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Abstract

Many biological networks naturally form a hierarchy with a preponderance of downward information flow. In this
study, we define a score to quantify the degree of hierarchy in a network and develop a simulated-annealing algorithm
to maximize the hierarchical score globally over a network. We apply our algorithm to determine the hierarchical
structure of the phosphorylome in detail and investigate the correlation between its hierarchy and kinase properties.
We also compare it to the regulatory network, finding that the phosphorylome is more hierarchical than the regulome.

J

Background
Networks have been used as universal frameworks to
represent many complex systems including the World
Wide Web [1], social interactions [2], literature citation
relationships [3], and biological processes [4-6]. Based
on the attributes of edges, networks can be subdivided
into two categories: undirected and directed. In an un-
directed network there is no distinction between the two
vertices associated with each edge, whereas in a directed
network all edges are directed from one vertex to an-
other. The asymmetric nature of edges in a directed net-
work causes topological differences of nodes, resulting
in a hierarchical structure: some function as top regula-
tors, while others function as downstream effectors.
Owning to the development of large-scale experimental
techniques, many biological networks have been pro-
duced. These include protein-protein interaction networks
and genetic interaction networks [7-12]. Among them, the
gene regulatory network (referred to as the regulome) and
the protein phosphorylation network (referred to as the
phosphorylome) are two of the best-studied directed net-
works [10,11]. The regulome captures the transcriptional
regulatory interactions of transcription factors (TFs) with
their target genes. The techniques to systematically
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identify TF-DNA interactions include the bacterial one-
hybrid system [13], the yeast one-hybrid system [14], and
chromatin immunoprecipitation followed by microarray
(ChIP-chip) [15] or parallel sequencing (ChIP-seq) [16]. In
particular, ChIP-chip and ChIP-seq have been used to de-
termine the target genes of a large number of TFs in re-
cent years, and will produce more data in the near future.
In particular, in yeast Harbison et al have performed
ChIP-chip experiments to identify target genes of 203 pro-
teins, which represent nearly all of the DNA-binding tran-
scriptional regulators encoded in the yeast genome [10].
In human, the Encyclopedia of DNA Elements (ENCODE)
project has determined the genomic binding sites of more
than 120 TFs [17]. Meanwhile, the interactions between
kinases, phosphotases, and their substrates can be identified
by protein chip [11] or mass spectrometry [18]. The latter
technology is capable of providing precise phosphorylation
sites. In particular, Ptacek et al. has determined the in vitro
substrates recognized by most yeast protein kinases [11].
The availability of these datasets enables us to construct
regulomes and phosphorylomes and investigate the regula-
tory mechanisms of TFs and kinases on a systems level.
Since the regulome and phosphorylome are directed
networks, it is of particular interest to examine whether
they harbor a hierarchical structure (TF/kinase nodes
function at different levels) and, if so, how that hierarchy
is organized. Particularly, we have previously investigated
the rewiring of the regulomes in E. coli and S. cerevisiae,
and found that hierarchy, rather than connectivity, better
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reflects the importance of regulators [19]. For the regu-
lomes, the hierarchy properties have been explored in
several studies [17,20-23]. In these studies, the authors
inferred the hierarchical structure of regulomes and ex-
amined the correlation between the hierarchy and TF
features. For example, Jothi et al. demonstrated that top-
level TFs in the yeast regulome are more likely to be
essential and are more conserved across species [21].
These studies provide critical insights into the regulatory
mechanisms of TFs during transcription regulation. On
the other hand, the phosphorylation network has not
been investigated from a hierarchical perspective.

Several algorithms have been proposed to infer the
hierarchical structure of directed networks [20,21,24-27],
including leaf-removal, breadth-first-search (BFS) and
vertex sort (VS) methods. These algorithms have been
applied to the regulome and revealed new insights on
hierarchical organization of TFs during transcriptional
regulation. Despite their effectiveness, they have several
limitations and do not address some important issues
about hierarchical networks. The leaf-removal algorithm
determines the hierarchical structure by removing leaves
iteratively, and as a consequence it cannot be applied to
a directed network with cycles. Similarly, for networks
with cycles the BFS method has to break cycles before
assigning hierarchical levels to nodes [20]. In addition,
these two methods do not allow any ambiguity in posi-
tioning a node among hierarchical level - a feature that
is often the case in many networks. The VS algorithm
proposed by Jothi et al. is capable of overcoming these
shortcomings. However, it can only assign ambiguous
nodes to an interval of potential levels without providing
the probability of them to be at each level [21].

Moreover, these methods have not addressed several
important questions related to hierarchical networks:
How to quantify the degree of hierarchical structure for
a given network? How to estimate significance of hier-
archical structure of a directed network? How to com-
pare the degree of hierarchy of two directed networks?
Importantly, can every node be assigned to a specific
level with the same confidence? If not, how can we know
which nodes are more confident than the others? For
those ambiguous nodes, what are the probabilities of
them to be assigned to each level?

The degree of hierarchy for a given for a given net-
work is not well-defined concept. Ispolatov et al. [27]
introduced the idea of dominant direction by minimizing
the number of feedback links. While it is a proxy of hier-
archical structure to a certain extent, the method does
not provide a rigorous statistical confidence. Here, we
define a metric to quantify the degree of hierarchy for a
given hierarchical network, and then propose a new
method called hierarchical score maximization (HSM) to
infer the hierarchy of a directed network. First, we apply
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the algorithm to a military command network which
possesses a perfect hierarchical structure. The results
demonstrate its effectiveness in precisely determining
the network’s hierarchy. Second, we apply the algorithm
to eight directed networks including biological networks,
social networks, and ecological networks. We compare
these networks in terms of their degrees of hierarchy
and the results suggest that phosphorylomes are more
hierarchical than transcriptional regulatory networks.
Third, we compare the hierarchical structure of the yeast
regulome determined using the HSM algorithm with
those from previous algorithms. Finally, we investigate
the hierarchical structure of the yeast phosphorylome in
detail and relate kinases in different levels with different
genomic features.

