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Abstract

We present a statistical methodology, DGEclust, for differential expression analysis of digital expression data. Our
method treats differential expression as a form of clustering, thus unifying these two concepts. Furthermore, it
simultaneously addresses the problem of how many clusters are supported by the data and uncertainty in parameter
estimation. DGEclust successfully identifies differentially expressed genes under a number of different scenarios,
maintaining a low error rate and an excellent control of its false discovery rate with reasonable computational
requirements. It is formulated to perform particularly well on low-replicated data and be applicable to multi-group
data. DGEclust is available at http://dvav.github.io/dgeclust/.

Background
Next-generation sequencing (NGS) and high-throughput
sequencing are revolutionary tools for the study of the
genome, epigenome and transcriptome in a multitude of
organisms (including humans) by allowing the relatively
rapid production of millions of short sequence tags, which
mirror particular aspects of the molecular state of the
biological system of interest. A common application of
NGS is the study of the transcriptome, which involves a
family of methodologies, such as RNA sequencing (RNA-
seq) [1], cap analysis of gene expression (CAGE) [2], serial
analysis of gene expression (SAGE) [3] and others. Most
published studies on the statistical analysis of count data
generated by NGS have focused on the themes of exper-
imental design [4], normalisation [5,6] and the develop-
ment of tests for differential expression [7-9]. Surprisingly,
not much attention has been paid to cluster analysis.
Clustering is considered an important tool in the study
of genomic data and it has been used extensively in the
analysis of microarrays [10-12] (see [13] for a review of dif-
ferent clustering methods). It involves grouping together
the expression profiles of different genes across different
points in time, treatments and tissues, such that expres-
sion profiles in the same group are more similar in some
way to each other than to members of other groups.
Genes that are clustered together across samples exhibit
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co-related expression patterns, which might indicate co-
regulation and involvement of these genes in the same
cellular processes [14]. Moreover, whole samples of gene
expression profiles can be clustered together, indicating a
particular macroscopic phenotype, such as cancer [15].

A large class of clustering methods relies on the defini-
tion of a distance metric, which quantifies the similarity
between any two gene expression data points. Sub-
sequently, clusters are formed, such that the distance
between any two data points in the same cluster is min-
imised. Typical methods in this category are k-means
clustering and self-organising maps [13]. Another impor-
tant category includes model-based clustering algorithms.
In this case, the whole gene expression dataset is modelled
as a random sample from a finite mixture of probabil-
ity distributions, where each component of the mixture
corresponds to a distinct cluster. The parameters of
each component in the mixture (e.g. mean and variance)
are usually estimated using an expectation-maximisation
algorithm [13]. Hierarchical clustering is yet a third type
of clustering methodology, which is particularly suited
for modelling genomic (often hierarchically organised)
data. It generates a hierarchical series of nested clusters,
which can be represented graphically as a dendrogram.
This stands in contrast to partition-based methods (e.g.
k-means or self-organising maps), which decompose the
data directly into a finite number of non-overlapping
clusters [13].
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In this article, we present a model-based statistical
methodology and associated software (DGEclust) for clus-
tering digital expression data and we show how it can
be used in differential expression analysis. From a the-
oretical standpoint, the significance of the proposed
methodology stems from its unification of differential
expression and clustering (i.e. it treats differential expres-
sion as a particular clustering configuration of the data).
This makes it possible to bypass the need for a par-
ticular statistical test when inferring differential expres-
sion or for multiple hypothesis testing correction, such
as the Benjamini—Hochberg procedure. From a statisti-
cal point of view, the proposed methodology is impor-
tant because it simultaneously addresses the problem of
model selection (i.e. how many clusters are supported by
the data) and uncertainty (i.e. the error associated with
estimating the number of clusters and the parameters
of each cluster). This is made possible by exploiting a
hierarchical Dirichlet process mixture model (HDPMM)
[16,17], a statistical framework, which has been applied
in the past for clustering microarray data [18,19], for
multi-population haplotype inference [20], for integrating
heterogeneous genomic datasets [21,22] and for mod-
elling multiple text corpora [23]. In our version of the
HDPMM, individual expression profiles are drawn from
the negative binomial distribution (as, for example, in
[24-27]) and parameter estimation is achieved using a
novel, fast blocked Gibbs sampler, which efficiently pro-
cesses large datasets (e.g. with more than 20K genes). We
show how the output of our clustering algorithm can be
used in differential expression analysis and, using simu-
lated data and actual experimental data (RNA-seq and
CAGE) from a range of species, we demonstrate improved
performance, compared to popular alternative methods.
An early version of the proposed methodology has been
presented previously in poster format and in [28].

Results and discussion

Description of the model

Formally, the production of count data using NGS assays
can be thought of as random sampling of an underlying
population of cDNA fragments. Thus, the counts for each
tag describing a class of such fragments can, in principle,
be modelled using the Poisson distribution, whose vari-
ance is, by definition, equal to its mean. However, it has
been shown that, in real count data of gene expression,
the variance can be larger than what is predicted by the
Poisson distribution [29-32]. An approach that accounts
for the so-called over-dispersion in the data is to adopt
quasi-likelihood methods, which augment the variance of
the Poisson distribution with a scaling factor, thus drop-
ping the assumption of equality between the mean and
variance [33-36]. An alternative approach is to use the
negative binomial distribution, which is derived from the
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Poisson, assuming a gamma-distributed rate parameter.
The negative binomial distribution incorporates both a
mean and a variance parameter, thus modelling over-
dispersion in a natural way [24-26]. For this reason, in
this article we use the negative binomial distribution for
modelling count data.

