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Transcript and protein expression decoupling
reveals RNA binding proteins and miRNAs as
potential modulators of human aging
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Abstract

Background: In studies of development and aging, the expression of many genes has been shown to undergo
drastic changes at mRNA and protein levels. The connection between mRNA and protein expression level changes,
as well as the role of posttranscriptional regulation in controlling expression level changes in postnatal development
and aging, remains largely unexplored.

Results: Here, we survey mRNA and protein expression changes in the prefrontal cortex of humans and rhesus
macaques over developmental and aging intervals of both species’ lifespans. We find substantial decoupling of
mRNA and protein expression levels in aging, but not in development. Genes showing increased mRNA/protein
disparity in primate brain aging form expression patterns conserved between humans and macaques and are
enriched in specific functions involving mammalian target of rapamycin (mTOR) signaling, mitochondrial function
and neurodegeneration. Mechanistically, aging-dependent mRNA/protein expression decoupling could be linked to
a specific set of RNA binding proteins and, to a lesser extent, to specific microRNAs.

Conclusions: Increased decoupling of mRNA and protein expression profiles observed in human and macaque brain
aging results in specific co-expression profiles composed of genes with shared functions and shared regulatory signals
linked to specific posttranscriptional regulators. Genes targeted and predicted to be targeted by the aging-dependent
posttranscriptional regulation are associated with biological processes known to play important roles in aging
and lifespan extension. These results indicate the potential importance of posttranscriptional regulation in
modulating aging-dependent changes in humans and other species.
Background
Regulation of gene expression is a fundamental process
controlling the implementation of genetic information.
While a large part of expression regulation takes place in
the transcriptional stage, posttranscriptional regulation
also plays critical roles in controlling biological pro-
cesses. Specifically, posttranscriptional regulation has
been shown to contribute to the fine-tuning of gene ex-
pression in such cellular processes as apoptosis, immune
response, inflammation, neuronal differentiation, synap-
tic plasticity, the cell cycle, and oncogenesis [1-3]. In all
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these cases, posttranscriptional regulation was exerted
by molecular crosstalk between cis-acting sequence ele-
ments located on the target RNA and trans-acting regu-
latory factors: RNA binding proteins (RBPs) and non-
coding RNAs, such as microRNAs (miRNAs) [4,5].
The human genome encodes as many as 500 known

and predicted RBPs identified based on the presence of
RNA-binding domains [6]. It is known that RBPs exert
their function through binding to specific sequence ele-
ments located predominantly but not exclusively in the
3′ UTR of the transcript [7], such as AU-rich elements
[8]. Exact binding specificity, however, has been studied
for fewer than 50 human RBPs to date [6]. At present,
most knowledge of RBP binding sites has been obtained
through large-scale crosslinking and immunoprecipita-
tion (CLIP) experiments, including high-throughput se-
quencing of RNA isolated by CLIP (HITS-CLIP) [9],
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photoactivatable-ribonucleoside-enhanced CLIP (PAR-
CLIP) [10], and individual nucleotide resolution CLIP
(iCLIP) [11]. Despite the relatively small number of stud-
ies focusing on RBPs, these proteins have been shown to
play important roles in controlling splicing, polyadenyla-
tion, stability, editing, localization, and translational effi-
ciency of RNA transcripts in human tissues and cell
lines [5].
Human miRNAs comprise a large family of over 1,800

small noncoding RNAs with a length of 21 to 25 nucleo-
tides [12]. Functionally, miRNAs guide RNA-induced
silencing complex (RISC) to target transcripts in con-
junction with Argonaut (AGO) RBPs [13]. Target rec-
ognition is mediated by partial binding of an miRNA
sequence to a complementary region commonly lo-
cated in the 3′ UTR of a transcript [14]. While in
some cases miRNAs have been shown to function as
translational activators, in the vast majority of cases
they act as posttranscriptional repressors, reducing
the stability and/or translational efficiency of the tar-
get transcripts [15].
Expression of many genes has been shown to undergo

drastic changes during human development and/or
aging at both mRNA and protein levels [16]. Posttran-
scriptional regulation, especially that mediated by
miRNAs, has been repeatedly implicated in the control
of gene expression changes at specific developmental
transitions in a number of species, including humans
[17]. Still, the long-term effects of posttranscriptional
regulation on organ and tissue development remain
largely unexplored. In aging, regulation of mRNA trans-
lation has been shown to modulate longevity in a wide
range of model organisms, from yeast to mice [18-21].
Despite this, the extent of posttranscriptional regulation
in human development and aging and, specifically, its
role in uncoupling protein and mRNA expression changes
have not yet been investigated.
In this study, we surveyed transcriptome and prote-

ome changes taking place during postnatal development
and aging in humans and rhesus macaques, in a specific
brain region, the prefrontal cortex (PFC). In both spe-
cies, we observed substantial decoupling of mRNA and
protein levels in aging, but not during the developmental
interval. Genes showing increased mRNA/protein abun-
dance decoupling formed expression patterns conserved
between humans and macaques and were enriched in
functions associated with lifespan regulation and senes-
cence: mammalian target of rapamycin (mTOR) signal-
ing, mitochondrial function and neurodegeneration. All
mRNA/protein expression profiles found in human and
macaque brain aging could be linked to specific post-
transcriptional regulators, RBPs and miRNAs, based on
binding site specificity data determined in large-scale
CLIP-seq experiments.
Results
Age-dependent mRNA and protein expression in human
and macaque brains
To determine the role of posttranscriptional regulation
in development and aging, we assessed protein expres-
sion levels in human and macaque brains using time-
series data collected over the species’ lifespans and com-
pared these with mRNA expression levels measured in a
largely overlapping set of samples from prior studies
(Table S1 in Additional file 1).
We quantified mRNA expression levels based on high-

throughput RNA sequencing (RNA-seq) data for the
PFC of 14 humans and 15 rhesus monkeys [22]. These
data span most of the species’ lifespans: from 2 days to
98 years in humans and from 1 day to 28 years in
macaques (Figure 1A; Tables S2 and S3 in Additional
file 1). To quantify and compare gene expression in the
two species in an unbiased manner, we mapped human
and macaque RNA-seq reads to the consensus genome
constructed based on pairwise genome alignment of hu-
man and rhesus macaque genomes. This resulted in 213
million (72.4%) human and 323 million (65.7%) macaque
uniquely mapped reads. Based on these reads, 11,734
and 12,097 protein-coding genes were classified as
expressed in human and macaque time series (Table S4
in Additional file 1).
We measured protein expression levels using label-

free quantitative mass spectrometry in PFC samples
from 12 humans and 12 rhesus macaques with age dis-
tributions mirroring those of the transcriptome mea-
surements: between 1 day and 98 years for humans, and
between 16 days and 28 years for macaques (Figure 1A;
Tables S5 and S6 in Additional file 1). Of the 12 human
samples used for protein measurements, 10 were repre-
sented in the mRNA dataset (Tables S2, S3, S4 and S5 in
Additional file 1). With the peptide identification false
discovery rate (FDR) set to 1%, we identified a total of
754,258 and 689,880 peptides corresponding to 8,011
and 7,708 genes in human and rhesus macaque samples,
respectively. Of these genes, 2,278 and 2,351 were reli-
ably detected in at least half of human or macaque sam-
ples (Table S7 in Additional file 1).
General analysis of mRNA and protein expression

variation among human PFC samples indicated that
age explains a substantial proportion of expression dif-
ferences among samples in both datasets (Figure 1B,C;
Figure S1 in Additional file 1). Consistently, of the
11,734 genes expressed in the human PFC, 6,955 showed
significant expression changes with age (P < 0.05 after
Benjamini correction, Fisher’s test). Of these, 1,963
(28.2%) were also detected reliably at the protein level.
For these genes, we compared protein and mRNA ex-
pression changes with age at 20 time points, interpolated
using spline curves fitted to the actual expression data



