA expression profiling
data (from RNA-seq) were also available for each of the
84 cancer samples plus 62 additional lymphoma samples
(52 associated with cohort 1 and 10 with cohort 2). SNV
and indel analyses of the data sets from the two cohorts
were performed independently as data were derived
from different sequencing methods. Somatic mutations in
cohort 1 were identified with MutationSeq [27], whereas
mutations from cohort 2 were retrieved from the origi-
nal publication [26]. In aggregate, we observed 406,611
SNVs (from 146 to 31,874 per sample; mean = 10, 165,
median = 7, 821 and standard deviation (sd) = 6, 995)
and 15,739 indels (from 65 to 4,810 per sample; mean =
393, median = 222 and sd = 735) in samples from
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cohort 1 and 282,636 SNVs (from 1,242 to 37,987 per
sample; mean = 6, 424, median = 3, 577 and sd =
7, 165), and 8,080 indels (from 67 to 871 per sample;
mean = 184, median = 136 and sd = 142) in samples
from cohort 2 (Figure 1). The distribution of mutations
and mutation types over the samples followed a similar
pattern in the data sets from the two cohorts including
the maximum number of mutations, >30,000 (Figure 1
and Additional file 1: Figure S1). Histological types from
cohort 2 clustered by the number of mutations. Namely,
Burkitt lymphomas harbored fewer mutations than fol-
licular lymphomas, while DLBCLs harbored the highest
number of mutations, consistent with the number of
mutations observed within cohort 1 (Figure 1).

Defined cis-regulatory elements showed a higher mutation
rate than protein-coding exons but were less mutated than
their flanking regions
We began by first identifying mutations lying within
cis-regulatory elements. We considered TFBSs to be cis-
regulatory elements and mutations overlapping TFBSs
were assumed to be cis-regulatory mutations. TFBSs were
predicted within ChIP-seq peak regions, collected from
multiple cell types and tissues, at whole-genome scale
using TFBS profiles from the JASPAR database [28] (see
‘Materials and methods’). We used 477 ChIP-seq data
sets (collected for the last update of the JASPAR database
[28]) to predict TFBSs associated with 103 TFs (107 JAS-
PAR profiles). Predicted TFBSs covered 76,160,599 bp

Figure 1 Distribution of the number of mutations per sample in cohorts 1 and 2. (A) Number of SNVs (blue) and indels (red) on the y-axis are given
for all the samples in cohort 1 on the x-axis. The samples are ordered from the least number of mutations (left) to the most (right). (B) The same type
of distribution for the samples in cohort 2. Sample names on the x-axis are color-coded by tumor subtype: Burkitt lymphomas (green), diffuse large
B-cell lymphomas (DLBCLs, black), primary mediastinal large B-cell lymphomas (PMBCLs, gray) and follicular lymphomas (FLs, red). The same y-axis
scale has been used for (A) and (B) for comparison. DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; PMBCL, primary mediastinal large
B-cell lymphoma; SNV, single nucleotide variant.
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of the human genome in our analysis. As expected, we
observed a very strong enrichment for predicted TFBSs in
promoter regions of protein-coding genes with >5 times
more nucleotides covered by TFBSs than expected by
chance (11,073,418 bp from TFBSs overlapping promot-
ers covering 85,296,239 bp). The portion of the genome
covered by predicted TFBSs represents approximately 2%
of the chromosomes. We noted the cis-regulatory space,
which only overlapped the protein-coding space by 6%,
covered a proportion of the human genome similar to
protein-coding exons.
From the 422,350 mutations predicted from cohort 1,

8,184 (approximately 2%) overlapped TFBSs. Likewise,
6,608 of 290,716 mutations (approximately 2%) over-
lapped TFBSs in cohort 2. By comparison, 4,990
mutations (approximately 1%) and 5,098 mutations
(approximately 2%) overlapped protein-coding exons in
cohorts 1 and 2, respectively. SNV mutation rates were
higher in TFBSs than protein-coding exons for 38 (95%)
cohort 1 and 25 (57%) cohort 2 samples (Figure 2). Anal-
ysis of 1,000 simulated genomes with a random mutation
distribution shows TFBSs with a higher mutation rate
than exons is expected by chance for 540 (respectively,
616) samples in cohort 1 (respectively, cohort 2). The
majority of DLBCL (10 of 15) and follicular lymphoma (9
of 14) cohort 2 samples showed a higher mutation rate in
TFBSs than in exons; however, the reverse was observed
for Burkitt lymphomas (5 of 14) (Figure 2B). Indel muta-
tion rates were similar in TFBSs and exons (Additional
file 1: Figure S2).
TFBSs were less mutated than their flanking regions in

both cohorts (Figure 3). Namely, 38/40 cohort 1 and 37/44
cohort 2 samples exhibited lower SNV mutation rates in
TFBSs compared to flanking regions. In contrast, only
30/40 cohort 1 and 3/44 cohort 2 samples showed lower
SNV mutation rates in protein-coding exons compared to
flanking regions (Figure 3). The difference observed for
cohort 2 is consistent with the above stated comparison of
TFBS and exon SNV mutation rates. Local mutation rates
in TFBSs and exons were found to be similar to their flank-
ing regions for indels (Additional file 1: Figure S3). Taken
together, these results indicate that predicted TFBSs have
lower SNV mutation rates than their flanking regions in
both cohorts, while indels are more randomly distributed.

