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Abstract

Single-cell genome sequencing methods are challenged by poor physical coverage and high error rates, making it
difficult to distinguish real biological variants from technical artifacts. To address this problem, we developed a method
called SNES that combines flow-sorting of single G1/0 or G2/M nuclei, time-limited multiple-displacement-amplification,
exome capture, and next-generation sequencing to generate high coverage (96%) data from single human cells. We
validated our method in a fibroblast cell line, and show low allelic dropout and false-positive error rates, resulting in
high detection efficiencies for single nucleotide variants (92%) and indels (85%) in single cells.
Background
Single-cell sequencing methods have the potential to
provide great insight into the genomes of rare sub-
populations and complex admixtures of cells, but are
currently challenged by extensive technical errors and
poor physical coverage data. While much progress has
been made in developing single-cell RNA sequencing
methods [1-4], the development of genome-wide DNA
sequencing methods has proven to be more challenging
[5,6], owing to the fact that single cells contain thousands
of copies of each mRNA molecule, but only two copies of
each chromosome. Therefore each cell provides only two
template DNA molecules for whole-genome-amplification
(WGA) reactions and errors that occur in the initial
rounds of amplification are inherited by all subsequent
molecules. In our previous work we developed the first
single-cell genome sequencing method, Single-Nucleus-
Sequencing (SNS), which utilized DOP-PCR to generate
about 10% coverage breadth of an individual cell [7,8].
Coverage breadth is defined as the percentage of nucleo-
tide sites in the single-cell data with ≥1X coverage depth.
However, while SNS was adequate for copy number
detection using large genomic intervals (54 kb), it could not
detect mutations at base-pair resolution. Two subsequent
methods were developed that use multiple-displacement-
amplification (MDA) [9] and multiple-annealing-looping-
based-amplification-cycles (MALBAC) [10] to increase
* Correspondence: nnavin@mdanderson.org
1Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
2Department of Bioinformatics and Computational Biology, MD Anderson
Cancer Center, Houston, TX, USA
3Graduate Program in Genes and Development, Graduate School of Biomedical
Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA

© 2015 Leung et al.; licensee BioMed Central.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
coverage breadth during WGA. While pioneering, these
studies increased coverage breadth at the cost of introdu-
cing high false positive and false negative error rates, due
to excessive over-amplification (1:1e6) of the DNA from a
single cell from 6 picograms to microgram concentrations.
Consequently, it was necessary to call variants across most
of the single cells to reduce the high false positive (FP)
technical errors, which is equivalent to sequencing the
bulk tissue en masse.
To mitigate technical errors, we recently developed a

method called Nuc-Seq, which utilizes G2/M cells to
perform single-cell genome sequencing [11]. While this
approach was suitable for analyzing highly proliferative
cells, such as cancer cells, it was not suitable for the
analysis of normal cells or slowly dividing populations.
To address this problem, we developed a new approach
called single nucleus exome sequencing (SNES) that builds
upon our previous method. SNES combines flow-sorting,
time-limited isothermal multiple-displacement amplifica-
tion (MDA), exome capture, and next-generation sequen-
cing (NGS) to generate high coverage (96%) data for
the accurate detection of point mutations and indels in
single mammalian cells. SNES has several improvements
over Nuc-Seq, including: (1) improved exome capture
performance; (2) time-limited isothermal amplification;
(3) enhanced MDA polymerases; (4) efficient DNA ligases;
(5) quality control (QC) of WGA using qPCR panels; and
(6) cost reduction by using standard reagents instead of
commercial WGA kits. Importantly we show that SNES
can be applied to either G1/0 or G/2 M cells, opening up
new avenues of investigation into single-cell genomics
studies of normal tissues and slowly proliferating cells (for
example, stem cell or cancer stem cells).
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Results and discussion
Experimental approach and quality control assays
To perform SNES nuclear suspensions are prepared
from fresh or frozen tissue using a DAPI-NST lysis
buffer (Figure 1a). Single nuclei are flow-sorted into in-
dividual wells by gating distributions of ploidy at 2 N
(G1/0) or 4 N (G2/M). Alternatively, this approach can
be applied to gate G1/0 or G2/M cells from aneuploid
tumors, which also have G2/M distributions at higher
Figure 1 SNES method and WGA quality control. (a) Nuclear suspensio
Single nuclei were isolated by gating the G1/0 or G2/M ploidy distributions a
amplification is performed using Φ29 to perform WGA. (b) Time-course of WG
using a panel of 22 chromosome-specific qPCR primers to determine the WG
ploidy indexes (Additional file 1: Figure S1). Single nuclei
are then deposited into individual wells of a 96-well plate
containing nuclear lysis buffer. The 6 picograms (2 N) or
12 picograms (4 N) of gDNA from each nucleus is incu-
bated with the Φ29 polymerase (New England Biolabs)
and modified random hexamer primers to perform time-
limited MDA. To determine the optimal isothermal time-
frame, we performed time-series MDA reactions using
G1/0 and G2/M cells over 8 h (Figure 1b). From this
ns were prepared from tissues, stained with DAPI and flow-sorted.
nd deposited nuclei singly into a 96-well plate. Multiple-displacement-
A showing total DNA yield from single nuclei. (c) Quality control assay
A amplification efficiency of each single nucleus.
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curve, we determined 120 min to be the minimum time-
frame required to generate approximately 500 ng of DNA
from a single cell, providing sufficient input material for
constructing libraries, exome capture, and performing the
necessary quality control assays.
To evaluate WGA efficiency we performed qPCR on