Results

Construction of hierarchy by simulated annealing

To infer the hierarchical structure of a directed network,
we start by defining a score to quantify the degree of
hierarchy. For a network with a specified hierarchical
topology (that is, every node is assigned to a specific
hierarchy level), there are in general three types of edges:
downward interactions (pointing from higher-level to
lower-level nodes), upward interactions (pointing from
lower-level to higher -level nodes), and horizontal inter-
actions (between nodes in the same level). We thus de-
fine the hierarchy score (HS) as the ratio of the number
of downward interactions (Ng) to the number upward
interactions (N,) balanced by the number of horizontal
interactions (Nj) (see ‘Materials and methods’ for de-
tails) (Figure 1A). Based on this definition, we infer the
hierarchical structure of a directed network as the one
that achieves the maximum hierarchy score. Specifically,
a simulated annealing algorithm is used to continuously
adjust the hierarchical structure until the hierarchy score
is maximized (Figure 1B). Since HS will increase as the
number of levels is increased, the HS for two hierarch-
ical networks with different numbers of levels are in
general not directly comparable. To address this issue,
we therefore elaborate HS into a new metric called the
corrected hierarchy score (CHS), which quantifies the
enrichment in downward flow relative to expectation
(see ‘Materials and methods’ for details). Finally, we de-
fine a P value for how likely one would get such a hier-
archical structure randomly.

In principle, the optimum hierarchical structure for a
directed network may not be unique due to the exist-
ence of loops. Some nodes can be assigned to different
levels without significant change of hierarchy score. For
this reason, it is more reasonable and more informative
to represent the hierarchical structure as a probabilistic
model, in which a node may be assigned to multiple
levels with different probabilities. To estimate these
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assigning nodes to the level with highest frequency.
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Figure 1 The schematic diagram of the hierarchy score maximization algorithm. In hierarchical networks, the downward, upward, and horizontal
edges are shown in red, blue, and black colors, respectively. (A) The definition of hierarchy score. (B) A simulated annealing algorithm for inferring the
hierarchical structure by maximizing the hierarchy score. (C) The procedure to calculate the probability of nodes in different hierarchy levels. Simulated
annealing procedure is performed for k runs and in each run a hierarchical structure is inferred by maximizing the hierarchy score. The frequency of
each node in these k hierarchical networks is calculated to obtain a probabilistic hierarchical network. Discretized hierarchical network is obtained by

network

probabilities, for a directed network we performed the
simulated annealing procedure 1,000 times (k =1,000);
aggregating the results from each run gives rise to prob-
abilistic assignments to the different levels (Figure 1C).
Accordingly, we define a score called the probabilistic
hierarchy score (PHS) to more accurately quantify the
hierarchy underlying a directed network (see ‘Materials
and methods’ for details). Typically, most of the nodes
have a favored level to which the node is assigned with a
significantly higher probability than the other levels. We
thus can obtain a determined hierarchical structure by
assigning each node to its most likely level (Figure 1C).

Application of the HSM algorithm to a military command
network

To show the effectiveness of our method we apply it to
a military command network, which we know is a di-
rected acyclic graph (DAG) with a perfect hierarchical

structure. Since there are no loops in the network, the
hierarchy levels of each node can be deterministically
assigned (Figure 2A). We then apply the HSM algorithm
to the network, specifying different number of levels L =
2, 3, ..., 8. As shown in Figure 2B, the hierarchical struc-
ture is precisely inferred when the correct number of
levels (L =5) is specified. All of the nodes are assigned
to the right levels with 100% certainty. Meanwhile the
largest HS, CHS, and PHS were obtained when L is set
to 5. In practice, we do not have the prior knowledge
about the number of hierarchical levels. To determine
the number of levels one can try a range of different L
values and then set L to a ‘saturating value’ so that fur-
ther increase of L results in no or little increase in CHS
and PHS.

To show that the HS can quantify the degree of hier-
archy of a directed network we perturb the original net-
work in Figure 1A by introducing a number of upward
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Figure 2 Application of the hierarchy score maximization algorithm to a military command network. (A) A military command network with 19
nodes at five hierarchy levels. (B) The probability matrix inferred by the HSM algorithm with the number of levels specified as L=2, 3, ..., 8. Each
element in the matrix gives the probability of a node being assigned to a level. The HSM algorithm correctly identifies the network hierarchy
when L =5 is specified. (C) The distribution of hierarchy scores when a certain number of edges in the original network are perturbed. HS: hierarchy
score; CHS: corrected hierarchy score; PHS: probabilistic hierarchy score (see ‘Materials and methods' for details).

edges. We randomly introduce a number of upward
edges (n) to perturb the hierarchical structure of the net-
work. For each n, we repeated our procedure and re-
determined the hierarchical structure of the perturbed
networks. As shown in Figure 2B, with the increase
numbers of perturbations the hierarchy scores of the
perturbed networks decrease asymptotically, indicating
that the HS is an effective measurement for quantifying
the degree of hierarchy of directed networks.

Hierarchical scores of several directed networks

We next apply the HSM algorithm to calculate the
degree of hierarchy of eight different directed networks,
including five biological networks (yeast regulatory

network, human regulatory network, yeast phosphoryl-
ation network, human phosphorylation network and
worm neural network), one ecological network (food
web), one social network (political blogs), and one com-
puter network (P2P file sharing network) (see ‘Materials
and methods’ for information about these networks). We
can evaluate the performance of the HSM algorithm,
since we have an intuitive sense of the degree of hier-
archy of these non-molecular networks.