We indicate the number of reads for the ith feature (e.g.
gene) at the jth sample/library with the variable y;;. Each
library j is assigned to a group of libraries / = A(j), based
on prior information on tissue, experimental condition,
disease state, etc. There are a total of N genes, M libraries
and L groups of libraries, where 2 < L < M. We assume
that y; is distributed according to a negative binomial
distribution, with mean ;; and dispersion parameter ¢;:

Yiil®i> i Big) ~ NegBin (my, ¢;) (1)

where log(m;;) = log(c;) + log(i;) + Bivgj). In the previ-
ous expression, ¢; is a known a priori normalising factor
for library j, u; is the mean expression level for gene i and
Bix(j is the fold-change of the mean expression level of
gene i in group A(j). A fold-change equal to 0 indicates
no change in the mean expression level for feature i in
group A(j), while a value larger (smaller) than 0 indicates
over(under)-expression.

The variance for expression profile y;;, ai? = my+ qSimizj,
is always larger than the mean by the quantity ¢im?j. Thus,
the negative binomial distribution can be thought of as a
generalisation of the Poisson distribution, which accounts
for over-dispersion.

It follows that to specify the above model fully, we need
to know the parameters ¢;, 1; and B for each gene i
and group of samples A(j). We also need to compute the
normalising factors ¢; from the data (see [37] for a review
of available normalisation methods).

Information sharing between genes

A common limitation in experiments using NGS tech-
nologies is the low number or even absence of biological
replicates, which complicates the statistical analysis of
digital expression data. One way to compensate for small
sample sizes is to assume that all genes share the same
variance [30]. A less restrictive approach is to imple-
ment some type of information sharing between genes,
which permits the improved estimation of gene-specific
parameters (e.g. the dispersion parameters) by pooling
together genes with similar expression profiles [24-26].
In this article, information sharing between genes and
between samples is introduced in a natural way through
the use of priors for the parameters of the negative bino-
mial distribution. In this and the following section, we use
Dirichlet process priors for modelling the fold-changes
Birg), followed by giving the priors for the ¢; and p;
parameters.
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Within each sample group / = A(j), we assume that
the gene-specific fold-changes {8;;} are random and dis-
tributed according to a prior distribution Gy, i.e.

BulGi ~ G; 2)

Furthermore, we assume that G; is itself randomly sam-
pled from a Dirichlet process with positive concentration
parameter y; and base probability distribution Gy [16]:

Gily, Go ~ DP(y;, Go) 3)

Dirichlet process priors are distributions over distribu-
tions and they have become a popular choice in Bayesian
inference studies, since they provide an elegant solution to
the problem of determining the correct number of com-
ponents in mixture models. Standard theoretical results
[38] state that a sample G; from Equation 3 is a discrete
distribution with probability one over a countably infinite
set of Bs. Large values of y; lead to a large number of simi-
larly likely values of 8, while small values of this parameter
imply a small number of highly probable values of 8. This
and Equation 2 imply that the fold-changes §;; within the
Ith group of samples are not all distinct. Different genes
may share the same value of 8 or, in other words, genes
are grouped in a (not known in advance) number of clus-
ters, based on the value of B they share. Equivalently, the
expression profiles of different groups of genes are drawn
from different negative binomial distributions, each char-
acterised by its own unique value of 8. This clustering
effect is illustarted in Figure 1.

Information sharing between samples

Up to this point, we have considered clustering of genes
within the same group of samples, but not across groups
of samples (e.g. tissues or conditions). However, in a given
dataset, each cluster might include gene expression pro-
files from the same, as well as from different groups of
samples. In other words, clusters are likely shared between
samples that belong to different groups. This sharing of
information between sample groups can be expressed nat-
urally in the context of HDPMMs [16]. Following directly
from the previous section, we assume that the base distri-
bution Gy is itself random and sampled from a Dirichlet
process with a global scaling parameter § and a global base
distribution H:

Gols, H ~ DP(8, H) (4)

The above expression implies that Gy is (like each Gj)
discrete over a countably infinite set of atoms f;, which
are sampled from H, i.e. B; ~ H. Since Gy is the com-
mon base distribution of all G;, the atoms ,3,’( are shared
among all samples, yielding the desired information shar-
ing across samples (see Figure 1).
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Figure 1 Information sharing between genes and between
sample classes. The statistical model in DGEclust internally models
the counts for each gene i in each library j as random variables
sampled from a negative binomial distribution with gene-specific
parameters p; and ¢; and gene- and experimental condition- (or
tissue-) specific log-fold-changes ;. Different genes within the same
condition / may share the same log-fold-changes, which are
randomly sampled from discrete, condition-specific random
distributions (Gy and G in the figure). This imposes a clustering effect
on genes in each experimental condition; genes in the same cluster
have the same colour in the figure, while the probability of each
cluster is proportional to the length of the vertical lines in
distributions Gy and G;. The discreteness of Gy and G, is because they
are random samples themselves from a Dirichlet process with global
base distribution Go, which is also discrete. Since Gy is shared among
all experimental conditions, the clustering effect extends between
them, i.e. a particular cluster may include genes from the same and/or
different experimental conditions. Finally, Go is discrete, because it
too is sampled from a Dirichlet process with base distribution H, like
Gy and G;. If the expression profiles of a particular gene belong to
two different clusters across two experimental conditions, then this
gene is considered differentially expressed (see rows marked with
stars in the figure).
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Generative model