Promoters of apoptotic genes are frequently targeted
regions for cis-regulatory mutations
We further explored the impact of cis-regulatory muta-
tions by investigating their distribution along the human
genome. We sought to characterize the accumulation
of mutations in TFBSs lying within the promoters of
genes implicated in pathways known to be disrupted in
cancer development. We quantified mutation rates in 1-
kb-long sliding windows across the genome, identifying

windows where at least three mutations were found (the
two cohorts were analyzed independently and combined).
Frequently mutated regions are significantly enriched

for promoters of protein-coding genes (Figure 4). Namely,
135 mutations in frequently targeted regions were ≤2 kb
away from a protein-coding gene’s transcription start
site (TSS) using the samples from cohort 1 (represent-
ing approximately 49% of all 273 mutations found in
frequently targeted regions, P = 1.16 × 10−75, hyper-
geometric test with 680 mutations overlapping TFBSs in
promoters out of 8,185 in TFBSs). In cohort 2 samples, 348
mutations in frequently targeted regions were within pro-
moters (approximately 65% of the 534 found in frequently
targeted regions, P = 3.28 × 10−156, hypergeometric test
with 1,102 mutations overlapping TFBSs in promoters out
of 6,608 in TFBSs). We compiled the set of mutations
found in the frequently targeted regions within promot-
ers and extracted the closest protein-coding gene to each
mutation. Twelve genes were frequently targeted in both
cohorts independently (Figure 4A,B), including BCL2,
BCL6, BCL7A, CD74 and CIITA, all listed as oncogenes
in the Cancer Gene Census [29] and known to be involved
in lymphomagenesis. An additional 13 genes (ARID2,
BCL2L11, BZRAP1, EPS15, HIST1H2BG, ID3, IGLL5,
IL2R1, IRF1, KIAA0226L, NEDD9, RARS and ZNF860)
from combined cohort analysis (Figure 4C) had not been
previously described as aberrant somatic hypermutated
regions [30]. Six of these genes (ARID2, BCL2L11, EPS15,
IL2R1, NEDD9 and ZNF860) were exclusively mutated
in their promoters (that is, no mutations in exons were
observed). Our data indicated for the first time that ID3
(recurrently mutated in Burkitt lymphomas [26]) can be
targeted through TFBS mutations in its promoter region.
Thus, both exonic and promoter portions of the gene are
recurrently mutated, suggesting complementary genetic
mechanisms for gene disruption.
Mutations in frequently targeted regions overlapped five

enhancers in cohort 1 and five enhancers in cohort 2
(there were two enhancers in common: intronic enhancers
of BIRC3 and ST6GAL1). Four of the enhancers targeted
in cohort 1 are intronic enhancers for the genes BCL2,
BCL7A, BIRC3 and ST6GAL1 while the fifth is located
in the intergenic region between BCL6 and LPP. All five
enhancers found in cohort 2 are intronic enhancers in
genes BCL2, BIRC3, CIITA, IGLL5 and ST6GAL1. All
these genes have already been associated with hyper-
mutated regions in BCLs (BCL2, BCL6, BCL7A, BIRC3,
CIITA and ST6GAL1) [30] or listed in the Cancer Gene
Census (BCL2, BCL6, BCL7A, BIRC3, CIITA, IGLL5 – in
the IGL@ locus – and LPP).
To synthesize our observations from the gene level,

we next analyzed genes with frequently targeted pro-
moters through pathway enrichment analysis. All the
genes highlighted in Figure 4 were submitted to Enrichr
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Figure 2 Comparison of the mutation rates in the cis-regulatory and protein-coding spaces. Only SNVs from cohort 1 (A) and cohort 2 (B) have
been considered (see Additional file 1: Figure S2 for indels). TFBS mutation rates (y-axis) and protein-coding mutation rates (x-axis) are plotted for all
the samples in cohort 1 (A) and cohort 2 (B). Each triangle represents a sample and is color-coded depending on the tumor subtype as in Figure 1.
Dashed gray lines represent the identity function (x = y). Blue lines represent the linear regressions computed from the samples in the two data
sets. The equations corresponding to the linear regressions (y ∼ x) are written on top of the plots along with the computed r2 statistical measures.
Dark gray areas surrounding the blue lines provide the 95% confidence region. The same x- and y-axis scales have been used for both cohort 1 (A)
and cohort 2 (B). DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; PMBCL, primary mediastinal large B-cell lymphoma; SNV, single
nucleotide variant; TFBS, transcription factor binding site.