each single nucleus WGA reaction using a set of 22 pri-
mer pairs that target each chromosome independently
(Additional file 2: Table S1, methods). Single nuclei with
22/22 amplicons were selected for subsequent library
construction and next-generation sequencing. Our data
showed that G2/M cells resulted in an improvement
over G1/0 cells for WGA efficiency, with 70% (14/20)
single cells having the full set of chromosomes amplified
in G2/M cells compared to 15% (3/20) in G1/0 cells
(Figure 1c). Additional G1/0 WGA experiments and QC
were subsequently performed to obtain nine SKN2 cells
in total for the single-cell sequencing experiments.
Notably, performing QC analysis with qPCR on cancer

cells may lead to diminished signal due to hemizygous
deletions, and occasionally rare focal homozygous dele-
tions [12,13]. Therefore users may want to consider
looser filtering criteria (20/22 amplicons). However this
has not been a problem in our previous work, in which
we performed QC on single breast tumor cells using
standard PCR and found that >20 amplicons were
detected in 80 single cells [11]. Single cells that passed
QC for WGA were used to construct sequencing librar-
ies using a low-input TA cloning protocol starting with
100 ng of input material (see Methods). During library
construction a unique 6 bp barcode was added to each
single-cell library for sample multiplexing. We pooled
four single-cell libraries together into one reaction for
exome capture (TruSeq, Illumina) and next-generation
paired-end sequencing on the HiSeq2000 system (Illumina)
using 100 paired-end cycles. The number of cells that can
be multiplexed is a function of the amount of data that is
generated from the sequencing platform and the size of
the exome target region.

Measuring coverage performance and uniformity
To determine the coverage performance and error rates
of SNES, we used a normal isogenic female fibroblast
cell line (SKN2), in which we assume that the variants
present in a single cell will be highly similar to the reference
population sample. Any deviations from the reference vari-
ants were considered to be technical errors, and were used
to calculate the error rates (see Methods). We sequenced
the population of cells at high coverage depth (59X) and
breadth (99.76%) to obtain a reference set of whole-genome
variants. We then applied SNES to sequence nine single
cells that were gated from the G1/0 stage of the cell cycle
and 10 single cells from the G2/M stage (Additional file 3:
Table S2). We aligned the single-cell data to the human
genome using our processing pipeline and eliminated
sequence reads with multiple mappings and PCR dupli-
cates (see Methods). As expected, all of the single cells
showed very similar coverage depth distributions, irre-
spective of whether they were gated from the G1/0 or G2/
M distributions (P = 0.85, t-test), which is important for
the subsequent comparisons (Figure 2a and b).
In order to assess coverage performance, we calculated