In Table 1, we summarize the topological properties of
these eight networks being sorted in the increasing order
of CHSs. The political blog network contains hyperlinks
between weblogs on US politics being recorded in 2005
[3]. The weblogs refer to each other by hyperlinks largely
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Table 1 Hierarchical scores of eight directed networks

Network Nodes (n) Edges (n) Levels (n) 1-DR KHS GRC HS CHS PHS Significance® Reference

Worm neural 297 2,359 L=4 0.184 0.186 0.133  2.805 2364 2.707 1.60 (30.72) Watts et al. [45]
Political blogs 1,224 19,087 L=3 0487 0514 0130 3.044 3177 2972 223 (251.38) Adamic et al. [3]
Yeast TF 149 580 L=4 0559 0611 0381 4675 3869 4330 197 (2232 Harbison et al. [10]
Human TF 112 513 L=4 0631 0718 0336 7.087 5.608 5.848 3.15 (53.30) Gerstein et al. [23]
P2P file sharing 6,301 20,777 L=4 0486 0.772 0628 4.348 5.878 2401 1.71 (74.06) Ripeanu et al. [58]
Foodweb 63 612 L=3 0259 0261 0582 5788 6407 5788 426 (190.38) Ulanowicz et al. [46]
Human kinase 373 2171 L=4 0492 0798 0020 14087 1339 12874 7.16 (275.89) Newman et al. [38]
Yeast kinase 94 200 L=4 0645 0775 0447 17455 13982 11.777 481 (41.73) Ptacek et al. [11]

2Significance is calculated by comparing a network with 1,000 Erdos-Renyi random networks. The first number is the ratio of its HS to the average HS of the
random networks. The second number in the parenthesis is the t-statistics of the HS. All networks listed in the table are significant (P <2e-16).
1-DR: 1-dyadic reciprocity; CHS: corrected hierarchy score; GRC: global reaching centrality; HS: hierarchy score; KHS: Krackhardt hierarchy score; PHS: probabilistic

hierarchy score.

in a non-hierarchical manner, and consistently, we observe
a relatively low hierarchical structure of it (CHS =3.2). In
contrast, the food web network typically is known to have
a pyramidal structure: the number of predators at each
level decreases significantly, so that a single top predator
is supported by a much larger number of preys. Indeed,
the food web network is more hierarchical, with a CHS of
6.4. In addition, the worm neural network is the least hier-
archical one among these networks, consistent to our
knowledge that neurons are not hierarchically but mutu-
ally connected with one another [28].

Our results reveal several interesting findings. First, in
both human and yeast, the phosphorylome is more hier-
archical than the regulome (Table 1 and Figure 3), al-
though all of these networks show significant hierarchical
structures compared to a random network (P <2e-16, see
method for significance estimation). This is seen with the
corrected hierarchy scores (CHSs) for yeast regulome and
human regulome of 3.9 and 5.6, respectively, in contrast
to the CHSs for yeast phosphorylome and human phos-
phorylome of 13.4 and 14.0, respectively. Surprisingly, the
phosphorylomes are even more hierarchical than the food
web network. Strikingly, all previous hierarchical network
studies have been focused on regulomes and overlooked
the phosphorylomes [17,20,21]. Our findings suggest that

more investigation into the hierarchical nature of phos-
phorylome is warranted. Second, the degrees of hierarchy
for both regulome and phosphorylome are highly consist-
ent between yeast and human, two evolutionarily distant
species.

Comparison with other hierarchy construction algorithms
To compare the HSM algorithm with other methods, we
apply it to the yeast regulome which contains 580 regu-
latory interactions among 145 transcription factors.
With the same dataset, Yu et al. have applied a BFS
method to construct a four-level hierarchical network
[20]; Jothi et al. have applied a vertex sort (VS) approach
to obtain a hierarchical network with seven levels, and
further merged them into three levels [21]. We execute
the HSM algorithm and obtain hierarchical networks
with 3, 4, ..., 8 levels. According to the CHSs, the hier-
archical network with four levels is the most appropriate
one.

We compare the CHSs of the hierarchical networked
inferred by different methods (Figure 4A). As HSM is
designed to maximize the hierarchical score it gives rise
to networks with significantly higher CHSs than those
by BES and VS methods (Figure 4A). The hierarchical
networks inferred by the other two methods have much

Phosphorylome

Figure 3 Application of the HSM algorithm to the yeast regulome (A), phosphorylome (B), and a random network (C).

Random network
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Figure 4 Application of HSM algorithm to the yeast regulome. (A) The corrected hierarchy scores for hierarchical networks as inferred by HSM,
BFS and VS methods. (B) The number of downward, upward, and horizontal edges in hierarchical networks inferred by the three methods.
(C) The correlation of TF properties with hierarchy. T, M, and B represent top, middle, and bottom levels, respectively.

lower CHSs than the optimum score. Moreover, the
hierarchical network inferred by the HSM algorithm
shows the highest fraction of downward interactions
with >70% of interactions pointing from higher to lower
level TFs. This is in contrast to BES and VS where <50%
of interactions are downward. Although there are no up-
ward interactions in the hierarchical network derived
from the VS algorithm (L =3), it has more horizontal
interactions than the HSM algorithm (Figure 4B). A
similar fraction of horizontal edges are observed in the
seven-level hierarchical network inferred by the VS
algorithm.

We next examine the properties of TFs in relation to
the hierarchy inferred by the HSM algorithm. As shown
in Figure 4A, the hierarchical network for the yeast reg-
ulome with four levels (L =4) achieves the highest CHS,
but the CHS for the network with three levels (L = 3) is
just slightly lower. In order to simplify the downstream

analysis and to facilitate the comparison with previous
studies we focus our analysis on the one with three TF
levels, with 42, 41, and 62 TFs at the top, middle, and
bottom levels, respectively (Additional file 1: Table S1).
First, we compare the percentage of essential TFs in the
three levels. Our results indicate that higher level TFs
are more likely to be essential: five out of 42 top level
TFs (12%) and three out of 41 middle level TFs (8%) are
essential. In contrast, none of the 62 bottom level TFs is
essential (P =0.01, Fisher’s exact test). In line with this,
the TFs at the higher levels are more conserved during
the evolution with the top level TFs tend to having a
lower dN/dS ratio (calculated based on S. cerevisae ver-
sus S. pombe comparison) than the middle and bottom
level TFs (P=0.008, Wilcoxon rank sum test). These
results are consistent with those previously reported in
Jothi et al. [21]. Second, we examine the degrees of the
TFs at different levels in the physical interaction and
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genetic interaction networks. We find that TFs in higher
levels (T + M) have significantly more physical interac-
tions (P = 0.0006, Wilcoxon rank sum test) than those in
the bottom level, consistent with our observations in the
human regulome [17]. The average numbers of partners
for TFs in different layers rank in the order of M > T > B.
A similar trend (M > T > B) is observed for genetic inter-
actions, but it does not pass the significance threshold
(P >0.05 when TFs in T+ M layers are compared to
those in B layer in terms of number of genetic interac-
tions). Third, we compare the TFs at different levels on
their dynamic properties, including their abundance and
stability at both the mRNA and protein level, and their
protein expression noise. The results indicate that the
top-level TFs are more stable than middle- and bottom-
level TFs (P =0.03, Wilcoxon rank sum test) (Figure 4C).
Overall, our results highlight the critical roles played by
the top-level TFs, as also reported by Jothi et al. using
the VS algorithm [21]. These master regulators are
highly conserved during evolution with a higher essenti-
ality rate.
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Features of kinases at different levels