In summary, we have the following hierarchical model for
the generation of a matrix of digital gene expression data
(see also Figure 1):

H = Normal (u;;,oé)
Go|é,H ~ DP(6,H)
Gily;, Go ~ DP(y1, Go)
Bi ~ Gy
log(¢i) ~ Normal (u¢,a£)
Yijlis thir B ~ NegBin (cjpie", ;) (5)

where [ = A(j). Notice that the base distribution H, which
provides the global prior for sampling the atoms f;, was
assumed normal with mean pg and variance ag. Simi-
larly, the logarithm of the dispersion parameters ¢; was
assumed normal with mean j4 and variance ad% (see, for
example, [39] for a justification of this choice). The mean
expression levels u; are modelled as u; = (1 —pi)pi_lqbi_l,
where ¢; is sampled as above and p; ~ Beta(0.5,0.5).
This formulation greatly facilitates the posterior inference
of u; given ¢;, since it involves sampling directly from
well-known distributions (see Additional File 1 for more
details).

Inference

The definition of the HDPMM in Equations 5 is implicit.
To facilitate posterior inference, an equivalent con-
structive representation of the above model has been
introduced in [23], using Sethuraman’s stick-breaking rep-
resentation of a draw from a Dirichlet process [38]. This
representation introduces a matrix of indicator variables
z = {zj}, where each element of the matrix, z;, indi-
cates which cluster the ith log-fold-change in the /th group
of samples (i.e. 8;;) belongs to. Two different 8’s, 8; and
By, belong to the same cluster if and only if their indi-
cator variables, e.g. z; and zyy, are equal. A major aim
of Bayesian inference in the above model, is to calculate
the posterior distribution p(z|y) of matrix z given the data
matrix y.

One approach to estimate this distribution is by using
Markov chain Monte Carlo (MCMC) methods, which
generate a chain of random samples as a numerical
approximation to the desired distribution. We have devel-
oped a blocked Gibbs sampler in the software package
DGEclust, which efficiently generates new samples from
the posterior p(z|y). The algorithm is an extension of
the method presented in [28,40] for inference in non-
HDPMMs and its advantage is that it samples each ele-
ment of z independently of all others. This not only results
in very fast convergence, but it also allows the algo-
rithm to be implemented in vectorised form, which takes
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advantage of the parallel architecture of modern mul-
ticore processors and potentially permits application of
the algorithm on very large datasets. Alternative MCMC
methods, which are developed on the basis of the popular
Chinese restaurant franchise representation of the Hier-
archical Dirichlet Process (HDP) [16,41], do not enjoy the
same advantage since they are restricted because sampling
each indicator variable is conditioned on the remaining
ones, thus all of them must be updated in a serial fash-
ion. Details of the algorithm are given as supplementary
material (see Additional file 1).

Testing for differential expression

Assuming that the above algorithm has been applied on a
digital expression dataset y and a sufficiently large chain
of samples z(TotD z(To+2)  7(To+T) _ which approxi-
mates the posterior p(z|y) — has been generated, we show
how these samples can be used for differential expression
analysis. We consider two classes of samples, A and B,
which might represent, for example, two different tissues
or experimental conditions.

A particular gene is said to be not differentially
expressed (DE), if its expression measurements in classes
A and B belong to the same cluster. In more formal lan-
guage, we state that the posterior probability ; that gene
i is not DE given data y is equal to the conditional proba-
bility p(z;4 = z;g|y) that the indicator variables of feature i
in sample classes A and B have the same value. This prob-
ability can be approximated as a simple average over the

previously generated MCMC samples {ZTOH}tT

S () =)
T =
T
where 1(-) is equal to 1 if the expression inside the paren-
theses is true and 0 otherwise. Given a threshold 7, we can
generate a set D of potentially DE features with probabil-
ities less than this threshold, i.e. D = {i : 7; < 7}, where
7; is calculated as in Equation 6 for all i.

As observed in [42], the quantity 7; measures the con-
ditional probability that including the ith gene in list D is
a Type L error, i.e. a false discovery (FD). This useful prop-
erty makes possible the calculation of the conditional false
discovery rate (FDR) as follows:

Yoiml(m < 7)
Y l(m<7)

From Equation 7, it can be seen that D always has
an FDR at most equal to 7. Alternatively, one can first
set a target FDR, say tFDR, and then find the maximum
possible value of 7, such that FDR(77) < tFDR.

Notice that, unlike alternative approaches, which make
use of gene-specific P values, this methodology does not
require any correction for multiple hypothesis testing,

(6)

FDR(7%) = (7)
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such as the Benjamini—-Hochberg procedure. Although
the computation of FDR using Equation 7 is approximate
(since it depends on the accuracy of the calculation of
7; using Equation 6), it is reasonable to assume that the
error associated with this approximation is minimised, if
sufficient care is taken when post-processing the MCMC
samples generated by the Gibbs sampler.

Application to simulated data

To assess the performance of our methodology, we applied
it on simulated and actual experimental count data and we
compared our results against those obtained from popu-
lar software packages, namely DESeq/DESeq2, edgeR and
baySeq.