Figure 1 mRNA/protein decoupling in human and macaque over their lifespans. (A) Sample age distribution of mRNA (green) and protein
(blue) datasets. Each dot represents an individual. Darker shades of color represent older age. Larger dots represent samples used for both mRNA
and protein measurements. (B,C) The first two principal components of mRNA (B) and protein (C) expression in human PFC time series. Each
circle represents an individual; darker shades of color represent older age; numbers show each individual’s age in years. Proportions of variance
explained by each principal component are shown in parentheses. See also Figures S1 and S3 in Additional file 1. (D-F) Cumulative frequency of
Spearman’s rank correlation coefficients based on mRNA and protein expression changes in developmental (light grey curves) and aging (dark
grey curves) intervals. Dashed lines show median values of curves; P-values show significance of the difference between medians (Wilcoxon test).
Histograms at the bottom of the panels show distributions of Spearman’s rank correlation coefficients in developmental (light grey) and aging
(dark grey) intervals composing the curves. Results are shown for human PFC time series (D), macaque PFC time series (E) and human PFC time
series with another RNA-seq dataset (F). The y-axis shows gene numbers used in each comparison. See also Figure S4 in Additional file 1. (G) Box
plots show distributions of standard deviation (SD) and coefficient of variation measurements calculated for each gene expressed in human PFC,
for developmental (light color) and aging (dark color) intervals, for mRNA (green) and protein (blue) datasets. P-values of Wilcoxon tests comparing
two distributions are marked above plots. (H,I) Distributions of cumulative frequency of Spearman’s rank correlation coefficients based on human
mRNA and protein expression changes in developmental (light grey) and aging (dark grey) intervals. Curves are based on 1,000 times subsampling
of mRNA and protein expression values. FDR, false discovery rate.
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(Figure S2 in Additional file 1). Following other studies,
we separated the developmental and aging intervals
based on the age of sexual maturity [23,24], with 10 time
points interpolated at each of these intervals. Similar
procedures were applied to the rhesus macaque age-
dependent genes (Figure S3 in Additional file 1) [25,26].

Increased decoupling of mRNA and protein expression
in aging
Substantial influence of posttranscriptional regulation on
developmental or aging processes may result in detect-
able decoupling of mRNA and protein expression
changes with age. To measure the concordance of mRNA
and protein expression profiles, we used Spearman’s rank
correlation coefficients. Results of the correlation analysis
differed drastically between the developmental and aging
lifespan intervals: the concordance of mRNA and protein
expression levels was much higher during development
than during aging (P < 0.001, Wilcoxon test; Figure 1D-F).
The increased decoupling of mRNA and protein expres-
sion levels in aging was significant for both the decrease of
positive correlations and the increase of negative correla-
tions (P < 0.05, FDR <5%, Spearman’s rank correlation) in
the aging interval (P < 0.05, chi-square test; Figure S4A in
Additional file 1).
Increased decoupling of mRNA and protein expression

levels in aging was not caused by higher expression vari-
ation among human individuals of older age. It was also
not caused by a difference in the expression levels or by
the amplitude of expression changes between the devel-
opmental and aging intervals. Specifically, in our dataset,
mRNA and protein expression variation was significantly
smaller in the aging than the developmental interval
(P < 0.001, Wilcoxon test; Figure 1G). Further, subsampling
of data using equalized distribution of standard deviation,
coefficient of variation, expression levels or expression
change amplitudes for developmental and aging intervals
did not affect our results (Figure 1H,I; Figure S4B-D in
Additional file 1).
The increased decoupling of mRNA and protein ex-

pression levels during aging could be reproduced in the
rhesus macaque dataset. Firstly, repeating our analysis
based on macaque mRNA and protein time series data,
we observed a similar increase in the discordance of
mRNA and protein expression changes in the aging
interval (Figure 1E; Figure S4E in Additional file 1).
Secondly, genes showing concordant and discordant
mRNA/protein expression in human aging overlapped
significantly with genes showing concordant and dis-
cordant expression in macaque aging (P < 0.005, permu-
tations) (Figure 2A,B; Figure S5A in Additional file 1).
Genes showing concordant and discordant mRNA/
protein expression in aging were defined based on a
significant positive correlation in the developmental
interval and significant positive (concordant genes) or
negative (discordant genes) correlations in aging (P < 0.05,
FDR <5%, Spearman’s rank correlation). In humans, 359
genes were classified as concordant and 260 as discordant
(Figure 2A). The fact that increased mRNA-protein dis-
parity could be reproduced in the macaque time series is
noteworthy, as the macaque samples were collected from
individuals kept in the same standard living conditions
and were not subjected to biological and technical artifacts
associated with differences in agonal state and post mor-
tem delay.
In addition to the macaque data, increased decoupling

of mRNA and protein expression levels during aging
could be reproduced using a different published human
RNA-seq time series dataset containing data from 38 in-
dividuals [27] (Figure 1F; Table S8 in Additional file 1).
Comparing human mRNA expression profiles with
macaque protein expression profiles and vice versa re-
producibly showed greater mRNA/protein expression
decoupling in aging (Figure S4F,G in Additional file 1).
Furthermore, the concordant and discordant gene
groups defined based on any of the above-mentioned
comparisons overlapped significantly with corresponding
gene groups defined based on the original human dataset
(P < 0.005, permutations; Figure S5B-G in Additional
file 1). Thus, increased decoupling of mRNA and protein
expression levels during human and macaque brain aging
can be reproducibly observed in multiple datasets and
are not likely to be caused by technical artifacts or envir-
onmental differences between developmental and aging
intervals.
To assess whether increased decoupling of mRNA and

protein expression levels in brain aging could be caused
by use of different individuals for mRNA and protein
measurements or differences in individuals’ ethnicity, we
repeated all analyses based on a set of 10 human individ-
uals for which both mRNA and protein data were gener-
ated, and based on a subset of 9 of these 10 individuals
(all nine being of Caucasian descent). The results of
these analyses were in full concordance with those
obtained using the full dataset (Figures S6 and S7 in
Additional file 1).

Concordant and discordant genes form conserved
co-expressed clusters
To investigate possible functional implications of in-
creased mRNA/protein expression decoupling in human
aging, we sorted 359 concordant and 260 discordant
genes into co-expressed clusters based on their mRNA
expression patterns over the lifespan. A non-supervised
hierarchical clustering revealed four main patterns: (P1)
mRNA expression continues to decrease across both
lifespan intervals; (P2) a decrease in development
followed by stabilization or increase in aging; (P3) an



Figure 2 Concordant and discordant mRNA/protein expression. (A) Two-dimensional density plot showing distribution of mRNA-protein
Spearman’s rank correlation coefficients measured during developmental (x-axis) and aging (y-axis) intervals in human PFC. The grey dashed lines
show the correlation coefficient cutoffs used to define concordant and discordant gene groups (P < 0.05, Spearman’s rank correlation; FDR <0.05,
permutations). See also Figure S5 in Additional file 1. (B) The overlap of concordant and discordant gene groups between human and rhesus
macaque time series. The arrows show numbers of overlap found in the actual data; the distributions show chance overlap estimated by 1,000
permutations of gene labels. The dashed line indicates the 95% quantile of the distribution. See also Figure S5 in Additional file 1. (C,D) Four
main patterns of age-dependent mRNA expression separated into concordant (C) and discordant (D) gene groups. The curves show the
average mRNA (gray) and protein (colored) expression calculated using cubic spline regression. The points show the mean expression
in each individual. The y-axis shows mRNA and protein expression, normalized to the mean and standard deviation of corresponding
expression levels in the developmental interval. The vertical error bars show the standard deviation range of the curves. The pattern number and
the number of genes in each group are shown on the top of the panels. The vertical dashed line marks separation of developmental and aging
intervals. See also Figure S8 in Additional file 1.
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increase that continues across the lifespan; and (P4) an
increase in development followed by stabilization or a
decrease in aging. Within each mRNA co-expression
pattern, we then separated the concordant and discord-
ant gene groups (Figure 2C,D). The numbers of genes
constituting these gene groups within each pattern var-
ied widely from 11 to 154. Still, for all eight gene groups,
the average expression trajectories found in the human
data could be reproduced in rhesus macaque time series
(Figure S8 in Additional file 1). Thus, the obtained con-
cordant and discordant expression profiles are largely
conserved between human and macaque brain develop-
ment and aging.
Conservation of protein and mRNA co-expression

profiles, and their concordant and discordant relation-
ships, suggests this phenomenon is functionally import-
ant. Indeed, all eight gene groups show significant
enrichment in specific functional terms and pathways
specified by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotations [28,29].
While concordant genes are mainly enriched in signal
transduction, nucleotide binding and ATP binding, dis-
cordant genes show a tendency towards regulatory and
signaling functions. Thus, P1 discordant genes are
enriched among transcriptional regulators, including
zinc finger proteins, and P2 ones in protein binding,
kinase activity and translation. Discordant genes in both P2
and P3 are overrepresented in the insulin receptor signal-
ing pathway and mTOR signaling pathway. P4 discordant
genes are enriched in mitochondrion, ATP biosynthetic
process, calcium ion binding, Huntington’s disease and
Parkinson’s disease (Additional file 2).