Our results suggest that the organization of phosphory-
lomes is more hierarchical than the regulomes. We infer
the hierarchical structure of the yeast phosphorylome by
using the HSM algorithm. This network is mainly based
on protein chip experiments and contains 200 phosphor-
ylation interactions among 94 different kinases [11,29].
Again, for easy comparison we specify the number of
hierarchical levels L = 3, which results in 38 top-level, 33
middle-level, and 23 bottom-level kinases (Additional
file 2: Table S2).

We examine the cellular localization according to the
Saccharomyces genome database, which are manually
annotated based on previous literatures. Of the 94 ki-
nases 35 localize only to the cytoplasm, eight only to the
nucleus, and 12 to both (the remaining 39 kinases are in
other locations or localization unknown). Interestingly, the
kinases in the middle level are more likely to localize in
both nucleus and cytoplasm compared to the top and bot-
tom level kinases (P =0.02, Fisher’s exact test, Figure 5A).
Gene ontology analysis suggests that the top level is
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Figure 5 Application of the HSM algorithm to the yeast phosphorylome. (A) The localization of kinases at different levels in the cytoplasm and
nucleus. (B) The correlation of kinase properties with hierarchy. T, M, and B represent top, middle, and bottom levels, respectively.
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enriched in trans-membrane proteins and stress-response
proteins implying that the top-level kinases tend to be lo-
cated in the cell membrane and respond to extracellular
signals (Additional file 3: Table S3). In contrast, the middle
level is enriched in cell cycle related kinases.

We also relate the hierarchical structure of the yeast
phosphorylome with a number of kinase properties
(Figure 5B). Our findings are summarized as follows:
(1) The bud/bud-neck located proteins are highly
enriched in kinases of the middle and bottom levels
with respect to the top level (P=0.002, Fisher’s exact
test). Strikingly, none of the 38 top-level kinases is a
bud/bud-neck protein. This may suggest that during
yeast budding the top-level kinases function mainly in
the mother cells rather than enter the bud/bud-neck to
perform as direct effectors. (2) The middle-level kinases
show higher essentiality rate (18%) than the top-level
(8%) and the bottom-level (8%) kinases. (3) Kinases in the
middle level have significantly more physical (P =0.05,
Wilcoxon rank sum test) and genetic (P = 0.02, Wilcoxon
rank sum test) interaction partners. (4) The bottom-level
kinases are significantly noisier in their protein abundance
than kinases in the higher levels (P = 0.006, Wilcoxon rank
sum test).

Collaboration of kinases in different levels

We next explore how kinases in the top, middle, and
bottom levels collaborate with one another, in terms of
both inter-level (TM, MB, TB) and intra-level (TT, MM,
BB) relationships. First, we examine the physical and
genetic interactions between kinases at different levels.
Our results show that physical interactions are signifi-
cantly enriched in TB (between top-level and bottom-
level kinases) and MB (between middle-level and
bottom-level kinases), but depleted in the intra-level re-
lationships (T'T, MM, and BB). The genetic interactions
are significantly enriched in MB, and depleted in TT and
TB relationships (Figure 6A). This suggests that inter-
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level interactions between kinases, particularly between
middle- and bottom-level kinases, are dominant over
those intra-level interactions.

Second, we investigate kinase cooperativity. We define
two kinases as being cooperative if they share a signifi-
cantly large number of physical partners, genetic part-
ners, or phosphorylation substrates (Figure 6B). We find
that physical cooperation between kinases is enriched in
TB, while genetic cooperation is enriched in MB rela-
tionships. Interestingly, cooperation is highly depleted
between bottom level kinases suggesting that, as down-
stream effectors, they tend to phosphorylate different
subsets of proteins to take specific effects. Finally, we
further divide genetic interactions into positive and
negative ones, and examine their enrichment or deple-
tion between kinases. Positive and negative genetic inter-
actions involve a pair of genes with mutations or
deletions in which each alone causes a minimal pheno-
type, but when combined in the same cell results in a less
severe (positive) or a more severe (negative) fitness defect
than expected under a given condition [30]. As shown in
Figure 6C, both positive and negative genetic interactions
are significantly enriched in MB relationships.

Substrate of kinases at different levels

The network contains 200 inter-kinase phosphorylation
interactions (one kinase phosphorylating another) and
six auto-phosphorylation interactions (CKA2, TPK2,
RADS53, PRP1, CDC7, and CDC15). Indeed, the auto-
phosphorylation is over-represented in the network
(P =0.02, see ‘Materials and methods’ for details). There
are two feedback loops (TPK2 and TPK3, ELM2 and
GIN4) involving two kinases in the network in which the
two kinases phosphorylate each other. The feed-forward
loop (FFL) network motif is highly enriched in the yeast
phosphorylome. We investigate the FFL motifs in the con-
text of hierarchy. In a FFL with three nodes, one kinase
phosphorylates another kinase and both target a third
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protein as substrate, which can be either a kinase or non-
kinase. We enumerate all of three-node FFL motifs in the
yeast phosphorylation data (including non-kinase sub-
strates) and map the two kinases in these motifs to the
hierarchical network. Each of the two kinases in a FFL
motif can be from one of the three hierarchical levels (T,
M, and B), which results in nine combinations (TT, TM,
TB, MT, MM, MB, BT, BM, and BB). We count the
number of FFL motifs for all the nine types and our re-
sults show that >90% FFL motifs involve downward in-
teractions between kinases in the hierarchical networks
(Figure 7A, red bars). The TM type FFL motif, in which
a top-level kinase phosphorylates a middle-level kinase
and both kinases share a target substrate, is signifi-
cantly enriched.