[31]. Both cohorts were analyzed separately (genes from
Figure 4A,B) and combined (genes from Figure 4C). We
identified enrichment (adjusted P < 0.05) for apoptotic
processes (Figure 5 and Additional file 2) including

apoptosis, regulation of the B-cell apoptotic process and
cell-type-specific apoptotic processes. The genes asso-
ciated with the apoptotic terms are BCL2, BCL2L11,
BIRC3, BTG1, CD74, IRF1, IRF4 and MYC. Moreover,
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Figure 3 Local SNV mutation rates for TFBSs and protein-coding exons. Mutation rates are plotted for TFBSs and exons (x-axis) versus their 1-kb
flanking regions on both sides (y-axis). Each sample from cohort 1 (A) and cohort 2 (B) is represented by a square for mutation rates in TFBSs (and
their flanking regions) and a triangle for mutation rates in exons (and their flanking regions). Tumor subtypes are color-coded (see legend) like in
Figure 1. Results are for SNVs. Figures corresponding to local indel mutation rates are provided in Additional file 1: Figure S3. DLBCL, diffuse large
B-cell lymphoma; FL, follicular lymphoma; PMBCL, primary mediastinal large B-cell lymphoma; SNV, single nucleotide variant; TFBS, transcription
factor binding site.

we observed enrichment for B-cell and oncogenic related
pathways (for example, the B-cell receptor signaling path-
way, small cell lung cancer, regulation of B-cell prolifera-
tion, lymphoma and leukemia) as shown in Figure 5 and
Additional file 2. Taken together, these results highlight
that apoptotic genes, and oncogenic processes in general,
are frequently targeted by mutations within TFBSs found
at their promoter regions.

Landscape of cis-regulatory mutations impacting gene
expression in B-cell lymphomas
We next assessed the impact of cis-regulatory mutations
on gene expression. We used a novel probabilistic model,
called xseq [32], to relate specific mutations to expres-
sion disruption in pathways (see ‘Materials and methods’).
The approach assesses the likely association of the pres-
ence of mutations with observed deviations from neutral
expression measurements taken from the same tumor.
The method takes as input a patient-gene expression
matrix and a binary patient-gene mutation matrix and
outputs the probabilities that: (a) a mutated gene (over
the whole patient population) impacts gene expression
and (b) a patient-specific mutated gene impacts expres-
sion in the patient. xseq was originally developed for
genes harboring mutations in their protein-coding exons
only. Here, we extended xseq to highlight cis-regulatory
mutations potentially deregulating transcriptional regula-
tion. We encoded a gene as mutated in the patient-gene
mutation matrix when it was the closest gene to a cis-
regulatory mutation and it was up- or down-regulated in
the mutated sample compared to other samples. With the
applied criteria, a TFBS was associated with a single gene
but a gene might be associated with several TFBSs. To

provide xseq with a complete view of mutated genes, we
incorporated both genes mutated in their protein-coding
regions and genes showing altered expression associated
with mutations in their regulatory regions (Additional
file 1: Figure S4 and ‘Materials and methods’). By combin-
ing these tagged genes with expression data from RNA-
seq, we used xseq to predict candidate mutated genes
associated with altered expression and linked to genes in
biological networks harboring altered expression in the
same samples.
A total of 42 genes were predicted in cohort 1 sam-

ples along with 5,412 biological network neighbors with
altered expression (Figure 6A). The same analysis applied
to cohort 2 samples led to 1,533 deregulated biologi-
cal network genes connected to the 52 xseq-predicted
genes with altered expression associated with muta-
tions (Figure 6B). The sets of genes captured by xseq
along with their deregulated neighbors were enriched
for pathways related to cancer and cancer development
(Figure 7A,B,C,D and Additional file 2). The sets of 5,554
genes from cohort 1 and 1,585 genes from cohort 2
had an intersection of 829 genes (Additional file 2).
Functional enrichment analysis highlighted strong over-
representation of cancer-related genes (Figure 7E,F and
Additional file 2), reinforcing the predictions from xseq as
being involved in cancer development a posteriori. Note
that four genes in cohort 1 (HIST1H1B, RHOH, SGK1
and ZFP36L1) and seven in cohort 2 (BCL6, DUSP2, ID3,
FOXO1, MYC, PIM1 and SGK1) were associated with fre-
quently targeted promoters (Figure 4) and predicted by
xseq (Figure 6).
Ranking the predicted genes by the number of sam-

ples in which they were dysregulated highlighted known
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Figure 4 Regions frequently targeted by somatic mutations overlapping cis-regulatory elements are enriched in promoters. A 1-kb-long window
was slid with a 500-bp step along the human chromosomes and we recorded the number of overlapping mutations at each position. The
corresponding histogram is given in the inner gray circles of the Circos plots where only positions containing at least three mutations have been
retained. The y-axis range for the histograms is [0, 40] for (A) and (B) and [0, 80] for (C). The outer circles contain the names of the genes closest to
the mutations in the considered windows if the mutation is at most 2 kb away from the TSS of the gene. Names highlighted in red correspond to
genes shared between the analyses for the cohort 1 (A) and the cohort 2 (B) data sets. Genes highlighted in blue are specific to the analysis of the
mutations when combining somatic mutations from the two cohorts. Analyses have been applied to the set of mutations from cohort 1 (A),
cohort 2 (B) and both cohorts combined (C). TSS, transcription start site.