Specific RNA binding proteins mediate mRNA and protein
expression decoupling in brain aging
Increased decoupling of mRNA and protein expression
levels in human brain aging could potentially be caused
by actions of common posttranscriptional regulators -
RBPs and miRNAs [4,5].
To assess the role of RBPs in increased mRNA/protein

disparity, we compiled human transcriptome-wide maps
of endogenous binding sites for 17 RBPs from 13 fam-
ilies based on published large-scale CLIP experiments,
including HITS-CLIP, PAR-CLIP and iCLIP experi-
mental data [11,30-37] (Table S10 in Additional file 1).
To focus on posttranscriptional regulatory effects cor-
responding to expression level differences between
mature mRNAs and proteins, we excluded binding
sites located in intronic regions or splice junctions.
For each expression pattern, we compared the distri-
butions of RBP binding sites in concordant and dis-
cordant gene groups, which differ only by protein
expression trajectories in the aging interval. Thus,
within the same pattern, differences in RBP binding
site distribution should reflect differences in posttrans-
lational regulation between concordant and discordant
groups during aging.
In agreement with our predictions, we found signifi-

cant enrichment of RBP binding site number and density
in discordant gene groups, compared with the concord-
ant groups, for all four expression patterns (Figure 3).
Within each discordant group, binding sites correspond-
ing to enriched RBPs covered the majority of genes. Fur-
thermore, the expression patterns of enriched RBPs
showed specific correlations with their putative target
genes in the corresponding pattern. By contrast, recipro-
cal analysis of concordant groups yielded no such en-
richment of common RBP regulators (Figure S9 in
Additional file 1).
Specifically, discordant genes within the P1 pattern

show significant enrichment of SFRS1 binding sites
(P < 0.05, Wilcoxon test after Bonferroni correction).
Notably, among 13 genes in this group, 10 (77%)
contained at least one SFRS1 binding site. Further-
more, SFRS1 expression significantly correlated positively
with protein expression, but not mRNA expression, for
10 putative target genes (P < 0.01, Spearman’s rank cor-
relation; Figure 3E; Figure S10 in Additional file 1). This
positive relationship is consistent with previous reports
demonstrating the role of SFRS1 as a translational activa-
tor in HeLa cells both in vivo and in vitro [38].
Similarly, discordant genes within the P2 pattern show

significant enrichment of TIAL1 binding sites: as many
as 34 (85%) of the 40 genes in this group contain at least
one TIAL1 binding site (P < 0.05, Wilcoxon test after
Bonferroni correction). In aging, TIAL1 expression
correlated significantly and negatively with protein ex-
pression and significantly and positively with mRNA
expression for the 34 putative target genes (P < 0.01,
Spearman’s rank correlation; Figure 3F). Again, this
regulatory relationship is consistent with studies report-
ing that TIAL1 functions as a translational repressor
exhibiting no detectable inhibitory effect at the mRNA
level [39].
Genes within the P4 pattern form the largest group,

with 154 co-expressed discordant genes. Genes within
this group show significant enrichment for seven RBPs:
TAF15, MOV10, AGO2, SFRS1, IGF2BP2, TIA1 and
TIAL1 (P < 0.05, Wilcoxon test after Bonferroni correc-
tion). All 154 genes in this group contain at least one
binding site for one of the seven enriched RBPs, suggest-
ing that the RBPs examined in our study are, in
principle, sufficient to explain the discordant behavior
for all genes within this group. With the exception of
TAF15, expression profiles of the enriched RBPs corre-
lated positively with the protein expression profiles
of their putative target genes in the aging interval
(Figure 3H).



Figure 3 Regulation of mRNA/protein expression decoupling by RBPs. (A-D) Enrichment of RBP binding sites within discordant genes in
each of the four main expression patterns, compared with concordant genes from the same pattern. The x-axis shows the enrichment fold
change based on the binding site number; the y-axis shows the significance of the binding site density difference. Each circle represents one
RBP. The circle radius shows the proportion of discordant genes targeted by the RBP within the group. The colors indicate RBPs showing
significant enrichment (red), no difference (grey) or significant depletion (blue) of binding sites within discordant genes compared with
concordant ones. See also Figure S9 in Additional file 1. (E-H) The average mRNA (green) and protein (blue) expression, as well as expression
of RBP genes showing significant enrichment of binding sites among discordant genes (red) in each of the four expression patterns. The
curves are calculated using cubic spline regression. The symbols show the mean expression in each individual. The y-axis shows mRNA and
protein expression, normalized to the mean and standard deviation of corresponding expression levels in the developmental interval. The RBPs and
the numbers of target genes in each group are shown on the top of the panels. The vertical dashed line marks separation of the developmental
and aging intervals. See also Figure S10 in Additional file 1.
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Role of miRNAs in mRNA and protein expression decoupling
While decoupling between mRNA and protein expres-
sion profiles in human brain aging may, in principle, be
driven by RBPs in the P1, P2 and P4 patterns, discordant
genes within the P3 pattern show a diverse set of regula-
tory characteristics. The only RBP showing significant
binding site enrichment in the P3 discordant group is
AGO2, with 18 (56%) of the 32 genes in this group con-
taining AGO2 binding sites. The number of AGO2 bind-
ing sites per gene was nonetheless greater in this group
than in the other three discordant groups (Figure 4A).
Functionally, AGO2 mediates posttranscriptional regula-
tion as one of the main components of RISC [13]. In
agreement with the inhibitory role played by RISC, we
see a significant negative correlation between AGO2 ex-
pression and protein expression of its putative target
genes in the P3 discordant group (P < 0.01, Spearman’s
rank correlation; Figure 3G). Specificity of the RISC
inhibition, however, is mainly determined by another
component of the complex - miRNA [14].
To appraise the possible effects of miRNAs on de-

coupling mRNA and protein expression profiles in the
P3 and other discordant groups, we analyzed published
miRNA data collected from the same 12 human individ-
uals used in our proteome analysis [40] (Table S5 in
Additional file 1). Of the 373 miRNAs we reliably



Figure 4 Regulation of mRNA/protein expression decoupling by miRNAs. (A) Number of AGO2 binding sites in discordant genes in the four
expression patterns. Boxplots show the distribution of AGO2 binding sites in discordant genes and the variation determined by bootstrapping
genes within each pattern 1,000 times. The one-sided Wilcoxon test P-value shows the significance of the AGO2 binding site excess in P3 compared
with the other three patterns. (B) Difference between the distribution of predicted miRNA-target correlations and the chance background. The curves
show predicted miRNA-target distribution of the Spearman’s rank correlation coefficients measured based on expression profiles of age-dependent
miRNA and protein expression of their predicted target transcripts in the aging interval. The background chance distribution was estimated by
generating the same number of predicted miRNA-target pairs based on randomly chosen age-dependent miRNA and target genes within the
discordant group of each pattern 1,000 times. The shaded areas show the 95% confidence interval of the correlation coefficients’ chance
distribution. The median of background chance distribution was subtracted from both the predicted miRNA-target and the chance background
distributions. See also Figure S11 in Additional file 1. (C) The number of age-dependent miRNAs showing predicted target enrichment
among discordant genes of the four patterns. Shaded grey bars show the amount of enriched miRNAs found by generating the same
number of predicted miRNA-target pairs based on randomly chosen age-dependent miRNA and target genes within each pattern 1,000 times. See also
Figure S12 in Additional file 1.
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detected in the dataset, 201 showed significant age-
dependent expression level changes (P < 0.05, Fisher’s
test after Benjamini correction). For these miRNAs, we
predicted the locations of conserved target sites, and
assessed the correlation between miRNA expression and
expression of their predicted target genes in the four dis-
cordant groups. Only the P3 discordant group displayed
a significant negative correlation between miRNA ex-
pression and protein expression of predicted targeted
genes in the aging interval (P < 0.05 by simulation;
Figure 4B). This result was robust to the choice of
miRNA target prediction tools using various prediction
strategies [41,42] (Figure S11 in Additional file 1). Con-
cordantly, only the P3 discordant group contained a
greater than expected number of binding sites for spe-
cific miRNAs: out of 12 age-dependent miRNAs show-
ing significant binding site enrichment in any of the four
discordant groups, seven were associated with the P3
pattern (P < 0.05, hypergeometric test after Bonferroni
correction) (Figure 4C; Figure S12 in Additional file 1;
Table S11 in Additional file 1). Taken together, these ob-
servations suggest that, in contrast to the P1, P2 and P4
expression patterns (where the decoupling of mRNA
and protein expression levels in human aging might
largely be driven by RPBs alone), mRNA/protein expres-
sion decoupling in the P3 pattern may result from co-
operative regulation by AGO2 and miRNAs.