We also examine and compare the functions of the
substrate targets of kinases at different levels. The 38
top-level kinases target a total of 1,095 substrates; the 33
middle-level kinases target 998 substrates; and the 23
bottom-level kinases target 612 substrates. The sub-
strate targets of the three levels highly overlap as shown
in Figure 7B. After filtering out the shared substrate
targets, we identify 294 top-level, 228 middle-level, and
159 bottom-level specific substrate targets. Gene ontol-
ogy analysis indicates that the top-level specific sub-
strates are enriched in gene categories involving in
‘protein kinase activity, ‘phosphorylation, and ‘phos-
phate metabolic process, and so on (Additional file 4:
Table S4). In other words, the top-level kinases are
involved in the regulation of other phosphorylation-
related proteins. In contrast, the middle- and bottom-
level specific substrate targets are enriched in structural
proteins, for example, gene categories involving in
‘microtubule cytoskeleton, ‘structural molecule activity,
and ‘macromolecular complex subunit organization’.
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Discussion

Global optimization versus local optimization

To determine the hierarchical structure of a directed
network, the leaf removal and the BFS methods apply a
local optimization strategy. The leaf removal algorithm
employs a bottom-up iterative procedure. It assigns all
the leaf nodes (nodes with zero out-degree) to the bot-
tom level, and then iteratively removes all the leaf nodes
and the edges associated with them from the network to
determine the next higher level [25]. The BFS method
also starts by assigning the leaf nodes to the bottom
level, and then performs a BFS to define the level of a
non-bottom node as its shortest distance from a bottom
one [20]. In contrast, the hierarchical score maximization
(HSM) algorithm presented here works to globally
optimize the hierarchy of a directed network. It defines a
hierarchy score (HS) to quantify the degree of hierarchy in
a network. The hierarchical score captures the global hier-
archical property of a network. To infer the hierarchy,
HSM optimizes the hierarchical structure so that the max-
imum HS is achieved. Thus, the hierarchy inferred by
HSM represents the globally optimized structure. The VS
algorithm identifies strongly connected components and
collapses them to convert the network into a directed
acyclic graph, and applies the leaf removal algorithm on
the graph and on its transpose. Results are then combined
to infer a global solution of hierarchical levels [21]. This
method avoids any upward edges but the resulting net-
works have smaller hierarchy scores compared to those
from the HSM algorithm.

Compared with the previous methods, the HSM algo-
rithm takes into account the potential hierarchical ambi-
guity underlying a network. It provides a probabilistic
representation of the hierarchy for a network that can
more precisely reflect the underlying hierarchical
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Figure 7 Properties of the inferred hierarchical structure for the yeast phosphorylome generated by HSM algorithm. (A) The distribution of
feed-forward loop (FFL) motifs in the hierarchical network. In a FFL motif, a kinase X phosphorylates another kinase Y and both target a common
substrate Z. Depending on the location of X and Y in the hierarchical structure, the X->Y interaction can be categorized into nine combinations.
Downward interactions (TM, TB, and MB), upward interactions (MT, BT, and BM), and horizontal interactions (TT, MM, and BB) are shown with red,
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structure. For all the nodes, we know the certainty of
them being assigned to a hierarchical level, which is
informative and is useful for us to interpret their roles in
the hierarchical network. A global optimization method
has been proposed in [27], which applied a simulated
annealing algorithm to minimize the number of ‘back-
ward’ links going from lower to higher hierarchical
levels. In contrast, we define a hierarchical score that
quantifies the degree of hierarchy and infer the hierarch-
ical structure of a network by the scores magnitude.

Moreover, the HSM algorithm’s corrected hierarchical
score (CHS) is comparable between different networks.
As shown in Table 1, this enables comparisons in the de-
gree of hierarchy between different biological networks
such as social networks, file sharing networks, ecological
networks, and neural networks. Practically, this allows
for the exploration of the common rules shared by dif-
ferent networks and reveals the differences between
them [31]. For example, we find that the protein phos-
phorylation interactions mediated by kinases are much
more hierarchical than the transcriptional regulatory
interactions mediated by TFs.

Hierarchy versus asymmetry for directed networks

Dyadic reciprocity and Krackhardt hierarchy score are
often used to quantify the extent of asymmetry in di-
rected networks [32]. The former is defined as the pro-
portion of node pairs that are reachable from either
direction, while the latter is the fraction of node pairs
that are reachable from only one direction. We note that
Krackhardt hierarchy score, though termed a ‘hierarchy’
score, is distinct from the hierarchy score (HS) de-
scribed here. The asymmetry measured by reciprocity
or Krackhardt score quantifies the degree to which two
nodes are ‘mutually reachable’ in a directed network. A
related metric called global reaching centrality (GRC)
was defined to measure hierarchy as heterogeneous dis-
tribution of the local reaching centrality (the proportion
of all nodes that can be reached from a node) of all
nodes in a directed network [33]. These metrics do not
imply any information on orientation. In contrast, by
hierarchy here we mean a top-to-bottom orientation
for nodes at different levels.

Why do we need to introduce the ‘orientation/hier-
archy’ attribute for a directed network? Because in many
networks the nodes are by nature associated with certain
‘spatial’ or ‘temporal’ attributes. For example, the protein
nodes in a biology network may localize in different
cellular components, for example, the membrane, cyto-
plasm, or nucleus; meanwhile, external signals are often
transduced following a specific direction from mem-
brane to nucleus. This confers a global ‘hierarchy’ attri-
bute to the network that cannot be captured by
‘asymmetry’ attributes (for example, reciprocity and
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Krackhardt score). On the other hand, since the ‘hier-
archy’ originates from certain attributes of nodes, we
would expect to observe the correlation of hierarchy
with node features. In other words, the inferred hier-
archical structure should recapitulate the attribute differ-
ence of nodes at different levels. For instance, as shown
in Figure 4, we find that the higher-level TFs in the yeast
regulome are more likely to be essential and more
conserved.