First, we applied our algorithm on simulated data, which
provides the advantage that we can control the exact con-
ditions under which the data was generated, including the
true differential expression state of each gene. For this pur-
pose, we used the function generateSyntheticData from
the independent Bioconductor package compcodeR [43].
Data generated using this approach follow the negative
binomial distribution, with mean and dispersion parame-
ters estimated from actual experimental data [44,45]. Each
simulated dataset included 10K genes under two differ-
ent experimental conditions, with the proportion of DE
genes set to either 0%, 10% or 30% (0, 1,000 or 3,000 DE
genes, respectively). In addition, we considered simulated
data where 50% of the genes were generated from the Pois-
son distribution (and, therefore, were not over-dispersed),
as well as simulated data which included outliers, i.e.
genes with unusually high or low counts. The outliers
were introduced by multiplying with probability 5% each
observed count independently with a randomly gener-
ated factor between 5 and 10. Finally, we evaluated the
effect of varying the per-condition sample size from 2 to
4 and 8, since small sample sizes reflect the design of
most current sequencing experiments. Under each unique
simulation setting, we independently generated three dif-
ferent datasets; each evaluated method was applied sepa-
rately on each dataset and the aggregated results for each
simulation setting were reported. All parameters of gener-
ateSyntheticData were left as their default values, unless
stated otherwise.

Following the prototypical study in [9], we compared the
performance of DGEclust and the other aforementioned
methods under the experimental conditions encapsulated
by the synthetic data using the following criteria: (a) first,
we compared the ability of all methods to identify DE
genes using as performance measure the area under the
receiver operating characteristic (ROC) curve (AUC) for
each method, (b) second, we compared the ability of all
methods to keep a low number of Type I errors using
ED curves as performance measures and also by measur-
ing the number of Type I errors each method returned
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given a fixed significance threshold, (c) third, we assessed
the ability of all methods to keep a low FDR given a rela-
tively large pre-specified FDR threshold. Furthermore, we
applied all methods on actual RNA-seq data from a num-
ber of species, as well as on a large CAGE dataset obtained
from five different regions of human brains. Details for
each category of experiment are given in the following
sections.

DGEclust successfully identifies differentially expressed genes
under a number of different scenarios

We first evaluated the comparative ability of DGEclust to
identify truly DE genes. All examined methods rank each
gene by providing P values (edgeR and DESeq/DESeq?2)
or posterior probabilities (DGEclust and baySeq). Given a
threshold score, genes on opposite sides of the threshold
are tagged as DE or non-DE, accordingly. In an artificial
dataset, the genes that were simulated to be DE are con-
sidered to be the true positive group, while the remaining
genes are considered the true negative group. By com-
puting the false positive rate (FPR) and the true positive
rate (TPR) for all possible score thresholds, we can con-
struct ROC and FD curves for each examined method.
The AUC is a measure of the overall discriminative ability
of a method (i.e. its ability to classify correctly features as
DE or non-DE).

Our results are summarised in Figure 2. As expected, the
performance of all methods improves as the sample size in
each dataset increases from 2 to 4 to 8. When only over-
dispersed genes are present and only 10% of them are DE
(top panel), DGEclust clearly demonstrates the best per-
formance with an AUC score larger than 80%, followed
by DESeq/DESeq2, edgeR and, finally, baySeq. The same
trend is observed when we examine datasets with 30% DE
genes (second panel), but this time the difference between
DGECclust and the other methods is even more prominent.
This is because the performance of edgeR, DESeq/DESeq2
and baySeq is negatively affected by the increased pro-
portion of DE genes, while the performance of DGEclust
remains essentially the same.

The negative effect of DE gene composition on DESeq,
edgeR and baySeq, when datasets with large proportions of
DE genes were considered, has already been observed [9]
and attributed to an increased proportion of false positives
due to the failure of normalisation to capture the effect
of the possibly asymmetric distribution of DE genes fully.
Here, we provide an alternative explanation that this effect
might be an intrinsic characteristic of each classification
method, since DGEclust does not seem to be affected by
the presence of this asymmetry in the data, although it
adopts the same normalisation method as DESeq.

We further evaluated the effect of introducing non-
over-dispersed genes or outliers, as outlined above. When
the fraction of Poisson distributed genes was increased
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Figure 2 Comparison of different methods. The area under the receiver operating characteristic curve is used as the performance measure. The
box plots summarise the results obtained across three independent synthetic datasets for four different simulation settings. Each dataset included
10K genes and results across 2, 4 and 8 biological replicates are reported. DGEclust shows improved performance in comparison to other methods
in all of the examined cases, particularly in the presence of a large proportion of differentially expressed genes (30%) and small sample sizes (n = 2).
The inclusion of non-over-dispersed genes significantly improves the performance of all methods, but the inclusion of outliers has the opposite
effect. Still, DGEclust remains top-ranked among the alternative methods with respect to AUC scores. AUC, area under the receiver operating
characteristic curve; DE, differentially expressed; ROC, receiver operating characteristic.

from 0 to 50% (third panel), we observed a significant
increase in the AUC for all methods. DGEclust ranked
first in all cases, but DESeq/DESeq2 and edgeR followed
closely, particularly at large sample sizes (n = 8). The
introduction of outliers with abnormally high or low
counts (bottom panel), reduced the AUC for all methods,
but again DGEclust ranked first among the alternatives for
all sample sizes.