coverage breadth (sites with ≥1X coverage) (Figure 2c) and
coverage uniformity (evenness) (Figure 2e). Our data sug-
gest that coverage breadth (≥1X) significantly (P = 0.0021,
t-test) increased in the G2/M cells (95.94%, ± 0.005 SEM)
relative to the G1/0 cells (89.60% ± 0.018 SEM) (Figure 2d).
This results in the number of site with sufficient coverage
depth for variant calling at 73.54% in G1/0 cells compared
to 84.34% in G2/M cells. To assess coverage uniformity,
we plotted the fraction of the exome covered as a function
of coverage depth (Figure 2f). These plots show that the
G2/M cells achieved more even coverage uniformity at
sites with low coverage depth compared to the G1/0 cells.
To further investigate coverage uniformity, we calculated
Lorenz curves and plotted data for perfect uniformity, a
genomic DNA population sample and mean data for the
G1/0 and G2/M single cells, as well as data from our
previous Single-Nucleus-Sequencing method (Figure 2g)
[14]. These curves show a large improvement in coverage
uniformity using G2/M cells compared to the G1/0 cells,
and both showed vast improvements over our previous
SNS approach [7]. We also calculated the on-target per-
formance for data in the exome region of single cells, and
found very high percentages (mean = 67.33%) for G1/0
and G2/M cells (Figure 2h), which is equivalent to previ-
ous reports (55% to 85%) of exome capture efficiencies
using millions of cells [15].

Estimating technical error rates
To calculate the technical error rates we filtered the reads
by mapping quality, base quality, and clustered regions
[16]. We then performed local realignment around indels
(see Methods). From these data we identified single-
nucleotide variants (SNVs) and indels using the Unified
Genotyper (GATK), following our processing pipeline
(Additional file 4: Figure S2) [17]. Major sources of tech-
nical errors that occur during WGA include the allelic
dropout rate (ADR) and the FP error rates (Figure 3a)
[18,19]. Previous studies have reported very high (43.09%)
allelic dropout rates in single-cell exome sequencing data
[19,20]. In comparison, our data show that SNES signifi-
cantly (P = 7e-4, t-test) reduced the allelic dropout rates to
30.82% (±0.013, SEM) in G1/0 cells and 21.52% (±0.019,
SEM) in G2/M cells (Figure 3b). These calculations are
based on sites in which both the single cells and popula-
tion sample have sufficient (≥6X) coverage depth (in order
to eliminate sites with low coverage in which WGA did



Figure 2 Coverage performance and metrics. (a) Coverage depth diagram. (b) Coverage depth data for G1/0 and G2/M single cells. (c) Coverage
breadth diagram. (d) Coverage breadth data for exome region of G1/0 and G2/M single cells compared to previous studies using SNS [7] and
MALBAC (Ni et al. [28]). Error bars show SEM. (e) Coverage uniformity diagram. (f) Coverage depth distribution for sites with low coverage in G1/0 and
G2/M single cells. (g) Lorenz curves of coverage uniformity, showing values for perfect coverage, millions of SKN2 reference cells, Nuc-Seq single cell
[11], single cells from G1/0 and G2/M distributions, and SNS cell [7]. (h) Capture performance of sequence reads across exons in the KRT76 locus for
three single cells.
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not necessarily lead to allelic dropout). An alternative
approach for calculating the ADO includes all heterozy-
gous sites in the population and single cell sites regardless
of coverage depth, which results in an ADR of 43.84% for
G1/0 cells and 27.21% for G2/M cells.
Next, we calculated the FP error rate, which is caused
by the infidelity of the Φ29 polymerase (error rate = 1e-7)
during isothermal amplification [21]. From our data we
calculated a FP error rate of 3.2e-5 for SNVs, which is
equivalent to 32 errors per megabase. This FP error rate is