Discussion
In this study, we observed substantial decoupling of
mRNA and protein expression profiles during human
and rhesus macaque brain aging, but not in the develop-
mental ontogenetic interval. Our results further indicate
that all four patterns of aging-dependent mRNA/protein
expression decoupling can be associated with a small
number of key regulatory RBPs, such as SFRS1, TIAL1
and AGO2. It must be noted that our analyses were
limited to experimentally defined RBP targets, mainly
identified in cell line experiments. Consequently, many
regulatory interactions could have been missed by our
analyses. Nonetheless, our results maintain that age-
dependent decoupling of mRNA and protein expression
patterns could be linked to specific posttranscriptional
regulators.
In contrast to the RBP regulatory signal, only one of

the four mRNA/protein decoupling patterns characteris-
tic of primate brain aging showed a detectable signature
of miRNA-mediated posttranscriptional regulation. This



Figure 5 Discordant and concordant gene expression in the
PI3K-Akt-mTORC1 signaling cascade. A schematic representation
of selected components of the PI3K-Akt-mTORC1 signaling cascade
based on [59-62]. The shapes indicate age-dependent (ovals) and
non-age-dependent (rectangles) expression of pathway components.
The colors indicate concordant (blue) and discordant (rose) expression
in the aging interval. For each discordant gene, the green square next
to the gene name illustrates its activator function in the pathway, while
the white arrow in the square indicates the mRNA-protein expression
relationship detected in our data. See also Figure S13 in Additional file 1.
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result indicates that the role of RBP-driven regulation of
age-dependent changes may be underappreciated at this
time.
We observed substantially higher discordance of

mRNA and protein expression profiles in aging than in
the developmental interval in both humans and ma-
caques. Conservation of age-dependent decoupling pro-
files between humans and macaques, enrichment of
genes following the same decoupling profiles in specific
biological processes, as well as association of co-
expressed gene groups with specific RBPs and miRNAs,
suggest potential functionality of observed posttranscrip-
tional regulation.
One of the strongest signals of RBP-mediated regula-

tion of mRNA/protein discordant profiles that we de-
tected in primate brain aging was TIAL1 association
with P2 discordant genes. TIAL1 has been shown to be
involved in various forms of translational control [39],
including regulation of translation initiation pathways
such as the mTOR pathway [43,44]. Notably, P2 discord-
ant genes are significantly enriched in the mTOR path-
way (P < 0.005, hypergeometric test after Benjamini
correction). Conversely, mTOR pathway genes are
significantly overrepresented among genes showing
discordant expression profiles in primate brain aging
(P < 0.01, chi-square test). This finding is especially
noteworthy, as the mTOR pathway represents one of
the few pathways shown to be involved in longevity
regulation in a wide range of species [45-48].
Within the mTOR pathway, all six genes showing dis-

cordant expression patterns concentrate within the
phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 signal-
ing cascade (Figure 5). This cascade is one of the central,
evolutionarily conserved regulators of species’ longevity
[49,50]. The best-known function of mTORC1 signaling
is the promotion of translation in the presence of extra-
cellular stimuli, such as insulin, hormones and growth
factors [51,52]. Extensive studies have shown that
reducing activation of the PI3K-Akt signal-inhibiting
mTORC1 activity could extend lifespan across multiple
species, including mammals [21,53,54]. Moreover, aber-
rant control of the PI3K-Akt regulatory axis or overacti-
vation of mTOR has been suggested to play a causal role
in many aging-related disorders, including cancer, type 2
diabetes mellitus, heart disease and neurodegeneration
[50,55,56]. Our study, as well as studies conducted in
rats and mice, shows that mTOR expression tends to
increase with age [57,58]. On the other hand, mTOR
activity was shown to decrease with age in the mouse
hippocampus due to decreased activity of upstream
signaling by PI3K-Akt [58].
Notably, all six genes showing discordant expression

patterns within the PI3K-Akt-mTORC1 signaling cascade -
PI3K, Akt, mLST8, S6K1, eIF3e and eIF3f - were shown to
function as mTOR pathway activators [59-62]. Further-
more, in our data, all of these genes showed the same dis-
cordant pattern - translational inhibition in primate brain
aging (Figure S13 in Additional file 1).
Of genes showing discordant expression patterns

within the PI3K-Akt-mTORC1 signaling cascade, several
were directly implicated in lifespan regulation. For ex-
ample, inhibition of PI3K and Akt or mutations in
S6K1 have been shown to extend lifespan in yeast,
nematodes, fruit flies and mice [21,53,54,63-67]. Simi-
larly, mutation or knockdown of eIFs (translation initi-
ation factors) have been shown to extend lifespan in
yeast and nematodes [19,68].
It has been proposed that a global reduction of mRNA

translation could promote healthy aging, potentially by
allowing endogenous protein repair and degradation ma-
chinery to maintain protein homeostasis in the face of
protein damage and aggregation [69]. Furthermore, a
general reduction in mRNA translation has been sug-
gested to attenuate aging-related pathologies resulting
from misplaced activity of biosynthetic and proliferative
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processes that are important in development but detri-
mental in aging [70]. Supporting this notion, the PI3K-
Akt-mTORC1 pathway has been validated as a potential
target of cancer treatment [71]. Notably, the cancer-
prevention effect was achieved by repression of the
PI3K-Akt-mTORC1 activity through TIAL1-mediated
translational suppression [72]. Thus, the posttranscrip-
tional regulation signals detected within the PI3K-Akt-
mTORC1 pathway in our study may reflect an adaptive
organismal response to increased accumulation of mo-
lecular damage in advanced age.
Another effect of mTORC1 dysfunction shown in a

variety of species, from yeast to mice, is translational
activation of mitochondrial genes and enhancement of
mitochondrial respiration [46,73,74]. P4 discordant
pattern-containing genes showing translational activa-
tion in primate brain aging are significantly enriched in
mitochondria: as many as 37 of the 154 P4 discord-
ant genes are nuclear-encoded mitochondrial proteins
(P < 0.05, hypergeometric test after Benjamini correction;
Additional file 2). Among others, these genes include the
mitochondrial translation initiator mtIF2, the mitochon-
drial translation elongation factor mtEF-Tu and six com-
ponents of the mitochondrial respiration chain. Reduction
of bioenergetic efficiency and respiration efficacy mediated
by mitochondria was shown to be one of the hallmarks of
aging conserved across species [75,76]. Our data, showing
translational activation of mitochondrial genes in primate
brain aging, suggest that posttranscriptional regulation
may play a role in augmenting aging-related decline of
mitochondrial functionality. Supporting this notion, trans-
lational activation of mitochondrial genes mediated by
mTORC1 inhibition has been shown to extend lifespan in
yeast and fruit flies [77-79].
The P3 discordant group contains another example

of posttranscriptional regulatory signaling, potentially
linked to aging-related physiological changes taking
place in the primate brain. Enrichment of AGO2 binding
sites, combined with a significant negative relationship
between miRNA expression and expression of their pre-
dicted target proteins, indicates that P3 discordant genes
might be subject to miRNA-mediated translational re-
pression. Notably, miRNAs linked with P3 discordant
genes overlapped significantly with miRNAs showing ab-
errant expression in the prefrontal cortex of late-onset
Alzheimer’s disease patients (P < 0.001, chi-square test)
[80]. Furthermore, one of the overlapping miRNAs,
miR-132-3p, has been suggested to contribute to Alzhei-
mer’s disease progression through aberrant regulation
[81,82]. Interestingly, mir-132-3p has been shown to
be regulated by insulin signaling through the PI3K-
Akt-mTORC1 cascade [83]. Expression of some miRNAs
linked with P3 discordant genes is increased in healthy
aging, resulting in posttranscriptional inhibition of
predicted P3 target genes (Figure S12 in Additional
file 1). Interestingly, in Alzheimer’s disease patients,
expression of these miRNAs is decreased compared with
healthy aging [80]. This suggests that impaired miRNA-
mediated posttranscriptional inhibition of P3 genes might
be one of the important features of Alzheimer’s disease.