The hierarchy score is also different than the three-
dimensional ‘morphospace’ proposed recently by Corominas-
Murtra, which defines three hierarchical features: treeness,
feed-forwardness, and orderability [34]. To define them,
nodes with zero in-degrees and out-degrees are regarded
as the source and the sink of a network, respectively, and
then the paths between them are characterized.

Temporal versus spatial organization of hierarchy

We observe interesting results when we apply the HSM
algorithm to the yeast regulome and phosphorylome. In
the yeast regulome, we find that higher-level TFs are
more likely to be essential and are more conserved dur-
ing evolution. Particularly, none of the 62 bottom-level
TFs are essential, compared to an average essentiality
rate of 19% in yeast. In the yeast phosphorylome, how-
ever, this is not the case and instead we observe signifi-
cant differences in cellular localization for kinases at
different levels. For instance, 21% of the middle-level
and 18% of the bottom-level kinases are detectable in
bud/bud-neck, whereas in the 38 top-level kinases, none
are identified in bud/bud-neck.

Biologically, the hierarchy of regulatory networks
(regulome and phosphorylome) may arise from the tem-
poral and/or spatial organization of regulators. In re-
sponse to stimulation or in a biological process (for
example, cell cycle regulation), early-activated regulators
(for example, TFs or kinases) regulate the expression/ac-
tivation of later regulators, which in turn regulate even
later ones, forming a hierarchical structure. Similarly,
the cellular localization of regulators can also contribute
to the hierarchical organization of a regulatory network.
For example, during signal transduction the extracellular
signal is typically transferred from a membrane-localized
kinase to a cytoplasmic kinase and onward to a nuclear
kinase [35]. Since in general TFs function in the nucleus
by regulating gene expression, their hierarchy is mainly
organized via temporal activation of TFs. However, in
phosphorylomes the hierarchical organization of kinases
can be determined by both temporal regulation and
spatial localization. The differential correlation pattern
of protein features with hierarchy between regulomes
and phosphorylomes may reflect such a difference.

One caveat of this study involves the quality of data
used for constructing the phosphorylomes. The yeast
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phosphorylome is constructed based on two sources:
kinase-substrate interactions identified from protein chip
experiments by Ptacek et al. [11] and phosphorylation
site data collected by Freschi et al. from several large-
scale studies [36]. The Patcek data are derived from
in vitro measurements of kinase-substrate interactions,
some of which may not necessarily occur in vivo. The
Freschi data derived from a set of experimentally identi-
fied phosphorylation sites, for which the associated pro-
tein kinases were computationally predicted by matching
with position weight matrices of yeast kinases. Thus, we
would expect a high false positive rate in the yeast phos-
phorylome, and, similarly, this is also the case for human
phosphorylome. More confident kinase-substrate inter-
actions might be obtained by selecting those in which
kinase and substrate are present in the same cellular
compartment or in the same functional categories. How-
ever, this filtering procedure may also increase the num-
ber of false negatives since the protein localization data
and function annotation may be incomplete or inaccur-
ate. In addition, only a subset of kinase-substrate inter-
actions have been identified and included in the
phosphorylomes. Therefore, a more detailed analysis
should be performed to validate findings in this analysis
when more complete and accurate phosphorylation data
become available in the future.

Conclusions

In summary, the HSM algorithm provides a useful tool to
investigate the hierarchy of directed networks. It can be
used independently or in conjunction with other hierarchy
inference methods. With more and various regulatory
interaction data being generated, we expect a wide appli-
cation of these methods in biological network studies.

Materials and methods
Construction of network hierarchy
A hierarchical network is a directed network for which
all nodes are assigned to a unique hierarchical level from
1 to L, where L is the total number of levels (L >2). Gen-
erally, a hierarchical network contains three types of
edges according to their directionality: a downward edge
(pointing from a higher level node to a lower level
node), an upward edge (pointing from a higher level
node to a lower level node), and a horizontal edge
(pointing from a node to another node in the same
level). To infer the hierarchy of a directed network, we
developed a hierarchical score maximization algorithm
described as follows.
First, given a directed network with assigned hierarch-
ical structure, we define a metric called hierarchy score as:
HS = %, where Ny, N, and Nj, are the number of

downward edges, upward edges, and horizontal edges,
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respectively. The metric essentially measures the ratio of
Ny to N, balanced by N. It takes a value from 0 to + oo,
with a higher HS indicating more downward edges rela-
tive to upward edges in a network. Specifically, when
N, = Ny, = 0, the network will have a HS of + .

Second, for a directed network we employ a simulated
annealing procedure [37] to infer its hierarchical struc-
ture by arranging nodes into L levels (L is a pre-defined
parameter). This procedure is as follows:

(1) We initiate from randomly assigning each node to a
level, calculate the corresponding HS score hsg, and
setting the initial energy as Eq = —hs,.

(2)We adjust the hierarchy iteratively to optimize the
hierarchical structure. Specifically, at iteration i, we
randomly select a node, adjust the hierarchy by
randomly placing it into another level and recalculate
the hierarchical score and energy (hs; = —E;) of the
resulting new hierarchy. We compute the energy
change AE = E-E, ;; if AE <0, we accept the hierarchy
adjustment; otherwise we accept the adjustment with
a probability P = exp(-AE/CT), where C is a constant
and T is temperature that are used to tune the
probability P.

(3)We repeat this procedure p times until E is minimized
(that is, HS is maximized). In practice, we gradually
lower the temperature T at each step to adjust the
sensitivity of annealing. This procedure results in an
optimized hierarchical network with maximized HS
score.