Figure 3 Error rates and detection efficiencies. (a) Illustration of technical errors, including the allelic-dropout rate (ADR) and false positive (FP)
error rate. (b) Allelic dropout rates for single-cell experiments using G1/0 and G2/M single cells. (c) Spectrum of FP errors detected in the G2/M
single-cell data, with each column representing a single cell. (d) Spectrum of single nucleotide variants detected in the SKN2 population data.
(e) Distribution of FP errors on chromosome 7 and 11 that occur in single cells (black) or in two or more cells (red). (f) Detection efficiency for
single-nucleotide variants in the G1/0 cells and G2/M cells calculated from the exome sequencing data. (g) Detection efficiency for indels in the
G1/0 cells and G2/M cells calculated from single-cell exome sequencing data. Error bars in all panels represent the SEM.
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higher than our previous estimates for whole-genome
single-cell sequencing with Nuc-Seq, but can be explained
by the increased isothermal WGA timeframe and add-
itional PCR cycles required to generate sufficient DNA for
exome capture and enrichment. We investigated the
spectrum of the FP errors and found that 82.3% were C >T
and G >A transitions (Figure 3c), showing a significant
bias relative to the normal transition and transversion
spectrum in the population of fibroblast cells (Figure 3d).
Importantly, we found that the majority of the FP errors
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occurred at random sites in the genomes of single cells,
with few mutations occurring at recurrent sites in two or
more cells (Figure 3e, Additional file 5: Figure S3). This
distribution allows the FP error rates to be mitigated by
calling mutations in two (FP: 3.2e-52 = 1.02e-9) or more
(FP: 3.2e-5n) single cells. Using two or more cells in vari-
ant calling is possible in most single-cell studies, which
normally seek to analyze large numbers of cells.
We also investigated the distribution of allelic dropout

events in the single-cell data. By comparing the allelic
dropout events from both alleles, our data showed that
there is a slight bias towards AB→ BB dropout events,
when compared to AB→AA events in both the G1/0
and G2/M cells (Additional file 6: Figure S4). We
hypothesize that this bias is likely due to mismatch
hybridization inefficiency of the exome capture probes
to the B alleles, since they were designed for the A allele
sequence (reference human genome assembly). Next we
examined the distribution and recurrence of allelic
dropout events by examining their frequency across
multiple single cells (Additional file 7: Figure S5). Our
data show that in contrast to the random distribution
of FP errors that occur at different site in single cells,
allelic dropout errors sometimes occurred at recurrent
positions in multiple single cells (Additional file 7:
Figure S5). On average we observed that 2.55 cells out
of 19 single cells shared a recurrent allelic dropout
event at the same nucleotide position. These regions
are important to note in single-cell studies and should
be filtered, since they can be misinterpreted as bio-
logical variation in SNV prevalence, when in fact they
are likely to be technical errors.
Measuring detection efficiencies
We calculated the detection efficiencies, to measure the
proportion of the SNVs and indels that were successfully
detected in each single fibroblast cell exome. For SNVs
we detected 92.37% (±0.008, SEM) of the variants in the
single cells (mean = 32,369/34,982) in the G2/M cells, and
86.71% (±0.012, SEM) in the G1/0 cells (mean = 25,753/
29,549) (Figure 3f). In comparison, previous studies using
MALBAC [9] reported detection efficiencies of only 76%
for SNVs. An alternative approach is to calculate the SNV
detection efficiency at all variant sites in the reference, re-
gardless of the coverage depth in the single-cell and popu-
lation sample. This calculation results in a detection
efficiency for SNVs of 60.64% for G1/0 cells and 76.22%
for G2/M cells. We also calculated the detection efficiency
for indels, which is 85.60% (±0.007 SEM) for G2/M cells
(mean = 2,448/2,856), and 82.11% (±0.009 SEM) for G1/0
cells (mean = 1,926/2,336) (Figure 3g). To our knowledge,
this is the first report showing that indels can accurately
be detected in the genomes of single mammalian cells.
Conclusions
We report the development of a novel single-cell exome
sequencing method called SNES that can achieve high
coverage (96%) data from the exome of a single mamma-
lian cell. From these data we show that we can accur-
ately detect SNVs and indels at base-pair resolution. The
technical performance in coverage improvement is due
to multiple factors, including an improved Phi29 poly-
merase (New England Biolabs), time-limited isothermal
amplification and the use of a 22-chromosome qPCR
panel to eliminate cells with poor WGA performance
prior to exome capture and sequencing. In contrast to our
previous method [11], SNES eliminates the requirement
for Tn5 transposases for library construction, which can
introduce integration biases in the human genome and
lead to coverage non-uniformity [22-25]. By performing
time-limited isothermal MDA with an improved Phi29
polymerase (New England Biolabs) we were able to miti-
gate FP and FN error rates, resulting in improved detec-
tion efficiencies for SNVs and indels. Importantly, the
SNES protocol eliminates commercial kits for cell isola-
tion, WGA, and library construction, thereby reducing the
cost of generating a single-cell library to approximately
$30 per cell (not including the exome capture reagents
and sequencing costs). This will enable a large number of
cells to be analyzed and multiplexed, which is the goal of
most single-cell sequencing studies.
In our study, we performed a direct comparison of