Conclusions
Our results indicate that increased decoupling of mRNA
and protein expression profiles reproducibly detected in
human and macaque brain aging can be linked to spe-
cific posttranscriptional regulators - RBPs and miRNAs.
Genes targeted and predicted to be targeted by the
aging-dependent posttranscriptional regulation can be
associated with biological processes known to play im-
portant roles in aging and lifespan extension, such as
mTOR pathway, mitochondrial function and Alzheimer’s
disease. The directions of aging-dependent expression
changes observed at the protein level further suggest the
potential role of posttranscriptional regulation in coun-
teracting the effects of aging decline. Taken together,
these results indicate the potential importance of RBP-
mediated posttranscriptional regulation in controlling
progression of the human aging phenotype.

Materials and methods
Ethics statement
Informed consent for the use of human tissues for re-
search was obtained in writing from all donors or their
next of kin. All macaques used in this study suffered
sudden deaths for reasons other than their participation
in this study and without any relation to the tissue used.
The Biomedical Research Ethics Committee of Shanghai
Institutes for Biological Sciences reviewed and ap-
proved the use and care of the animals in this re-
search (approval ID: ER-SIBS-260802P).

Sample collection
We collected superior frontal gyrus samples from
post-mortem brains of healthy humans and macaques
(Tables S5 and S6 in Additional file 1; for details, see sup-
plemental experimental procedures in Additional file 1).

Protein sample preparation and label-free two-dimensional
tandem mass spectrometry
We followed the procedure of protein sample preparation
and two-dimensional liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) analysis de-
scribed in [84] in a pH continuous online gradient (pCOG)
system. Briefly, proteins were extracted from 100 mg of
frozen prefrontal cortex tissue from 12 humans and 12 ma-
caques (Tables S5 and S6 in Additional file 1). We ex-
tracted the protein samples and incubated them overnight
with trypsin, followed by ultrafiltration and lyophilization.
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Lyophilized protein samples were then loaded on ion ex-
change columns and eluted using a pH continuous gradient
buffer for the LC-MS/MS analysis (for details, see supple-
mental experimental procedures in Additional file 1).

Pre-processing of RNA deep sequencing, miRNA deep
sequencing and quantitative proteomics data
Human-macaque consensus reference genome construction
Chained and netted alignment files for human (hg19)
and macaque (rheMac3), aligned using BLASTZ [85],
were downloaded from the UCSC Genome Browser. We
used the human genome as a reference for all discordant
genomic sites, and replaced insertions and deletions with
'N's in the consensus genome. Furthermore, 6 bp regions
flanking each insertion or deletion site were masked by
'N's in the resulting human-macaque consensus refer-
ence genome (for details, see supplemental experimental
procedures in Additional file 1).

Computational pre-processing of mRNA deep sequencing
The deep sequencing data of human and rhesus superior
frontal gyrus of the PFC were obtained from the Sequence
Reads Archive [86] under the accessions SRP005169 for
[22] (Tables S1, S2 and S3 in Additional file 1).
To quantify and compare gene expression in the two

species in an unbiased manner, we mapped human and
rhesus RNA-seq reads to the human-macaque consensus
reference genome, using STAR (v.2.3.0e) [87]. Potential
PCR duplicates were removed, and only uniquely mapped
reads were used in further analyses [88].
Gene expression was quantified as the number of

reads per kilobase per million of total mapped reads
(RPKM) by GENCODE annotation (v.17) [89,90].
Only genes with RPKM ≥1 in more than two-thirds of

the samples in one species (human or macaque) were
classified as reliably expressed in that species and were
used in the following analysis (for details, see supple-
mental experimental procedures in Additional file 1).

Computational pre-processing of quantitative proteomics
Peptides were identified by searching spectrums against
the UniProt Knowledgebase (UniProKB) complete prote-
ome human set [91], using the database search engine
MS-GF+ [92]. We estimated the peptide-spectrum
matches (PSM) level FDR of peptide identification by
searching the combined database of the target dataset
and the reversed decoy database. Only peptides with
FDR <1% were considered. Ten MS/MS scans of each
sample were combined together.
Peptide data were mapped per gene to Ensembl genes

by UniProtKB/Swiss-Prot and UniProtKB/TrEMBL an-
notations. Criteria for protein identification included
detection of at least two unique peptides. Ambiguous
peptides and redundant proteins were removed.
Quantification of protein expression of each gene was
achieved by the normalized spectral abundance factor
(NSAF) [93]. The counts of MS/MS spectra assigned to
a protein were normalized to the length of the protein,
resulting in a spectral abundance factor (SAF). Each SAF
was further normalized against the sum of all SAFs in
one sample, resulting in the NSAF value.
Only genes with a mean NSAF ≥1 and a positive

NSAF value in at least 6 of the 12 individuals were clas-
sified as reliably detected in a species (human or ma-
caque), and were included in the downstream analysis
(for details, see supplemental experimental procedures
in Additional file 1).

Computational pre-processing of miRNA deep sequencing
The miRNA deep sequencing data for human PFC were
obtained from the NCBI Gene Expression Omnibus
[94] under series accession number GSE18069 for [40]
(Tables S1, S2, S3, S4 and S5 in Additional file 1).
We followed the procedures of small RNA sequencing

data pre-processing and miRNA expression quantifica-
tion from [95]. All unique sequences were trimmed to
remove the adapter sequence at the 3′ end. Trimmed se-
quences were mapped to the human genome (hg19) by
the Bowtie algorithm [96], requiring a perfect match.
We quantified miRNA expression by miRBase version
17 [97] with all perfect mapped sequences. The expres-
sion level of each miRNA was calculated as transcripts
per million reads (TPM; the number of reads mapped to
the transcript normalized by the number of total
mapped reads; for details, see supplemental experimental
procedures in Additional file 1).

Computational pre-processing of age-dependent genes
We followed the steps of [98] to test the effect of age on
mRNA expression level, using polynomial regression
models. We used the power of 0.25 of donor age (for
details, see supplemental experimental procedures in
Additional file 1) to simultaneously capture developmental-
and aging-dependent changes. For each detected gene, we
chose the best regression model with scaled age as
predictor and mRNA expression level as response, using
families of polynomial regression models and the 'adjusted
r2' criterion. The significance of the chosen regression
model was estimated using the F-test, and Benjamini-
Hochberg correction was carried out for all tested genes as
multiple test correction (for details, see supplemental ex-
perimental procedures in Additional file 1).

Analysis of mRNA-protein disparity
To analyze the correlation between transcriptome and
proteomics in the classical framework of human lifespan,
considering that our samples’ ages were not uniform
along the age range and that the mRNA and protein
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datasets had different age windows, we interpolated 10
uniform points along the age range of each period, at
the 0.25-powered age scale [24,99,100].
Spearman’s rank correlation coefficient rho was calcu-

lated for each gene for development and aging periods,
respectively, between mRNA and protein expression
levels, based on interpolated points of spline curves (for
details, see supplemental experimental procedures in
Additional file 1).