cancer driver genes such as MYC, TP53, ID3 and BCL6
(Figure 6). Burkitt lymphomas tended to be segregated
from the other types of BCLs where MYC was predicted

as a mutated gene with altered expression. MYC was
predicted by xseq for 11 samples, 10 of which are
Burkitt lymphomas. In all of the 11 samples, MYC



Mathelier et al. Genome Biology  (2015) 16:84 Page 8 of 17

Figure 5 Functional enrichment analyses of genes associated with frequently mutated regions. Enrichr [31] functional enrichment analyses were
realized for the sets of genes listed in Figure 4 for cohort 1 (A), cohort 2 (B) and the two data sets combined (C) (see Additional file 2). The enriched
pathways with the 20 lowest Bonferroni corrected P values are shown for each category only where Bonferroni corrected P < 0.05 (see Additional
file 2 for the complete Enrichr results). Each node of the graphs represents an enriched pathway where the color of a node represents its Bonferroni
corrected P value. An edge between two nodes indicates that the pathways share genes. The larger the width of the edge, the larger the number of
shared genes. FDR, false discovery rate; GO, gene ontology; OMIM, online mendelian inheritance in man.

up-regulation was observed (Additional file 1: Figure S5),
in agreement with the oncogene function of MYC in
cancers [33].
We next characterized the distribution of mutations

in genes impacting gene expression in protein-coding

and cis-regulatory regions. We categorized each gene as
associated with: (1) a protein-coding mutation, (2) a cis-
regulatory mutation or (3) both (Figure 6). Some genes
were predicted with altered expression and associated
with mutations in their exons only (for example, TP53,
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Figure 6 xseq results. Cancer genes predicted by the xseq tool from the cohort 1 (A) and cohort 2 (B) data sets. Each row corresponds to a
predicted gene and each column to a cancer sample. When a gene is predicted in a specific sample, a colored box is drawn. Box colors indicate the
type of mutation associated with the gene (in protein-coding exons only, brown; in TFBS only, green; in protein-coding exon and TFBS, orange; in a
TFBS only and predicted to disrupt the TFBS, pink; and in protein-coding exon and TFBS and predicted to disrupt the TFBS, purple). The histograms
on the right sum the number of samples where the gene is predicted (using the same box colors). The histograms at the top sum the number of
genes predicted by xseq in samples (using the same box colors). Cohort 2 sample names (B) are color-coded as defined in Figure 1. PC, protein
coding; TFBS, transcription factor binding site.

RYR2 and SIN3A in cohort 2 and COL3A1, IRF8 and
NRIP1 in cohort 1). We also observed multiple genes pre-
dicted inmultiple samples consistent with alternatemech-
anisms of alteration. For instance, HAS2 and ZFP36L1 in
the cohort 1 data set and MYC and BCL6 in the cohort 2
data set were associated with mutations either in the cis-
regulatory or the protein-coding spaces. For ID3, gene
expression alteration was associated with a mutation in
a TFBS in the SA320932 sample whereas it was associ-
ated with mutations in the exons in the two other samples
(SA321012 and SA320818) (Figure 6B).

Examples of genes with cis-regulatory mutations
associated with expression dysregulation
xseq analyses highlighted the specific mutations associ-
ated with gene-expression dysregulation along with cas-
cading effects on interactors through functional protein
association networks. For instance, specific SNVs were
predicted as deleterious for TFBSs and associated with
expression dysregulation of the genes HAS2 and GNA13
(Figure 8 and Additional file 3). Recurrent dysregula-
tion associated with cis-regulatory mutations was also
observed as exemplified in the promoter of BCL6 along

with a potential cascading effect on interactors known
to be involved in cancer development (Additional file 1:
Figures S7 and S8 and Additional file 3). As a last exam-
ple, our approach highlighted SNVs in TFBSs associated
with the promoters of ROBO1 for five DLBCL samples
(Figure 6 and Additional file 1: Figure S9). ROBO1 was
down-regulated in all of these five samples (Additional
file 1: Figure S10). We hypothesize that ROBO1 is a tumor
suppressor (as suggested in [34-36]), whose dysregula-
tion shows recurrent altered expression of its interactors
SOS1, SOS2 and RAC1, which are associated with car-
cinogenesis [36,37] (Additional file 1: Figure S10 and
Additional file 3). These observations shed light on the
supposed tumor suppressor role of the ROBO1 gene. We
highlight that ROBO1 might be down-regulated in some
DLBCLs at the transcriptional level by cis-regulatory
mutations since no mutations were found in the protein-
coding space in these samples.