data derived from G1/0 and G2/M single cells, which
shows that both cells performed well for coverage uni-
formity and breadth. However our data show that using
G2/M cells will lead to even further technical improve-
ments in the allelic dropout rates. In the future, further
technical improvements may be achieved by combining
SNES with microfluidic platforms (for example, Flui-
digm) which have been shown to decrease errors when
nanoliter volumes are used for MDA reactions [5,26,27].
In contrast to most single cell sequencing methods to
date [5,9,10,27] SNES utilizes nuclei instead of cells for
analysis. Nuclei have several advantages over using cells:
(1) nuclei can be stained with DAPI and gated to avoid
collecting cells that are degraded, apoptotic, or replicat-
ing; 2) nuclei can be deposited more accurately to avoid
sequencing multiple cells; and (3) nuclei can be isolated
from archival frozen tissue samples, that have been
stored for decades [5,10,20,28]. The last point is crucial
for single-cell sequencing of archival tissues, because
freezing ruptures the cytoplasmic membrane of most
cells, but leaves the nuclear membrane intact from which
nuclear suspensions can easily be prepared. However,
nuclei also have several notable limitations, including
potentially missing DNA from micronuclei [29] and the
fact that cell surface markers cannot be used to isolate
specific populations (for example, by gating during flow-
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sorting). Thus the choice of using nuclei vs. cells will
depend largely on the specific requirements of the
research project. In closing, we expect that SNES will
have broad applications in many diverse fields of biology,
including cancer research, microbiology, neurobiology,
development, and prenatal genetic diagnosis, and will
lead to vast improvements in our fundamental under-
standing of human diseases.

Methods
Cell line sample
SKN2 is an isogenic human fibroblast cell line that was
obtained from the Cold Spring Harbor Laboratory (Dr.
Michael Wigler). SKN2 was cultured using Dulbecco’s
Modified Eagle Medium with 10% fetal bovine serum,
penicillin/streptomycin and L-glutamine.

SNES experimental protocol
Isolating single nuclei by flow-sorting
Nuclei were isolated from the fibroblasts using an NST-
DAPI buffer (800 mL of NST (146 mM NaCl, 10 mM
Tris base at pH 7.8, 1 mM CaCl2, 21 mM MgCl2, 0.05%
BSA, 0.2% Nonidet P-40)), 200 mL of 106 mM MgCl2,
10 mg of DAPI, and 0.1% DNase-free RNase A. Cells
were trypsinized and lysed using the NST-DAPI buffer.
The nuclear suspension was filtered through 37-μm
plastic mesh prior to flow-sorting. Single nuclei were
sorted using the MoFlo Astrios Cell Sorter (Beckman)
by gating cellular distributions with differences in their
total genomic DNA content according to DAPI intensity.
Single nuclei were sorted into individual wells in a 96-
well plate. Each well was preloaded with 3.5 μL of lysis
buffer (1 M DTT, 100 mM sodium phosphate, 10 mM
Tris pH 8.0, and 6 M guanidine hydrochloride and PBS).
After flow-sorting, the plate was centrifuged at 700 rpm
for 1 min and incubated at 65°C for 10 min. After
adding 1.5 μL of neutralization buffer (800 mM Trizma
hydrochloride) to each well, the volume was 5 μL.