Third, we perform the above-described simulated an-
nealing algorithm k = 1,000 times to obtain 1,000 inferred
hierarchical networks. We do this because in many cases
the optimum hierarchy is not unique. For example, some
nodes are topologically identical in a directed network,
and changing their level assignment coordinately will not
change the overall hierarchical score. Based on these 1,000
inferred hierarchical networks, we calculate the probability
that each node is assigned to each level, which results in a
probability matrix for each node as seen in Figure 1C.
This matrix can be regarded as a probabilistic hierarchical
network, which is more informative and more precisely
describes the hierarchical structure of a directed network
than methods that omit this procedure.

Fourth, we provide a most likely hierarchical network
based on the probabilistic hierarchical matrix. Specific-
ally, we assign each node to the level for which the prior
step assigns it the highest probability. It should be noted
that the confidence of the assignment might vary from
node to node, depending on the value of the maximum
probability. Typically, however, most of the nodes have
high certainty in terms of the level assignment (for ex-
ample, the probability in the assigned level is >60%).
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To determine an appropriate p (the number of steps
in each simulated annealing procedure) and k (the num-
ber of each simulated annealing runs), we plot the hier-
archy score against p and k, respectively. For a network
with more nodes and edges, a larger p should be used as
can be determined based on the HS vs. p plot. When a
suitable p is used, the resulting HS should be stable
against k when k is >100.

In practice, the HSM method can be used conjunction
with other hierarchy inference methods. For example,
one may start from the hierarchical structure inferred by
the VS algorithm, and use the simulated annealing pro-
cedure method to further optimize the hierarchy score.
Namely, instead of randomly selecting nodes during the
simulated annealing optimization, we can focus on
adjusting the levels of ambiguous nodes from VS output
to improve the efficiency. Such a strategy will combine the
advantages of the two hierarchy inference approaches.

Determination of the number of hierarchical levels

The HSM algorithm requires a pre-defined L, the num-
ber of hierarchical levels. L can be determined based on
the prior knowledge about the directed network of inter-
est. If no prior knowledge is available, we can specify dif-
ferent L values (e.g. L=2, 3, ..., 8) and choose a proper
L by comparing the resulting hierarchical networks.
However, the HS score is not directly comparable for
hierarchical networks with different number of levels,
because networks with larger L tend to have higher HSs.
We thereby define a corrected hierarchical score (CHS)
as the following:

CHS — O(N4)/E(N4) + O(Ny)/E(Ny)
O(N,)/E(N,) + O(Ny,)/E(Ny)’

where O(Ng), O(N,), and O(N},) are the observed num-
ber of downward, upward, and horizontal edges, respect-
ively; E(Ng), E(Ny), and E(Ny) are the expected number
of downward, upward, and horizontal edges, respect-
ively. E(Ny), E(Ny), and E(N}) are calculated as:

E(Ng) =) _SiS;

i>j

E(N,) =) _SiS;
i<j

E(Ny) =) _SiS),

i=j

where S; and S; are the number of nodes in level i and
level j, respectively. The CHS is directly comparable be-
tween hierarchical networks with different L values, and
can also be used to compare the degree of hierarchy
between different directed networks. The CHS takes a
value from 1 for random network without a hierarchical
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structure to o for a network with a perfect hierarchy
(for example, a tree as in Figure 2).

To determine the number of hierarchical level L for a
network, one can employ the HSM algorithm across a
range of L values and choose the L for which the HSM al-
gorithm yields the highest CHS. In some cases, the CHS
will keep increasing with the increase of L, because there
is more freedom to optimize the hierarchy with larger L
values. In this situation, one can plot the CHS against L
values, and choose the L at which no significant CHS
improvement is achieved. In addition, other information is
also important to determine the L for a directed network.
For example, it is reasonable to require L to be no larger
than the diameter of the network, namely, the greatest dis-
tance between any pair of connected nodes.

Calculation of probabilistic hierarchical score

To more accurately measure the hierarchical structure
of a probabilistic hierarchical network, we define a
new metric called the probabilistic hierarchical score
(PHS). For an edge i —j in a network with L levels,
the probability of this edge being downward is

>, P(Li,)P(L;,j), where P(L; i) and P(L; j) are the
i=kj

probability of the node i and j in level L; and Lj, respect-

ively. Similarly, the probability of i —; to be upward is

ZL,<L,P(Li’ i)P(Lj j); and the probability of i —; to be

horizontal is ZL‘<L‘P(L“ i)P(L;, /). Thus after taking into

account all edges in the network, we define PHS as the
following:

Z(H,‘)s{e)ZLpL,P(L“ DP(Ly.j) + Z(p;)s(e}ZL,:L,P(L"’ DP(L;.j)

Z(iaj)e{e}ZL,<L/P(Li7 DP(L;,)) + Z(Hj)e{e}ZL[:L,.P(L“ )P(L;.)) ‘

PHS =

The level is indexed in an increasing order from bot-
tom to top. Namely, level i is higher than level j in the
hierarchy, if i > j.

Estimation of the hierarchy significance for a directed
network

Given a directed network, the HSM algorithm infers its
optimum hierarchical structure by maximizing the HS
score. Although the resulting HS score can measure the
degree of hierarchy of a network, it does not tell us
whether a directed network has a significantly hierarch-
ical structure. To address this issue, we compare a di-
rected network with random networks to evaluate its
hierarchical significance. Here we use the Erdos-Renyi
random graph model as the null model. In a network,
each pair of nodes has an equal chance to be connected
by an edge [38]. We generate 1,000 Erdos-Renyi random
networks with the same number of nodes and edges,
and calculate their HSs using the HSM algorithm. Given
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a specified number of layers (L), the P value of hierarchy
for the network of interest is then computed as the fraction
of random networks with a HS (the same L is specified)
equal to or greater than the interested network. Alterna-
tively, assuming a Gaussian distribution of the HSs of the
random networks, we calculate the Z-score for the inter-
ested network: Z = (HS-y)/0, where p and o are the mean
and standard deviation of the HS scores of those random
networks with L levels; the P value is calculated by refer-
ring to a standard normal distribution, and for each L a
corresponding P value is calculated (L =2, 3, ..., 8). The
hierarchy for the whole network is calculated as the mini-
mum P-value adjusted by the Bonferroni multiple-testing
correction method. We note that the significance estima-
tion depends on the selection of the null model. To gener-
ate the random networks, other null models can be used
and certain constraints can be applied as required.