Discussion
Our results reveal the importance of fully characterizing
somatic mutations in cis-regulatory regions of can-
cer genomes. Whole-genome sequencing data from
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Figure 7 Functional enrichment analyses of disrupted pathways. xseq-predicted genes along with their neighbors in biological pathways showing
altered expression were derived from the xseq analyses (see ‘Materials and methods’ and Additional file 2). Functional enrichment was performed
with Enrichr [31] using the genes obtained from the cohort 1 (A,B) and cohort 2 (C,D) data sets and their intersection (E,F) (see Additional file 2).
The enriched terms from KEGG (A,C,E) and WikiPathways (B,D,F) with the 20 lowest Bonferroni adjusted P values are shown. Only terms with a
Bonferroni corrected P < 0.05 are conserved (see Additional file 2 for the complete Enrichr results). Each node of the graphs represents an enriched
pathway where the color of a node represents its Bonferroni corrected P value. An edge between two nodes indicates that the pathways share
genes. The larger the width of the edge, the larger the number of shared genes. FDR, false discovery rate.
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Figure 8 Examples of predicted cis-regulatory mutations potentially impacting gene expression. HAS2 (A,B,C,D,E) and GNA13 (F,G,H,I,J) have
been predicted by xseq for samples RG116 and SA320848, respectively. In RG116, a CEBPA TFBS (TF binding profile in (A)) is predicted to be
disrupted (see reference and alternative sequences in (B) where the SNV is highlighted with the reference nucleotide in green and the alternative in
purple). Score differences between the reference TFBS and all possible alternative TFBSs are plotted in (C). The distribution of HAS2 expression from
RNA-seq data is plotted in (D) with an arrow pointing to the expression value in sample RG116. (E) represents the network of genes associated with
HAS2, which are predicted to be either down- (blue) or up-regulated (red) in RG116. The higher the opacity, the stronger the down- or
up-regulation. Similar plots are given in (F,G,H,I,J) for GNA13 in SA320848 with a potentially disrupted GATA3 TFBS. alt., alternative; ref., reference;
SNV, single nucleotide variant.
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lymphoma samples indicated somatic mutations impact-
ing TFBSs and events associated with alteration in tran-
scription. These results demonstrated that interpretation
of mutations in cancer genomes will be substan-
tially enhanced by consideration of mutations impact-
ing cis-regulatory regions and with joint analysis of
gene expression data acquired from the same tumor
tissue.
We expect our results to be an underestimate of

the functional non-coding mutational landscape. Our
approach relied on high-quality annotations of the cis-
regulatory space, capitalizing on the availability of a large
volume of experimentally derived TF-DNA interactions
from ChIP-sequencing. We used manually curated TF
binding profiles from the JASPAR database to predict
TFBSs within regions bound by ChIP’ed TFs. Although we
combine ChIP-seq experiments from multiple cell types
and conditions, the experimental ChIP-seq information
provides the best current opportunity to focus on the non-
coding space. The set of predicted TFBSs covered approx-
imately 2% of the human genome, a similar proportion
to the coding regions, and harbored lower SNV muta-
tion rates than their surrounding regions. However, we
can expect that the robustly annotated regulatory space
of the human genome will grow over the coming years
with the availability of more antibodies, decreasing costs
and broader coverage of cell types. As such, it is likely
that additional cis-regulatory regions will be found aber-
rant in tumor genomes, allowing for more comprehensive
interpretation of genome-wide somatic mutations driving
malignant phenotypes.
Detection of genes with altered expression due to the

disruption of regulatory TFBSs is the subject of ongo-
ing research. There is a need for better prediction of
the impact of mutations on TF–DNA binding affinity.
Multiple approaches have been explored over the years
to tackle this problem by considering the score dif-
ference between reference and alternative sites [15] or
the decrease of the reference binding compared to the
alternative binding score [12]. Here, we considered all
mutations lying within TFBSs of potential interest, high-
lighting the ones that are the most likely to disrupt TFBSs
where the alternative score was below a defined thresh-
old. We suggest this approach is simple and conservative.
Therefore, future improvements are likely to increase sen-
sitivity when coupling ChIP-seq data to TFBS variant
prediction.
The prediction of TFBSs within ChIP-seq peaks is per-

formed without considering the competing environment
between TFs with different specificities. For instance, the
down-regulation of BCL6 in SA320962 is associated with
a mutation not predicted to disrupt the STAT3 TFBS
while STAT3 is known as an activator. A hypothesis is
that competition between STAT3 and STAT5 occurs at