Whole-genome amplification by time-limited
multiple-displacement amplification
Whole-genome amplification was performed on single
flow-sorted nuclei using 10 units of Φ29 polymerase and
10× Φ29 buffer (NEB cat#M0269L), 1 mM dNTP (GE
Healthcare, cat#28-4065-51), and 50 μM random hexamer
(phosphorothioate modification on the two 3’-terminal
nucleotide - NNNN*N*N - synthesized by Sigma Aldrich)
to each well. The total 50 μL reactions were mixed by
gently pipetting up and down and spinning down the
reaction. Reactions were incubated at 30°C for 120 min to
obtain approximately 500 ng of DNA. The polymerase
was denatured subsequently at 65°C for 3 min. The ampli-
fied DNA was purified using DNA Clean & Concentrator-
5 columns (Zymo D4004).
WGA quality control using qPCR chromosome panels
To evaluate the WGA amplification efficiency of each
single-cell reaction we designed 22 pairs of primers
(Sigma Aldrich) to target 22 loci on different chromo-
somes for qPCR (Additional file 2: Table S1). The primer
sequences are listed below. For each qPCR reaction 5 ng
of DNA was used for the KAPA Taq PCR kit (Kapa
#BK1001). The qPCR reactions were run on the ABI
7500 system (Applied Biosystems) in 96-well plates. The
qPCR conditions used were: 95°C for 3 min, followed by
45 cycles (95°C for 20 s, and 60°C for 30 s). Single cell
WGA reactions that show positive qPCR reactions are
selected for subsequent library construction and next-
generation sequencing.
Construction of barcoded sequencing libraries
WGA reactions that passed QC were sonicated at
350 bp using Covaris S220. We used 100 ng of DNA to
construct sequencing libraries by TA cloning using KAPA
Library preparation kit (Kapa Biosystems, cat#KK8232), in
accordance with the manufacturer’s protocol. Libraries
were quantified by real-time qPCR using Library Quantifi-
cation Kit (Kapa Biosystems, cat# KK4835). We used the
TruSeq Exome Enrichment Kit (Illumina cat# FC-121-
1008) for exome capture in accordance with the manufac-
turer’s protocol using eight cycles of PCR enrichment.
Final concentrations were measured prior to sequencing
by qPCR using the Kappa Library Quantification Kit. Li-
braries were sequenced using 100 cycle paired-end flow-
cell lanes on the HiSeq2000 system (Illumina, Inc.) for
100 cycles. Data were processed using CASAVA 1.8.1
pipeline (Illumina, Inc) converting BCL basecall files to
fastq files.

Data processing and analysis pipeline
Sequence reads in FASTQ files were aligned to the
human genome (hg19) using the Bowtie 2 alignment
software [30]. Samtools (0.1.16) was used to convert
SAM files to compressed BAM files and sort BAM files
by coordinate [31]. The Genome Analysis Toolkit (GATK
v1.4-37) was used to locally realign the BAM files at inter-
vals with indel alignment errors [17]. To eliminate PCR
duplicates, we removed sequences with identical start and
end coordinates using Picard software [32]. Reads with
mapping quality MQ <40 were filtered from the BAM
files. We used GATK Unified Genotyper to detect single
nucleotide variants (SNVs). All single cells and reference
samples were processed together to generate a single
VCF4 file. We required a minimum base quality (mbq) of
20 for the base to be considered during variant detection.
Coverage depth at a given locus of greater than 2,500
reads was down sampled to expedite analysis processing.
We used the GATK variant recalibrator to filter the output
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at default sensitivity level. A minimum coverage depth
of 6 and at least 2 reads with variant allele was used for
further filtering of SNVs. SNVs in clustered regions
with neighboring SNVs within 10 bp were filtered from
the data to remove FPs. We then used GATK Select-
Variants to separate SNVs into VCF4 files for down-
stream analysis. The processing pipeline is outlined in
Additional file 4: Figure S2.

Calculation of coverage metrics
Reads with multiple mappings in the human genome
were filtered from the BAM files. Sequence reads with
unique mappings were used for calculating coverage
metrics. Coverage depth and breadth were calculated
using BEDTools by running genomecoverageBED using
the BED file from the TruSeq capture region of
62,286,318 bp [33]. Coverage breadth is defined as the
percentage of the exome with at least 1× read coverage,
while coverage depth refers to the mean number of
read counts across all the bases of a sequenced sample.
Lorenz curves [14] were calculated to determine cover-
age uniformity in the single cell and population
samples. Briefly, sequence reads were aligned with
bowtie2 using unique mappings and PCR duplicates
were removed with Picard. From the BAM files we ran
samtools mpileup with the following parameters:
‘-A -B -d1000000000’ to determine the read counts for
every base in the human genome reference assembly
HG18. The depth values were sorted using Unix sort
with ‘-n’ parameter and a custom perl script was used
to read the sorted depth values and calculate the
cumulative fraction of the genome that was covered
and the cumulative fraction of reads. The curves for
each cells and population samples were plotted in
Matlab (Mathworks).