Calculation of dyadic reciprocity and Krackhardt hierarchy
score

Traditionally, 1-dyadic reciprocity and Krackhardt hier-
archy score are often used to quantify the extent of
asymmetry in directed network [32]. The dyadic reci-
procity is defined as the proportion of node pairs in a
directed network that are symmetric (that is, reachable
from either direction). Krackhardt hierarchy score is the
fraction of node pairs in the directed network that are
reachable from one direction. These two metrics meas-
ure the degree of asymmetry of a directed network,
which is different from the hierarchy we introduce in
this study. Our hierarchy by nature implies a top-to-
bottom orientation, whereas the ‘asymmetry’ is non-
directional. We use the R package ‘sna’ to calculate
dyadic reciprocity and Krackhardt hierarchy score. The
global reaching centrality of networks is calculated using
the method introduced by Mones et al. [33].

Directed networks used in this study

In this study, we examine eight directed networks, in-
cluding five biological networks, one ecological network
(food web network), one social network (political blogs
network), and one computer network (P2P file sharing
network). The five biological networks are the yeast
regulation network, the human regulation network, the
yeast phosphorylation network, the human phosphoryl-
ation network, and the worm neural network.

The yeast regulome was downloaded from Jothi et al.
[21], in which most of the TF-gene interactions were iden-
tified by ChIP-chip experiments [9,10], and the remaining
were collected based on other biochemical studies [39-42].
The human regulome is constructed based on ChIP-seq
data from the ENCODE project [43], based on which the
target genes of more than 120 TFs are determined by a
probabilistic model [44]. For TFs with multiple ChIP-seq
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datasets, the target genes represent a union of targets in
all of the available datasets. The kinase-substrate interac-
tions in the yeast phosphorylome are collected from pro-
tein chip experiment by Ptacek et al [11] and the
phosphorylation site data collected by Freschi et al. from
several large-scale studies [36]. The human phosphory-
lome is available from the PhosphoNetworks database,
which is based on experimental determined kinase-
substrate relationships [38]. In our hierarchical study, we
include only TF-TF interactions in the two regulomes and
kinase-kinase interactions in the two phosphorylomes.

The worm neural network contains the interaction of
one neuron to another via synaptic or gap junctions in
worm [45]. The food web network is from Ulanowicz
et al, which contains the carbon exchange from one
species to another occurring during the wet season in
the cypress wetlands of south Florida [46]. The Political
blogs network contains hyperlinks between weblogs on
US politics being recorded in 2005 [3]. The P2P file-
sharing network is one of a series of Gnutella network
created in 2002, in which nodes represent host com-
puters in the Gnutella computer network and edges rep-
resent connections between the hosts [47].

Properties of yeast genes and proteins

The list of yeast essential genes was determined by a
yeast gene deletion project and was downloaded from
the Saccharomyces genome database (SGD) [48]. The
Ka/Ks ratios of ortholog genes between S. cerevisiae and
S. pombe orthologs were from Wall et al. [49]. The phys-
ical and genetic interactions of yeast genes were also
downloaded from the SGD database [50,51]. Specifically,
to calculate the number of physical interacting partners
of yeast kinases the protein-protein interactions between
yeast kinases were obtained from Breitkreutz et al. [12].
The mRNA abundance and mRNA half-life data were ob-
tained from previous studies [52,53]. The protein half-life
data came from Belle et al. [54]. The protein abundance
and protein noise data were available from Newman et al.
[55]. To determine the protein noise, the single cell ex-
pression level of a protein was measured in a population
of yeast cells and then the ratio of the standard deviation
to its mean abundance was calculated. For a protein, the
noise is represented as the difference between its noise
value and the median over all proteins, named as devi-
ation from median (DM). Budding or budding neck
localization of yeast kinases was obtained from Huh et al.
[56]. The cellular component associated with yeast kinases
was annotated by SGD, which are manually curated based
on previous publications.

Enrichment of interactions between different levels
To examine whether TFs/kinases are more likely to
physically/genetically interact within the same level or
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between two levels (Figure 6A), we calculated the en-
richment of interactions in all pairs of levels: TT, TM,
TB, MM, MB, and BB. Using physical interactions be-
tween TFs as the example, the significance of enrich-
ment or depletion is calculated as follows. First, given a
physical interaction network with n nodes and e edges,
we compute the probability for a pair of randomly se-
lected genes to interact: p =e/[n(n-1)/2]. Second, we as-
sume that the number of TF-TT interactions (denoted as i)
within a level or between two different levels follows a bi-
nomial distribution: Pr(x = i) = f(i; b, p) = Zpi(l—p)bfi,
where b is the number of all possible TE-TF pairs. Consid-
ering self-interactions, b = m(m + 1)/2 for intra-level inter-
actions with m TFs (that is, TT, MM, or BB), and b=
m;m, for interactions between two levels with m; and m,
TFs, respectively (that is, TM, TB, and MB). Finally, the P
values are calculated as P(x>i) for enrichment (that is,
the probability of observing an equal or greater number of
interactions) and P(x <) for depletion (that is, the prob-
ability of observing an equal or smaller number of interac-
tions) of physical interactions between these TFs.

To estimate whether two kinases share a significantly
large number of physical partners, genetic partners or
substrates (Figure 6B), we examine their degree of over-
lap and calculate its significance using Fisher’s exact test
(that is, hyper-geometric test).

Gene ontology analysis

We used the DAVID Gene Ontology (GO) annotation
tool [57] to investigate the functional enrichment of ki-
nases in the three levels of our hierarchical network for
phosphorylome (Figure 3B). The whole list of the 94 ki-
nases in the network is used as the background for en-
richment analysis. A similar analysis is also used to
study the functional enrichment of substrates specific to
kinases from each of the three levels. In this case, we use
the whole yeast gene list as the background. R code for this
analysis is available from http://gersteinlab.org/proj/hinet.
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