this binding site, since they recognize similar motifs and
a previous study highlighted that STAT5 outcompetes
STAT3 for repressing the expression of BCL6 [38]. The
mutation might then provide an advantage for STAT5
binding at this location. Functional studies based on our
analyses would be required to decipher the mechanisms
underlying the competition between TFs at TFBS loci
to understand further the impact of mutations on gene
regulation.
We aimed to predict the mutations most likely to have

an impact on gene expression through the disruption of
regulatory elements (TFBSs). The approach focused on
gene expression alteration was built on top of the protein-
coding changes to provide new insights into gene expres-
sion dysregulation of cancer driver genes. We showed
that some genes have been predicted in multiple sam-
ples using different mechanisms of dysregulation through
either protein-coding or TFBS alterations. We took a
naive approach in this study to associate mutations/cis-
regulatory elements with a gene. This approach is relevant
when looking at promoter regions but we will ultimately
require more information about the association of dis-
tal regulatory elements with promoters. Cell-specific (or
cell-type-specific) experimental profile comparisons and
expansion of chromatin conformation capture data sets
will empower analysis linking distal regulatory elements
to their targets.
With the forthcoming availability of cancer whole-

genome sequence data coupled with gene expression data
at large scale, the analysis of non-coding cis-regulatory
elements will be critical for understanding cancer. Our
results indicated this will be fruitful, yielding addi-
tional cancer biology to aid in closing the discovery
gap in large-scale studies that have focused exclusively
on the protein-coding component of the genome. We
suggest that combining the impact of mutations on
transcriptional regulation, protein products and post-
transcriptional regulation at genome scales will empower
comprehensive biological interpretation of human
malignancy.

Conclusions
In this report, we analyzed a set of approximately 700,000
somatic SNVs and indels in 84 BCL samples to pro-
vide an initial genome-scale foray into the analysis of
cis-regulatory mutations impacting gene expression in
cancer. By overlapping the somatic mutations with pre-
dicted TFBSs within ChIP-seq regions, we looked at
the distribution of mutations overlapping TFBSs in the
human genome. We highlighted that cis-regulatory muta-
tions are frequently situated in promoters. The set of
genes with promoters targeted bymutations within TFBSs
are enriched for apoptosis-related and carcinogenesis
pathways. Finally, by combining mutation information
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with gene expression from RNA-seq data, we predicted
cancer genes with altered expression associated with
mutations found either in exons or in TFBSs associated
with the genes. The approach revealed samples where
genes were potentially dysregulated through the disrup-
tion of cis-regulatory elements and highlighted the impor-
tance of interrogating the cis-regulatory genomic space for
somatic mutations in cancer.

Materials andmethods
Transcription start site, exon and enhancer coordinates
TSS and exonic positions of protein-coding genes (tran-
script accessors starting with NM_) have been retrieved
from the UCSC hg19 Table Browser [39] by selecting the
knownGene table from the RefSeq gene track. Enhancer
coordinates were retrieved from [40].

Cancer genome data
The raw sequencing data for the DLBCL data set of
cohort 1 were retrieved from [25]. We obtained the cor-
responding RNA-seq data from the same publication. The
already processed sets of mutations and RNA-seq expres-
sion level data for cohort 2 [26] were retrieved from the
ICGC data portal [41].

Expression data computation
Expression data for samples in cohort 1 were processed
using the Rsamtools andGenomicFeature [42] Bioconduc-
tor [43] packages to generate gene expression levels from
the RNA-seq raw data. We only considered genes with
an official HGNC symbol [44]. Finally, genes with null
expression over all the samples were filtered out. The final
set of official HGNC symbols for the considered genes can
be found in Additional file 4. We did not consider copy
number alteration information for both cohorts since the
data were not available for cohort 2.

Single nucleotide variant predictions
SNVs were identified for cohort 1 samples using a modi-
fied version of MutationSeq [27,45]. We filtered out SNVs
with probability <0.9.

Indel predictions
We used Dindel [46] to call indels in the samples from
cohort 1. Dindel identified indels of length 1 to 50 bp. Fol-
lowing Dindel’s manual recommendations, we provided
Dindel with the BAM file and the set of candidate indels
obtained from Pindel [47] for each sample. Default param-
eters were used for Dindel. Pindel indel candidates were
obtained using the default parameters except the insert
size, which was provided by the CollectInsertSizeMetrics
Picard subtool [48]. We only considered indels with Din-
del quality scores greater than or equal to ten, which is
equivalent to 90% confidence. All variants reported in

dbSNP (version 132) [49] and the 1,000 genomes project
[21] were filtered out. Identifying the specific location
of an indel within a homopolymer or tandem repeat is
challenging, which effects the ability to label an indel
properly as somatic or germline. Therefore, we labeled
indels as germline mutations if the distance of the repeat-
ing region from the start position of the indel was longer
than the distance to the closest indel in the normal sam-
ple. The repetitive sequences that were considered can
be any combination of base pairs between 1 and 6 bp in
length.