Equalization of expression and amplitude
We simulated the distribution of the common part of
the distributions of the developmental and aging inter-
vals by average expression levels as well as by gene ex-
pression change amplitudes. Then, according to this
distribution, we subsampled 1,000 times from age-
dependent genes, for each species. In each subsampling,
we compared the median of correlation distributions be-
tween developmental and aging intervals by Wilcoxon
test (for details, see supplemental experimental proce-
dures in Additional file 1).

Overlap of concordant/discordant gene groups between
databases
We calculated the overlap of concordant and discordant
gene groups resulting from the original human time
series dataset, with gene groups resulting independently
from (1) a macaque time series dataset, (2) a different
human RNA-seq time series dataset, (3) human mRNA
and macaque protein expression, and (4) vice versa. We
subsampled 1,000 times from all the age-dependent
genes of two datasets. In each subsampling, we selected
genes from each dataset of the same number as con-
cordant/discordant gene groups and checked the num-
ber of overlapped genes, and compared real overlap
amount with simulated overlap distribution.

Clustering genes into groups
We grouped concordant and discordant genes into four
patterns of mRNA expression using k-means clustering.
Before clustering, each gene was standardized to
mean = 0 and standard deviation = 1. Because k-means
clustering is a heuristic algorithm, we repeated the proced-
ure 1,000 times to determine the most frequent constella-
tion and used this clustering in downstream analysis.

Functional analysis
We used the GO categories of biological process (BP),
molecular function (MF) and cellular component (CC),
together with KEGG pathway databases [28,29], for
testing the functional enrichment of gene groups. To
identify over-representation, we used GeneCoDis3, a
non-redundant and modular enrichment analysis tool
for functional annotation of gene sets [101] to investigate
the putative functions of concordant and discordant gene
groups in each of four patterns. Validated detected age-
dependent genes were taken as background, and hypergeo-
metric test P-values were adjusted for multiple testing by
the Benjamini-Hochberg correction.

Posttranscriptional regulator RNA binding protein
identification
Extraction of exonic RNA binding protein binding sites
All data sets from CLIP experiments (including HITS-
CLIP, PAR-CLIP and iCLIP) used in the analysis were
collected from the published literature (Table S10 in
Additional file 1).
The precise positional RBP target sites extracted from

the CLIP data sets were mapped to gene locations by
Ensembl gene annotation. We followed the cutoff used
in the original literature of each CLIP experiment. Only
binding sites passing the cutoff were used in the follow-
ing analysis. To focus on post-transcriptional regulation
corresponding to the mature mRNA, we excluded the
binding sites located in intronic regions or in intron/
exon splicing junctions.

Key regulator RNA binding protein identification
To define a RBP as a key regulator of the disparity gene
group of a pattern, we checked three conditions: (1) the
regulator should target (has at least one validated bind-
ing site on the gene) a significantly higher percentage
of discordant genes compared with concordant genes
in the same pattern. The significance is indicated by
P < 0.05 in a binomial test after Bonferroni correction be-
tween percentages of targeted genes in concordant and dis-
cordant gene groups. (2) The regulator should have
significantly more binding sites on the exon union of dis-
cordant genes compared with concordant genes in the
same pattern. The binding site number enrichment is
classified with P < 0.05 of one-sided Wilcoxon test after
Bonferroni correction between distributions of binding site
number on genes in concordant and discordant gene
groups. (3) After correction by the length of exon union for
each gene, the regulator should have significantly higher
density of binding sites in discordant genes compared with
concordant genes in the same pattern. The significance is
indicated by P < 0.05 of one-sided Wilcoxon test after
Bonferroni correction between distributions of binding site
density of genes in concordant and discordant gene groups.
One regulator is classified as a key regulator if it fulfils con-
dition 1 and at least one of conditions 2 and 3.

Posttranscriptional miRNA regulation estimation
miRNA binding site extraction from in silico prediction
Human miRNA target prediction was based on miRNA
target sites identified using Targetscan [102]. Furthermore,
only target sites that were conserved in at least three out of
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four species (mouse, rat, dog and chicken) were classified
as reliable conserved targets [103] (for details, see supple-
mental experimental procedures in Additional file 1).

Enriched targeting miRNA identification
To identify miRNA with enrichment of predicted targets in
a discordant gene group in each of the four patterns, we
compared miRNA binding site number with concordant
genes in the same pattern. To avoid the influence of
miRNA gene families, we restricted this comparison to a
single test per unique miRNA seed. If a miRNA’s predicted
targets were enriched in a pattern after hypergeometric test
(P < 0.05 after Bonferroni correction), we considered that
miRNA 'specific' to that discordant gene group. All the
other miRNAs were considered 'non-specific' between the
concordant and discordant gene groups in this pattern.
These results were compared to chance distributions ob-
tained using 1,000 permutations by randomized labeling of
concordant/discordant genes within each pattern.

Functional miRNA regulation estimation
To estimate the negative effect of miRNAs on the transla-
tion of discordant genes in each pattern, we calculated the
predicted miRNA-target distribution of the Spearman’s
rank correlation coefficients measured based on expression
profiles of age-dependent miRNA and protein expression
of their predicted target transcripts in aging interval.
The background chance distribution was generated by

the same number of predicted miRNA-target pairs based
on randomly chosen age-dependent miRNA and target
genes within the discordant group of each pattern for
1,000 times.
We estimated the difference between predicted miRNA-

target distribution and background chance distribution by
subtraction of the median of background chance distribu-
tion. A discordant group of one pattern was considered
negatively regulated by miRNAs on the translation
level if, and only if, significant excess of negative cor-
relation (P < 0.05, FDR <5%, Spearman’s rank correlation)
was observed. The significance is indicated by 95% confi-
dence intervals of chance difference obtained in back-
ground chance distribution.

Data availability
All proteomics data have been deposited in the public Pep-
tideAtlas database under accession number PASS00505.

Additional files

Additional file 1: Figures S1 to S13 and legends, supplemental
Tables S1 to S8 and S10 and S11, and a complete and comprehensive
list of experimental procedures and supplemental references.

Additional file 2: Table S9, which lists GO functional terms and
KEGG pathways enriched in concordant and discordant genes.
Abbreviations
AGO: Argonaut; CLIP: crosslinking and immunoprecipitation; FDR: false
discovery rate; GO: Gene Ontology; HITS-CLIP: high-throughput sequencing
of RNA isolated by CLIP; iCLIP: individual-nucleotide resolution CLIP;
KEGG: Kyoto Encyclopedia of Genes and Genomes; LC: liquid
chromatography; miRNA: microRNA; MS/MS: tandem mass spectrometry;
mTOR: mammalian target of rapamycin; NSAF: normalized spectral abundance
factor; PAR-CLIP: photoactivatable-ribonucleoside-enhanced CLIP; PFC: prefrontal
cortex; PI3K: phosphoinositide 3-kinase; RBP: RNA binding protein;
RISC: RNA-induced silencing complex; RPKM: reads per kilobase per million of
total mapped reads; SAF: spectral abundance factor; UTR: untranslated region.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PK and RZ conceived and designed the experiments. NF and ZBN performed
the experiments. YNW performed all data analyses, aside from the construction
of the human-macaque consensus reference genome (GCX), computational
pre-processing of miRNA deep sequencing and in silico prediction of miRNA
binding sites (HYH). PK and YNW wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgments
We thank the NICHD Brain and Tissue Bank for Developmental Disorders, the
Netherlands Brain Bank, and, in particular, HR Zielke and J Dai for providing
the human samples; Suzhou Drug Safety Evaluation and Research Centre
and C Lian, H Cai and X Zheng in particular for providing the macaque
samples; J Jin for assistance; ZS He for assistance with statistical analysis;
GL Banes for comments on the manuscript; and all other members of the
Comparative Biology Group in Shanghai for helpful discussions and suggestions.
This study was supported by the Chinese Academy of Sciences Strategic
Priority Research Program (grant numbers XDB13010200), the Chinese
Ministry of Science and Technology (2011CB910200), the National Natural
Science Foundation of China (major research program, grant number
91331203; general program, grant number 31171232), the National One
Thousand Foreign Experts Plan (grant number WQ20123100078), the Bureau
of International Cooperation, Chinese Academy of Sciences (grant number
GJHZ201313), and the Russian Science Foundation, grant 14-28-00234.