DGEclust maintains a low rate of Type | errors

Next, we evaluated the ability of DGEclust and the other
methods to control the rate of Type I errors. First,
we assessed this ability through the construction of FD
curves, which illustrate the number of false positives
as a function of the total number of positives (i.e. as
the decision threshold increases). Mean FD curves for
each of the cases examined in Figure 2 are illustrated
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in Figure 3. We measure the false positives among the
first 1,000 top-ranked discoveries. Observe that when
only over-dispersed data with either small (top panel) or
large (second panel) numbers of DE genes are considered,
DGEclust always keeps the number of false positives
among the top discoveries below that of the other eval-
uated methods. As with the AUC scores, this is more
prominent when a large number of DE genes (30%) is con-
sidered and it holds at all sample sizes. When examining
datasets including non-over-dispersed genes (third panel),
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DGECclust still performs better than alternative methods,
at all sample sizes. For datasets with outliers (bottom
panel), the difference between DGEclust and the other
methods becomes less prominent and effectively disap-
pears at large sample sizes (n = 8), at which point DESeq2
also demonstrates good performance.

In a second stage, we examined the ability of all methods
to control the number of Type I errors at a pre-specified
threshold level in the absence of any truly DE genes
(see Figure 4). To make possible a comparison between
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Figure 3 False discovery curves for all methods across the first 1,000 discoveries. The illustrated false discovery curves are averages over three
independent repetitions of each synthetic dataset. DGEclust clearly keeps a lower number of false discoveries in comparison to the other methods
in all cases. There is a single exception in the presence of outliers and at large sample sizes (n = 8), where DESeq2 appears to be marginally better
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Figure 4 Type | errors for all methods at a pre-specified significance threshold. The box plots summarise results across three independently
obtained simulated datasets for three different simulation settings. In all cases, exactly zero genes were truly differentially expressed. To make
possible a comparison between methods that return P values (DESeq/DESeq2 and edgeR) and those that return posterior probabilities (DGEclust and
baySeq), we report the Type | error rate at a relatively high false discovery rate, FDR = 10%. In all cases, DGEclust maintains a minimal Type | error rate,
particularly for small sample sizes (n = 2). DE, differentially expressed.

methods that return P values (DESeq/DESeq2 and edgeR)
and methods that return posterior probabilities (DGEclust
and baySeq) and since all methods provide an estimation
of the FDR, we compared the number of Type I errors (as
a proportion of the total number of genes) each method
made at a relatively high pre-specified FDR = 0.1. In all
datasets not including outliers (top two panels), DGEclust
had the lowest proportion of Type I errors at small sam-
ple sizes (n = 2 and n = 4), followed closely by baySeq.
At large sample sizes (n 8), DGEclust, DESeq and
baySeq performed similarly, followed closely by DESeq2
and edgeR. After the inclusion of outliers (bottom panel),
DGECclust again had the lowest Type I error rate along with
DEseq at all sample sizes.

DGEclust retains excellent control of its false discovery rate

Furthermore, we evaluated the ability of DGEclust and the
other methods to control the FDR at a pre-specified level.
For all methods, we calculated the true FDR as the fraction

of discoveries that were false at a pre-specified signifi-
cance threshold equal to 0.1. We labelled as discoveries all
features satisfying the condition that the adjusted P values
(DESeq/DESeq2) or estimated FDRs (DGEclust, baySeq
and edgeR) were less than or equal to the aforementioned
significance level. If no discoveries were identified, the
corresponding true FDR was assumed undefined.

Our results are summarised in Figure 5. In all cases,
DGEclust was the top or among the top-performing meth-
ods in terms of controlling the FDR at a pre-specified level.
As a general observation, increasing the number of repli-
cates per condition from 2 to 4 to 8, clearly increased
the ability of all methods to control the FDR. DGEclust
demonstrated excellent control of its FDR, keeping it
close to or below the pre-specified significance thresh-
old, in all examined cases. When no outliers and only
over-dispersed genes were considered (top two panels),
DGEclust was the only method that kept the FDR below
the pre-specified threshold at low sample sizes (n = 2).
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Figure 5 False discovery rates for all methods at a pre-specified significance threshold. The box plots summarise the FDRs obtained across
three independently obtained simulated datasets at four different simulation settings at an imposed significance level of 10%. The ability of all
methods to control their FDR increases with the sample size. In all cases, DGEclust demonstrates excellent control over its FD, particularly at small
sample sizes (n = 2). Interestingly, in the presence of outliers, DGEclust is the only method that keeps its FDR at or below the pre-specified threshold
at all sample sizes. DE, differentially expressed; FD, false discovery; FDR, false discovery rate.

At larger sample sizes (n = 4, 8), DESeq appears to reduce
this gap and in one case (top panel, n = 8), it performs as
well as DGEclust. In the presence of non-over-dispersed
genes (third panel), DGEclust still retains its FDR at (n =
4, 8) or slightly above (n = 2) the pre-specified threshold,
although it is now marginally overtaken by baySeq (n = 2)
or DESeq (n = 4,8). When genes with unusually low or
high counts were considered (bottom panel), DGEclust
managed to retain excellent control of its FDR, even at

small sample sizes, and with quite significant differences
from all alternative methods. DESeq did not call any DE
genes in this case and its FDR was deemed undefined.

DGEclust demonstrates top performance for low-replicated
data from a range of species

In addition to simulated data, we also tested our method
on RNA-seq data from mouse, rat, worm and fly and
on CAGE data from humans. The RNA-seq data were
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obtained from the online resource ReCount [46] and they
are briefly described below.