Mutation rates
Mutation rates within TFBSs were computed by divid-
ing the number of SNVs or indels lying within TFBSs by
the total number of nucleotides within TFBSs (that is,
76,160,599). The included TFBSs were predicted within
ChIP-seq peak regions as described below. A similar com-
putation was performed for protein-coding exons using
the exonic start and end positions from RefSeq. The
total number of nucleotides covered by the exons is
65,469,364.
When computing local mutation rates, we considered

regions directly flanking TFBSs and exons. The flanking
regions were obtained using the flank and subtract sub-
commands of BEDTools [50] by extracting 1 kb upstream
and 1 kb downstream of the TFBSs (respectively, exons)
and filtering out sequences overlapping TFBSs (respec-
tively, exons).
Genomes with randomly distributed mutations were

constructed by shuffling all the mutations from cohort 1
or cohort 2 in the human genome using the shuffle sub-
command of BEDTools [50]. Then 1,000 genomes were
computed for each cohort. For each genome, we calcu-
lated the mutation rates in TFBSs and exons using the
randomly positioned mutations.

ChIP-seq data and transcription factor binding site
predictions
We collected 477 human TF ChIP-seq data sets from
both ENCODE [24] and publications collected in PAZAR
[51] with an associated TF binding profile described in
the JASPAR database [28] (Additional file 5). ChIP-seq
peak regions called in the studies were retrieved from the
corresponding analyses. TF binding profiles for the corre-
sponding 103 TFs were retrieved from the 2014 release of
the JASPAR database [28].
TFBS predictions were obtained by scanning PWMs

derived from the TF binding profiles (see [52] for the
TF binding profile to PWM conversion) using the TFBS
Perl module [53]. The PWMs were applied to the whole
length ChIP-seq peaks and we further considered in our
analysis the hits for which the relative PWM score was
over 85% (see [52,53]). The default threshold of 85%
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was used to call TFBSs as in previous studies [54,55].
We predicted TFBSs covering 76,160,599 bp. Note that
both strands on the reference and alternative genomes
were scanned with the PWMs to search for the optimal
hits.

Frequently targeted regions
Frequently targeted regions were obtained by sliding a 1-
kb window along the human genome with steps of 500 bp.
The makewindows subcommand of BEDTools [50] was
used to construct the set of window coordinates. For each
position, we recorded the number of cis-regulatory muta-
tions overlapping the window using the BEDTools [50]
intersect subcommand. Only windows containing at least
three mutations were considered and plotted in Figure 4.
Mutations from the two cohorts were analyzed separately
(Figure 4A,B) and combined (Figure 4C). For each muta-
tion lying within a frequently targeted region, the closest
gene was extracted using the TSS positions of the RefSeq
genes by applying the closest subcommand of BEDTools
[50]. Genes with a TSS at a distance of at most 2 kb were
used for Figure 4.

Prediction of alternative transcription factor binding sites
For each mutation, we computed the best PWM score
using the alternative sequence containing the mutation.
To compute the PWM score, we extracted sequences
with a length of 2n − 1 bp (with n being the length
of the considered PWM, Additional file 1: Figure S11A)
centered around the SNV to identify regions that could
contain a better TFBS at any overlapping position on
the alternative sequence (Additional file 1: Figure S11B).
Alternative TFBS scores resulting from an insertion
were computed for sequences of length 2n − 2 + i bp
where i represents the length of the insertion (Additional
file 1: Figure S11C). Similarly, alternative TFBS scores
resulting from a deletion were obtained by scanning the
2(n − 1) bp sequence centered at the deletion region
(Additional file 1: Figure S11D). When scanning alter-
native sequences with the PWMs, only the best hit
per sequence was recorded. We considered a mutation
(SNV or indel) to be deleterious for a TFBS if the
PWM relative score was below 80% for the alternative
sequence.

MANTA
All the predicted TFBS positions can be scanned for
overlap with SNVs using our dedicated Mongo database
for the analysis of TFBS alterations (MANTA). MANTA
stores the positions of all predicted TFBSs as well as all
the potential SNVs overlapping these positions. For each
potential SNV, you can retrieve information about the ref-
erence and alternative best TFBSs along with their scores
(see ‘Prediction of alternative transcription factor binding

sites’ for the computation of the alternative scores). The
MANTA source code is available at [56] and the system
can be interrogated at [57].

xseq
xseq analyses were performed as follows.