Calculation of technical error rates
The allelic dropout rate (ADR) is defined as the mean
fraction of homozygous sites in the single-cell samples
(Homs) where the population reference sample is het-
erozygous (Hetp) at the same nucleotide site. These
calculations were made using all of the G1/0 or all of
the G2/M single-cell fibroblast exome sequencing data
independently. In these calculations both sites (reference
and single cell) required a minimum of 6X coverage depth
to call variants.

ADR ¼ 1
n

Xn

i¼1

Homs

Hetp

The false positive rate (FPR) is defined as the number
of heterozygous sites in the single cell sample (Hets)
divided by the number of sites in the population
reference sample (Homp) that are homozygous for the
reference allele at the same nucleotide site.

FPR ¼ 1
n

Xn

i¼1

Hets
Homp

Calculation of detection efficiencies
The detection efficiencies are calculated from the VCF4
variant files after the filtering steps have been performed.
The filtered multi-VCF4 file is partitioned into separate
files for SNVs and indels. For each line in the VCF file we
add a binary string indicating the absence or presence of
each variant in the single-cell samples or the reference
population sample. For each variant site in the population
sample, we identify variant sites in the single-cell samples
with sufficient coverage depth (≥6X). From the binary
string we determine if the variant is present/absent in each
single cell relative to the population reference sample. We
define a variant as being detected if the reference allele is
AB and the single-cell data are either AB or BB. The mean
detection efficiencies for indels and SNVs are then com-
puted across all of the single cells.

Data access
The data from this study has been deposited into the Se-
quence Read Archive (SRA) under accession SRP046355.

Additional files

Additional file 1: Figure S1. G1/0 and G2/M ploidy distributions in
aneuploid breast tumors. Nuclei were prepared from frozen breast
tumors and stained with DAPI. The nuclear suspensions were analyzed by
cytometric analysis showing the distributions of total DNA content. The
aneuploid distributions are highlighted for G1/0 and the corresponding
G2/M populations in each frozen tumor sample.

Additional file 2: Table S1. Chromosome specific qPCR primers.
Summary table of the chromosome-specific primer panel DNA sequences
that are used to perform quality control of the single cell WGA reactions.

Additional file 3: Table S2. Single nuclei exome sequencing metrics.
Summary table for the coverage and sequencing metrics from single-cell
exome sequencing of the G1/0 and G2/M fibroblast cells analyzed by SNES.

Additional file 4: Figure S2. Processing pipeline for variant detection
and annotation. (a) Reads from single-cell exome sequencing are processed
by alignment to the human genome, followed by local realignment around
indels and removal of PCR duplicates. (b) Error prone reads are filtered by
mapping quality, clustering, coverage depth, and the number of variant
reads, followed by variant detection using the Unified genotyper to detect
SNVs and indels. (c) Multiple databases are integrated for annotation of the
variants and to predict the functional impact of the variant on the protein.

Additional file 5: Figure S3. Distribution of random FP errors along
chromosomes. The frequency of FP errors observed in each single cell
are plotted along each chromosome. Frequency counts above four cells
were not observed (out of N = 19 cells), and therefore the y-axis scale has
shows a limit at four cells.

Additional file 6: Figure S4. Allelic dropout bias in single-cell data.
Allelic dropout events were calculated from the single-cell exome
data and classified into two categories (AB to AA, and AB to BB). The
frequency of AB to AA and AB to BB dropout events were calculated and
displayed as a stacked histogram.

http://genomebiology.com/content/supplementary/s13059-015-0616-2-s1.pdf
http://genomebiology.com/content/supplementary/s13059-015-0616-2-s2.pdf
http://genomebiology.com/content/supplementary/s13059-015-0616-2-s3.pdf
http://genomebiology.com/content/supplementary/s13059-015-0616-2-s4.pdf
http://genomebiology.com/content/supplementary/s13059-015-0616-2-s5.pdf
http://genomebiology.com/content/supplementary/s13059-015-0616-2-s6.jpeg
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Additional file 7: Figure S5. Distribution of recurrent allelic dropout
events along chromosomes. The frequency of allelic dropout errors
observed in each single cell are plotted along each chromosome. Many
ADO events are recurrent, occurring in multiple single cells.
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