The mouse data [47] consisted of two groups of libraries,
controls versus CUG-BP1 knockdown myoblasts. Each
group included two biological replicates (n = 2) and,
after filtering out all rows with zero count sum, a total of
9,502 genes. Similarly, the rat data [48] consisted of two
groups (controls versus subjects with chronic neuropathic
pain induced by spinal nerve ligation of the neighbouring
L5 spinal nerve) with two biological replicates per group
(n = 2) and, after filtering as above, 17,125 genes. The fil-
tered (as above) worm data [49] consisted of two groups
(L1ILIN35-1capl versus LAMALE6cap2) with two repli-
cates each (n = 2) and 19,430 genes. Finally, the fly data
[50] consisted of two groups, adult males and females,
with each group containing three individuals, 1, 5 and
30 days old (n = 3). After removing all rows with zero
count sum across all samples, the filtered dataset included
13,188 genes. For more details about how these data were
obtained, the reader is referred to [46] and the original
publications.

The CAGE dataset was prepared according to the stan-
dard Illumina protocol described in [51] and it consisted
of 25 libraries isolated from five brain regions (caudate
nucleus, frontal lobe, hippocampus, putamen and tempo-
ral lobe) from five human donors (# = 5) and it included
23,448 features, i.e. tag clusters representing promoter
regions (see Materials and methods for more details). In
this section, we examine only the libraries from the cau-
date nucleus and frontal lobe, but we include all libraries
in our analysis in the next section.

As in [52], we used the log-fold-change between differ-
ent groups of samples to establish a ground truth on which
we based our subsequent method comparisons. Specifi-
cally, a gene was considered DE if the absolute logy fold-
change ratio of its normalised mean expression across
all replicas between two conditions exceeded a threshold
value of 2 (corresponding to a 4x change in expression)
and non-DE if this ratio was smaller than 1/2 (correspond-
ing to changes in expression less than approximately 41%).
All intermediate cases were considered undefined and
they were ignored during computation of ROC curves. For
CAGE data, we further validated this approach of approx-
imating the true state of differential expression for each
gene by adopting the biological homogeneity index (BHI)
[53] as an additional proxy of the unknown ground truth
(see details in the next section).

The performance of all tested methods was excellent,
reaching a TPR larger than 70% at minimal (<0.01)
FPRs (Figure 6). The two top-performing methods were
DGEclust and edgeR (worm, fly and human) or baySeq
(mouse and rat). In several cases (mouse, worm, fly and
human with n = 5), DGEclust achieved almost a perfect
classification and in all cases it was the only method that
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consistently demonstrated top performance. It is inter-
esting to observe that while DGEclust is clearly the best
method at small sample sizes (n = 2), at larger sam-
ple sizes (fly with » = 3 and human with n = 5)
edgeR also performed equally well. Based on this evi-
dence, we conclude that DGEclust has a clear advan-
tage compared to alternative methods at low replication
levels.

DGEclust is applicable to multi-group expression data

Up to this point, we have restricted our analysis to datasets
consisting of two groups of samples. While pairwise com-
parisons have been characterised as the bread and butter
of differential expression analyses, multi-group datasets
are also quite common. In this section, we demonstrate
the applicability of DGEclust for such datasets by using the
CAGE data from human brains as a test case. DGEclust
processed the data for 10K iterations, of which the first
5K were rejected as burn-in, while the remaining 5K were
used for estimating differential expression, as outlined in
a previous section. We also applied edgeR and DESeq2 on
the same dataset. baySeq was excluded from this analysis,
because this would require examining a large number of
possible expression patterns, which we found impractical.

Having established a ground truth as outlined in an ear-
lier section, we constructed ROC curves for all possible
pairs of brain regions in the CAGE dataset. It may be
observed (Figure 7, upper triangle) that, for all pairs of
brain regions (with the exception of the caudate/putamen
and frontal/temporal pairs), all three methods demon-
strated excellent performance, reaching TPRs larger than
80% at FPRs smaller than 1%. In all cases, DGEclust
was the top performer as indicated by the AUC, fol-
lowed by edgeR and then DESeq2 in all cases. Examination
of the Venn diagrams constructed from the DE genes,
which were identified by each method at an FDR cut-
off of 10%, indicates a significant overlap between all
three methods, with at least 1K genes commonly iden-
tified as DE in most cases. In terms of novel discover-
ies (i.e. genes that were not called as DE by alternative
methods), DGEclust appears to occupy the middle spot
between DESeq2 and edgeR, with DESeq2 calling the
largest number of novel discoveries in most cases. Two
interesting exceptions were the caudate nucleus/putamen
pair and the temporal/frontal lobes, for which DGEclust
appears to have called the largest number of novel DE
genes.

To validate these results further, we clustered the genes
identified as DE by each method between at least one pair
of brain regions at an FDR of 10% and we tested the valid-
ity of the resulting clusterings using the BHI [53] as a
quality measure. BHI exploits gene ontology (GO) anno-
tations to provide a measure of how biologically homo-
geneous a given clustering partition is. Clusters where
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Figure 6 Comparison of ROC curves from different methods. The methods are applied to RNA-seq or CAGE data from a number of different
species. In all cases, a ground truth was established by considering the absolute value of the log, ratio of the mean expression across all replicas
between two conditions [52]. DGEclust demonstrates excellent performance in all cases. At small sample sizes (n = 2), it is ranked at the top, while
for larger sizes (n = 3 or n = 5), it performs similarly to edgeR. CAGE, cap analysis of gene expression; RNA-seq, RNA sequencing; ROC, receiver

many genes share annotations will lead to a high BHI
score and vice versa. BHI values range from 0 to 1, with a
score of 1 indicating the highly unlikely situation of per-
fect agreement for all GO terms. If the results in Figure 7
are valid, we expect the BHI score computed for DGEclust
to be at least as high as the score computed for the other
methods.