Preprocessing: Identifymutated genes
Mutations lying within TFBSs impacting gene expres-
sion Mutations lying within TFBSs were obtained using
MANTA. The closest gene to each mutation was obtained
using the set of TSSs of known refSeq genes from UCSC.
When finding the closest gene, we consider the start and
end positions for the mutation and the start positions for
all protein-coding TSSs from refSeq. Only mutations lying
within TFBSs with a potential impact on gene expres-
sion were considered. Namely, we require that the closest
gene to the corresponding mutations to be either up- or
down-regulated in the sample of interest. To determine if
a gene is deregulated, we considered the distribution of
expression of the gene in the cancer samples and required
that the expression in the corresponding sample was >

μ + 1σ or < μ − 1σ where μ and σ represent the mean
and standard deviation of the distribution of expression
values.

Mutations lying within protein-coding exons All
mutations lying within a protein-coding exon were con-
sidered. Namely, SNPeff [58] was used to extract the
mutations overlapping protein-coding regions and their
predicted impact on the protein. Additional file 6 lists the
mutation impacts that were considered in the analysis.

xseq analysis
All genes obtained from the previous step were used in the
input to the xseq tool, which is a probabilistic model that
aims to encode the impact of somatic mutations on gene
expression profiles. The model uses a generative hierar-
chical Bayes approach, which has as input three observed
quantities: a patient-gene expression matrix, a patient-
gene mutation matrix and a graph containing known
interactions between genes (for example, from pathway
databases). The model has two key unobserved random
variables, which constitute the output: Dg is a Bernoulli
random variable where Dg = 1 indicates that gene g
influences expression when mutated; Fp

g |Dg is a Bernoulli
random variable where Fp

g indicates that mutated gene
g influences expression in patient p. As such, we model
expression influence at two levels: over the patient popu-
lation and at the level of individual mutations in individual
patients. Random variables are estimated using the belief
propagation algorithm, with outputs consisting of two
relevant probabilities: Pr(Dg) and Pr(Fp

g ). Software imple-
mented in an R package encoding xseq is available at



Mathelier et al. Genome Biology  (2015) 16:84 Page 15 of 17

[59,60]. By considering the disruption likelihoods of each
mutated gene and its neighbors in biological networks,
xseq computes the probability of a mutated gene being
deregulated and causing cascading dysregulation effects
on its neighbors.

Post-processing
xseq provides the probability of each input gene being a
driver gene in the specific samples where it is mutated
(single-sample probability, Pr(Fp

g )) as well as its driver
potential considering all samples (all-samples probabil-
ity, Pr(Dg)). Potential false positives from xseq are pro-
duced when a gene is only mutated in a single sample
because there is minimal information for calculating the
all-samples probability properly. By plotting a histogram
of all the calculated probabilities when considering all
samples (Additional file 1: Figure S12), a distinct peak
was observed, which is formed by a large number of
these false positives. These distinct peaks were used as
a threshold; genes must have an all-samples probabil-
ity greater than or equal to 0.5 in cohort 1 and 0.8 in
cohort 2 to be considered in our analyses. Furthermore,
we require that the single-sample probability of a gene
is greater than or equal to 0.5 and the gene is predicted
in at least two samples to be considered in the analysis
(Figure 6).

Circos plots
The Circos plots in Figure 4 were drawn using the Circos
tool version 0.64 [61].

Functional enrichment analyses
Functional enrichment analyses were performed using the
Enrichr tool [31] (as of 20 January 2015) through its API
using the poster library of Python2.7. A term is consid-
ered to be enriched if the associated adjusted P ≤ 0.05.
Visualization for the enrichment plots were constructed
manually using Cytoscape 3.1.0 [62]. Enrichment results
associated with Mus musculus in WikiPathways were fil-
tered out and only Homo sapiens associated terms were
conserved.
The functional enrichment analysis illustrated in

Figure 5 was obtained from the list of genes provided in
Figure 4 (Additional file 2). The functional enrichment
analysis in Figure 7 was computed using the genes pre-
dicted by xseq (Figure 6 and Section ‘xseq’) along with
their biological network neighbors with altered expression
(that is, predicted by xseq to have a higher probability of
being up- or down-regulated than being neutral) in cohort
1, cohort 2 and their intersection (Additional file 2).

Statistical analyses
Hypergeometrical P values were computed using the phy-
per function of the R environment [63].

Additional files

Additional file 1: Additional figures. Supplementary figures referenced
in the manuscript along with their descriptions.

Additional file 2: Functional enrichments. Lists of genes used for the
functional enrichment analyses along with the complete Enrichr results
with a corrected P < 0.05.

Additional file 3: Case examples. Details of the case examples predicted
by xseq (HAS2, GNA13, BCL6 and ROBO1).

Additional file 4: HGNC symbols. List of HGNC symbols associated with
the genes that were analyzed in this study.

Additional file 5: ChIP-seq experiments. List of ChIP-seq experiments
used in this analysis along with the associated JASPAR TF binding profiles.

Additional file 6: Mutation impacts. List of mutation impacts from
SNPeff that have been considered in this study.
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