Author details
1CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for
Computational Biology, 320 Yue Yang Road, Shanghai 200031, China.
2University of the Chinese Academy of Sciences, Beijing 100039, China. 3Key
Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320
Yue Yang Road, Shanghai 200031, China. 4Max Planck Institute for
Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
5Skoltech Center for Computational and Systems Biology, Skolkovo Institute
for Science and Technology, Skolkovo 143025, Russia.

Received: 8 July 2014 Accepted: 9 February 2015

References
1. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, et al.

MicroRNA-mediated conversion of human fibroblasts to neurons.
Nature. 2011;476:228–31.

2. van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by
RNA-binding proteins and its implications for cancer. Nat Rev Cancer.
2011;11:644–56.

3. Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles
at the synapse. Curr Opin Genet Dev. 2011;21:491–7.

4. Janga SC, Vallabhaneni S. MicroRNAs as post-transcriptional machines and
their interplay with cellular networks. Adv Exp Med Biol. 2011;722:59–74.

5. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and
post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86.

6. Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, et al. A
compendium of RNA-binding motifs for decoding gene regulation.
Nature. 2013;499:172–7.

http://genomebiology.com/content/supplementary/s13059-015-0608-2-s1.pdf
http://genomebiology.com/content/supplementary/s13059-015-0608-2-s2.xlsx


Wei et al. Genome Biology  (2015) 16:41 Page 14 of 15
7. Vindry C, Ngoc LV, Kruys V, Gueydan C. RNA-binding protein-mediated post-
transcriptional controls of gene expression: Integration of molecular mechanisms
at the 3′ end of mRNAs? Biochem Pharmacol. 2014;89:431–40.

8. Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: a database of
RNA-binding specificities. Nucleic Acids Res. 2011;39:D301–8.

9. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, et al. HITS-CLIP yields
genome-wide insights into brain alternative RNA processing. Nature.
2008;456:464–9.

10. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al.
PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA
binding proteins. J Vis Exp. 2010. doi: 10.3791/2034.

11. Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, et al. iCLIP reveals the
function of hnRNP particles in splicing at individual nucleotide resolution.
Nat Struct Mol Biol. 2010;17:909–15.

12. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation
and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.

13. Meister G. Argonaute proteins: functional insights and emerging roles. Nat
Rev Genet. 2013;14:447–59.

14. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an
emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.

15. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and
stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

16. Valdes AM, Glass D, Spector TD. Omics technologies and the study of
human ageing. Nat Rev Genet. 2013;14:601–7.

17. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev.
2011;91:827–87.

18. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, et al. Yeast life
span extension by depletion of 60s ribosomal subunits is mediated by
Gcn4. Cell. 2008;133:292–302.

19. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan
extension by conditions that inhibit translation in Caenorhabditis elegans.
Aging Cell. 2007;6:95–110.

20. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, et al.
Mechanisms of life span extension by rapamycin in the fruit fly Drosophila
melanogaster. Cell Metab. 2010;11:35–46.

21. Sharp ZD, Bartke A. Evidence for down-regulation of phosphoinositide
3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent
translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A
Biol Sci Med Sci. 2005;60:293–300.

22. Mazin P, Xiong J, Liu X, Yan Z, Zhang X, Li M, et al. Widespread splicing
changes in human brain development and aging. Mol Syst Biol. 2013;9:633.

23. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA
damage in the ageing human brain. Nature. 2004;429:883–91.

24. Rodwell GE, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L, et al. A transcriptional
profile of aging in the human kidney. PLoS Biol. 2004;2:e427.

25. de Magalhaes JP, Costa J. A database of vertebrate longevity records and
their relation to other life-history traits. J Evol Biol. 2009;22:1770–4.

26. Walker R, Gurven M, Hill K, Migliano A, Chagnon N, De Souza R, et al.
Growth rates and life histories in twenty-two small-scale societies. Am J
Hum Biol. 2006;18:295–311.

27. He Z, Bammann H, Han D, Xie G, Khaitovich P. Conserved expression of
lincRNA during human and macaque prefrontal cortex development and
maturation. RNA. 2014;20:1103–11.

28. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data,
information, knowledge and principle: back to metabolism in KEGG. Nucleic
Acids Res. 2014;42:D199–205.

29. Reference Genome Group of the Gene Ontology C. The Gene Ontology’s
Reference Genome Project: a unified framework for functional annotation
across species. PLoS Comput Biol. 2009;5:e1000431.

30. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A
quantitative analysis of CLIP methods for identifying binding sites of
RNA-binding proteins. Nat Methods. 2011;8:559–64.

31. Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, et al.
RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol
Biol. 2011;18:1428–31.

32. Ascano Jr M, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL,
et al. FMRP targets distinct mRNA sequence elements to regulate protein
expression. Nature. 2012;492:382–6.

33. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al.
Transcriptome-wide identification of RNA-binding protein and microRNA
target sites by PAR-CLIP. Cell. 2010;141:129–41.
34. Sievers C, Schlumpf T, Sawarkar R, Comoglio F, Paro R. Mixture models and
wavelet transforms reveal high confidence RNA-protein interaction sites in
MOV10 PAR-CLIP data. Nucleic Acids Res. 2012;40:e160.

35. Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD, et al.
Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA
transcripts. Genome Res. 2009;19:381–94.

36. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al.
Characterizing the RNA targets and position-dependent splicing
regulation by TDP-43. Nat Neurosci. 2011;14:452–8.

37. Wang Z, Kayikci M, Briese M, Zarnack K, Luscombe NM, Rot G, et al. iCLIP
predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol.
2010;8:e1000530.

38. Sanford JR, Gray NK, Beckmann K, Caceres JF. A novel role for shuttling SR
proteins in mRNA translation. Genes Dev. 2004;18:755–68.

39. Mazan-Mamczarz K, Lal A, Martindale JL, Kawai T, Gorospe M. Translational
repression by RNA-binding protein TIAR. Mol Cell Biol. 2006;26:2716–27.

40. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, et al. MicroRNA, mRNA, and
protein expression link development and aging in human and macaque
brain. Genome Res. 2010;20:1207–18.

41. Wang X. miRDB: a microRNA target prediction and functional annotation
database with a wiki interface. RNA. 2008;14:1012–7.

42. Gennarino VA, D’Angelo G, Dharmalingam G, Fernandez S, Russolillo G,
Sanges R, et al. Identification of microRNA-regulated gene networks by
expression analysis of target genes. Genome Res. 2012;22:1163–72.

43. Damgaard CK, Lykke-Andersen J. Translational coregulation of 5′TOP mRNAs
by TIA-1 and TIAR. Genes Dev. 2011;25:2057–68.

44. Iadevaia V, Caldarola S, Tino E, Amaldi F, Loreni F. All translation elongation
factors and the e, f, and h subunits of translation initiation factor 3 are
encoded by 5′-terminal oligopyrimidine (TOP) mRNAs. RNA. 2008;14:1730–6.

45. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of
ageing and age-related disease. Nature. 2013;493:338–45.

46. Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling
extends chronological life span via increased respiration and upregulation of
mitochondrial gene expression. Cell Metab. 2007;5:265–77.

47. Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS. Regulation of
yeast chronological life span by TORC1 via adaptive mitochondrial ROS
signaling. Cell Metab. 2011;13:668–78.

48. Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN. Adipose-
specific knockout of raptor results in lean mice with enhanced mitochondrial
respiration. Cell Metab. 2008;8:399–410.

49. Hassan B, Akcakanat A, Holder AM, Meric-Bernstam F. Targeting the
PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin N Am.
2013;22:641–64.

50. O' Neill C. PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging,
cognitive decline and Alzheimer’s disease. Exp Gerontol. 2013;48:647–53.

51. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational
control. Nat Rev Mol Cell Biol. 2009;10:307–18.

52. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of
the translation preinitiation complex through dynamic protein interchange
and ordered phosphorylation events. Cell. 2005;123:569–80.

53. Johnson TE. Caenorhabditis elegans 2007: the premier model for the study
of aging. Exp Gerontol. 2008;43:1–4.

54. Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.
55. Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel

therapeutic strategies in the nervous system. Trends Mol Med.
2013;19:51–60.