For clustering the DE genes called by each method,
we used the k-means algorithm with /Npg/2 clusters
as input, where Npg is the number of DE genes. We
could have used more elaborate methods for choosing
the optimal number of clusters, such as Akaike’s infor-
mation criterion or the Bayesian information criterion,
but for our purposes, this simple heuristic suffices. We
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Figure 7 Comparison of ROC curves for different methods. The methods were applied to CAGE data from different regions of the human brain.
A ground truth was established as in Figure 6. DGEclust is top-ranked in all cases. All methods demonstrate excellent performance, achieving a TPR
larger than 0.8 at FPRs less than 0.01. As indicated by the Venn diagrams constructed from DE genes obtained at an FDR equal to 0.1%, the three
methods demonstrate a significant overlap, sharing more than 1K genes in most cases. In terms of the number of novel discoveries (i.e. DE genes
identified as such only by a particular method), DGEclust occupies the middle spot between DESeq? (first) and edgeR (third). CAGE, cap analysis of
gene expression; DE, differentially expressed; FDR, false discovery rate; FPR, false positive rate; hippocamp., hippocampus; ROC, receiver operating
characteristic; TPR, true positive rate.

also used hierarchical clustering with an average linkage  of Binder’s loss function [54]. In both cases, the raw counts
and a Euclidean distance metric. An optimal cluster- were log-transformed before clustering using DESeq2’s
ing partition was subsequently extracted by cutting the rlog function.

resulting hierarchical clustering (visualised as a dendro- For DGEclust, we additionally performed hierarchical
gram) at a distance of 0.5, which optimises the expectation  clustering using a similarity matrix computed internally
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by our software. Specifically, each element s;; of this
matrix measuring the similarity between genes i and /' is
defined as follows:

)
To4T Liot H(ZE; =z§,‘l)
S — Zt:To-{—l L (8)
124 T

where L is the number of brain regions in the dataset.

Our results from this analysis are indicated in Table 1.
As a general observation, the BHI scores are rather low,
with only the overall BHI score reaching values of 0.20 to
0.21, while the BHI scores for each individual GO domain
range between 0.05 and 0.09. As expected, DGEclust sup-
ports BHI scores at least as good as those computed for
the other methods (indicated in bold in Table 1). Specif-
ically, for the biological process and cellular component
GO domains, DGEclust has the highest score of 0.07 and
0.09, respectively, while for molecular function and overall
BHI, the scores (0.08 and 0.21, respectively) are no worse
than those returned from the other methods. This indi-
cates that the clusters supported by the DE genes called
by DGEclust are at least as biologically homogeneous as
those supported by the other methods, thus increasing
our confidence in the ability of DGEclust to identify DE
genes correctly as indicated in Figure 7.

Furthermore, we investigated the relation between dif-
ferent brain regions by constructing a similarity matrix,
which we used as input to hierarchical clustering routines
for the generation of dendrograms and heat maps. Every
element s;y of this matrix measures the similarity between
brain regions / and /" and it is computed as follows:

N
D in T

sy = =1 (9)
N ll/
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where N is the number of genes in the dataset. The sim-
ilarity matrix calculated as above was used to construct
the dendrograms and heat map in Figure 8, after employ-
ing a Euclidean distance metric and average linkage. It
may be observed that the resulting hierarchical clustering
reflects the evolutionary relations between different brain
regions. For example, the temporal and frontal lobe sam-
ples, which are both located in the cerebral cortex, are
clustered together. The hippocampus, albeit lying beneath
the cerebral cortex and much older and more primitive
than the surrounding neocortex, is not truly a sub-cortical
structure, but rather a cortical infolding. Thus, it is clus-
tered together with the temporal and frontal samples. The
subcortical caudate nucleus and putamen, which form the
dorsal striatum — an important part of the basal ganglia —
are clustered together and they are maximally distant from
the cortical structures.

Collectively, the evidence presented in Figure 8 and in
Table 1 is supportive of the improved capacity of DGEclust
for calling DE genes, as presented in Figure 7.

DGEclust has reasonable computational requirements
Bayesian approaches employing MCMC sampling
methodologies for inference are notorious for their
increased computational requirements. Being conscious
that this might discourage application of this class of
methodologies to large genomic datasets, we investigated
how our method scales with increasing number of sam-
ples and genes. Specifically, we used IPython’s $memit
and $timeit commands to measure peak memory usage
and computation time. All simulations were performed
on a MacBook Pro with an Intel four-core i7 processor
and 8 Gb of memory.

Table 1 Biological homogeneity index scores for the CAGE dataset

Software Clustering Number Number BHI (BP) BHI (CC) BHI (MF) BHI (all)
of DE genes of clusters
Hierarchical 1 0.07 0.08 0.08 0.21
DGEclust Hierarchical* 2177 17 0.05 0.09 0.07 0.20
k-means 32 0.05 0.07 0.08 0.20
Hierarchical 1 0.06 0.08 0.08 0.20
DESeq2 7,109
k-means 59 0.06 0.08 0.07 0.21
Hierarchical 1 0.06 0.08 0.08 0.20
edgeR 5,705
k-means 53 0.06 0.07 0.08 0.21

We computed the BHI scores for each GO domain (biological process, molecular function and cellular component), as well as an overall score. k-means and
hierarchical clustering were applied to the regularised log-transformed counts for all genes that were called DE between at least one pair of brain regions by each of
the three examined methods, i.e. DGEclust, DESeq2 and edgeR. For k-means, we used an optimal number of clusters equal to «/Npg /2, where Np¢ is the number of DE
genes. For the hierarchical clustering, we used average linkage and a Euclidean distance metric with a cutoff distance of 0.5 to obtain an optimal clustering. For
DGEclust, we also applied hierarchical clustering using an internally computed similarity matrix. This is indicated with an asterisk (*). The highest score in each GO

domain is indicated in bold.