56. Troca-Marin JA, Alves-Sampaio A, Montesinos ML. An increase in basal BDNF
provokes hyperactivation of the Akt-mammalian target of rapamycin pathway
and deregulation of local dendritic translation in a mouse model of Down’s
syndrome. J Neurosci. 2011;31:9445–55.

57. Kadish I, Thibault O, Blalock EM, Chen KC, Gant JC, Porter NM, et al.
Hippocampal and cognitive aging across the lifespan: a bioenergetic shift
precedes and increased cholesterol trafficking parallels memory impairment.
J Neurosci. 2009;29:1805–16.

58. Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, et al. mTOR and autophagy in
normal brain aging and caloric restriction ameliorating age-related cognition
deficits. Behav Brain Res. 2014;264:82–90.

59. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A
unifying model for mTORC1-mediated regulation of mRNA translation.
Nature. 2012;485:109–13.

60. Yang Q, Guan KL. Expanding mTOR signaling. Cell Res. 2007;17:666–81.



Wei et al. Genome Biology  (2015) 16:41 Page 15 of 15
61. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation
initiation and cancer. Oncogene. 2006;25:6416–22.

62. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci.
2009;122:3589–94.

63. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of
longevity and stress resistance by Sch9 in yeast. Science. 2001;292:288–90.

64. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, et al. Inhibition
of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell.
2007;6:111–9.

65. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of
lifespan in Drosophila by modulation of genes in the TOR signaling
pathway. Curr Biol. 2004;14:885–90.

66. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, et al.
Ribosomal protein S6 kinase 1 signaling regulates mammalian life span.
Science. 2009;326:140–4.

67. Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity
and stress resistance of nematode PI3K-null mutants. Aging Cell.
2008;7:13–22.

68. Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, et al. Quantitative
evidence for conserved longevity pathways between divergent eukaryotic
species. Genome Res. 2008;18:564–70.

69. Kaeberlein M, Kennedy BK. Protein translation, 2007. Aging Cell.
2007;6:731–4.

70. Blagosklonny MV. Aging and immortality: quasi-programmed senescence
and its pharmacologic inhibition. Cell Cycle. 2006;5:2087–102.

71. Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/
mTOR pathway. Pharmacol Ther. 2014;142:164–75.

72. Tong X, Pelling JC. Targeting the PI3K/Akt/mTOR axis by apigenin for cancer
prevention. Anticancer Agents Med Chem. 2013;13:971–8.

73. Schieke SM, Phillips D, McCoy Jr JP, Aponte AM, Shen RF, Balaban RS, et al.
The mammalian target of rapamycin (mTOR) pathway regulates
mitochondrial oxygen consumption and oxidative capacity. J Biol Chem.
2006;281:27643–52.

74. Ramanathan A, Schreiber SL. Direct control of mitochondrial function by
mTOR. Proc Natl Acad Sci U S A. 2009;106:22229–32.

75. Lee HC, Wei YH. Mitochondria and aging. Adv Exp Med Biol. 2012;942:311–27.
76. Wei YH, Wu SB, Ma YS, Lee HC. Respiratory function decline and DNA

mutation in mitochondria, oxidative stress and altered gene expression
during aging. Chang Gung Med J. 2009;32:113–32.

77. Caballero A, Ugidos A, Liu B, Oling D, Kvint K, Hao X, et al. Absence of
mitochondrial translation control proteins extends life span by activating
sirtuin-dependent silencing. Mol Cell. 2011;42:390–400.

78. Bahadorani S, Cho J, Lo T, Contreras H, Lawal HO, Krantz DE, et al. Neuronal
expression of a single-subunit yeast NADH-ubiquinone oxidoreductase
(Ndi1) extends Drosophila lifespan. Aging Cell. 2010;9:191–202.

79. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, et al. 4E-BP
extends lifespan upon dietary restriction by enhancing mitochondrial activity in
Drosophila. Cell. 2009;139:149–60.

80. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al. Alteration of
the microRNA network during the progression of Alzheimer’s disease. EMBO
Mol Med. 2013;5:1613–34.

81. Wong HK, Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, et al.
De-repression of FOXO3a death axis by microRNA-132 and −212
causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet.
2013;22:3077–92.

82. Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and
functions: within and beyond the neuronal compartment. Nucleic
Acids Res. 2012;40:4742–53.

83. Shukla U, Tumma N, Gratsch T, Dombkowski A, Novak RF. Insights into
insulin-mediated regulation of CYP2E1: miR-132/-212 targeting of CYP2E1
and role of phosphatidylinositol 3-kinase, Akt (protein kinase B), mammalian
target of rapamycin signaling in regulating miR-132/-212 and miR-122/-181a
expression in primary cultured rat hepatocytes. Drug Metab Dispos.
2013;41:1769–77.

84. Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, et al. Estimating accuracy of RNA-Seq
and microarrays with proteomics. BMC Genomics. 2009;10:161.

85. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, et al.
Human-mouse alignments with BLASTZ. Genome Res. 2003;13:103–7.

86. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al.
Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res. 2008;36:D13–21.
87. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

88. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25:2078–9.

89. Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, Chrast J, et al.
GENCODE: producing a reference annotation for ENCODE. Genome Biol.
2006;7:S4. 1-9.

90. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
et al. GENCODE: the reference human genome annotation for The ENCODE
Project. Genome Res. 2012;22:1760–74.

91. UniProt C. Activities at the Universal Protein Resource (UniProt). Nucleic
Acids Res. 2014;42:D191–8.

92. Granholm V, Kim S, Navarro JC, Sjolund E, Smith RD, Kall L. Fast and
accurate database searches with MS-GF + Percolator. J Proteome Res.
2014;13:890–7.

93. Zhu W, Smith JW, Huang CM. Mass spectrometry-based label-free quantitative
proteomics. J Biomed Biotechnol. 2010;2010:840518.

94. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids
Res. 2013;41:D991–5.

95. Hu HY, Yan Z, Xu Y, Hu H, Menzel C, Zhou YH, et al. Sequence features
associated with microRNA strand selection in humans and flies. BMC
Genomics. 2009;10:413.

96. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

97. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ.
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic
Acids Res. 2006;34:D140–4.

98. Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, et al. Transcriptional
neoteny in the human brain. Proc Natl Acad Sci U S A. 2009;106:5743–8.

99. Clancy B, Darlington RB, Finlay BL. Translating developmental time across
mammalian species. Neuroscience. 2001;105:7–17.

100. Erraji-Benchekroun L, Underwood MD, Arango V, Galfalvy H, Pavlidis P,
Smyrniotopoulos P, et al. Molecular aging in human prefrontal cortex
is selective and continuous throughout adult life. Biol Psychiatry.
2005;57:549–58.

101. Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A. GeneCodis3: a
non-redundant and modular enrichment analysis tool for functional
genomics. Nucleic Acids Res. 2012;40:W478–83.

102. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell. 2005;120:15–20.

103. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 2004;32:1792–7.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Age-dependent mRNA and protein expression in human and macaque brains
	Increased decoupling of mRNA and protein expression in aging
	Concordant and discordant genes form conserved co-expressed clusters
	Specific RNA binding proteins mediate mRNA and protein expression decoupling in brain aging
	Role of miRNAs in mRNA and protein expression decoupling

	Discussion
	Conclusions
	Materials and methods
	Ethics statement
	Sample collection
	Protein sample preparation and label-free two-dimensional tandem mass spectrometry
	Pre-processing of RNA deep sequencing, miRNA deep sequencing and quantitative proteomics data
	Human-macaque consensus reference genome construction
	Computational pre-processing of mRNA deep sequencing
	Computational pre-processing of quantitative proteomics
	Computational pre-processing of miRNA deep sequencing

	Computational pre-processing of age-dependent genes
	Analysis of mRNA-protein disparity
	Equalization of expression and amplitude
	Overlap of concordant/discordant gene groups between databases
	Clustering genes into groups
	Functional analysis
	Posttranscriptional regulator RNA binding protein identification
	Extraction of exonic RNA binding protein binding sites
	Key regulator RNA binding protein identification

	Posttranscriptional miRNA regulation estimation
	miRNA binding site extraction from in silico prediction
	Enriched targeting miRNA identification
	Functional miRNA regulation estimation

	Data availability

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