BHI, biological homogeneity index; BP, biological process; CC, cellular component; DE, differentially expressed; GO, gene ontology; MF, molecular function.
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Figure 8 Hierarchical clustering of brain regions based on CAGE
data. We constructed a similarity matrix based on the number of
differentially expressed transcripts discovered by DGEclust between
all possible pairs of brain regions. This similarity matrix was then used
as input to a hierarchical clustering algorithm using a Euclidean
distance metric and average linkage. As illustrated by the generated
heat map and dendrograms, cortical regions (frontal and temporal
lobes) are clustered together with the hippocampus and all three are
maximally distant from subcortical regions, i.e. the dorsal striatum
(putamen and caudate nucleus) of the basal ganglia. CAGE, cap
analysis of gene expression.

As indicated in Figure 9, computation time and peak
memory usage increase linearly with the number of genes
(left top and bottom panels). Operations on genes are per-
formed in parallel by default extensively using NumPy’s
vector notation and, for this reason, top performance in
terms of speed is expected. Groups of samples can also
be processed in parallel using multiple cores, if the user
wishes to do so. Peak memory usage and computation
time also increase linearly with the number of samples
(right top and bottom panels), although peak memory
usage appears roughly constant over the examined range
for the number of samples in the absence of multiprocess-
ing. There is a clear gain in processing speed from using
multiple cores to process samples (top right panel). In con-
clusion, these data suggest that DGEclust is fundamentally
applicable even for large genomic datasets, particularly
when multiple cores are used.

Conclusions

Despite the availability of several protocols (e.g. single vs
paired-end) and sequencing equipment (e.g. Solexa’s Illu-
mina Genome Analyzer, ABI Solid Sequencing by Life
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Technologies and Roche’s 454 Sequencing), all NGS tech-
nologies follow a common set of experimental steps (see
[7] for a review) and, eventually, generate data, which
essentially constitute a discrete, or digital measure of
gene expression. These data are fundamentally differ-
ent in nature (and, in general terms, superior in quality)
from the continuous fluorescence intensity measurements
obtained from the application of microarray technolo-
gies. In comparison, NGS methods offer several advan-
tages, including detection of a wider level of expression
levels and independence of prior knowledge of the bio-
logical system, which is required by hybridisation-based
microarrays [7]. Due to their better quality, NGS assays
have tended to replace microarrays, despite their higher
cost [55].

In this article, we have addressed the important issues
of clustering and differential expression analysis of digital
expression data and we demonstrate the intimate relation
between these two concepts. Most proposals for clus-
tering RNA-seq and similar types of data have focused
on clustering variables (i.e. biological samples), instead
of features (e.g. genes) and they employ distance-based
or hierarchical clustering methodologies on appropriately
transformed datasets, e.g. [24,56,57]. For example, the
authors in [24] calculate a common variance function for
all samples in a tag-seq dataset of glioblastoma-derived
and non-cancerous neural stem cells using a variance-
stabilising transformation, followed by hierarchical clus-
tering using a Euclidean distance matrix. In [56], a Pearson
correlation dissimilarity metric was used for the hier-
archical clustering of RNA-seq profiles for 14 different
tissues from soybean after these were normalised using a
variation of the RPKM method [5,6].

The above approaches, although fast and relatively easy
to implement, do not always take into account the discrete
nature of digital gene expression data. For this reason,
various authors have developed distance metrics based
on different parameterisations of the log-linear Poisson
model for modelling count data, e.g. [58-60]. A more
recent class of methods follows a model-based approach,
where the digital dataset is modelled as a random sample
from a finite mixture of discrete probability distributions,
usually Poisson or negative binomial [61-63]. Using a full
statistical framework for describing the observed count
data, these model-based approaches often perform better
than distance-based algorithms, such as k-means [61].

Although computationally efficient and attractive due
to their relative conceptual simplicity, the utility of both
distance- and finite model-based clustering methods has
been criticised [19,41]. One particular feature of these
methodologies, which compromises their applicability, is
that the number of clusters in the data must be known
a priori. For example, both the k-means and the self-
organising map algorithms require the number of clusters
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Figure 9 Computational requirements of DGEclust. Computation time and peak memory usage scale linearly with the number of genes and
with the number of clusters. These measurements were obtained using IPython’s $timeit and $memit commands. Using multiple cores to
process samples has a significant impact on simulation speeds (top right panel). Genes are processed in parallel by default.

as input. Similarly, methods that model the data as a finite
mixture of Poisson or negative binomial distributions
[61-63] require prior knowledge of the number of mixture
components. Estimating the number of clusters usually
makes use of an optimality criterion, such as the Bayesian
information criterion or the Akaike information criterion,
which requires repeated application of the algorithm on
the same dataset with different initial choices of the num-
ber of clusters. Thus, the number of clusters and the
parameters for each individual cluster are estimated sepa-
rately, making the algorithm sensitive to the initial model
choice. Similarly, hierarchical clustering methods often
rely on some arbitrary distance metric (e.g. Euclidean or
Pearson correlation) to distinguish between members of
different clusters, without providing a criterion for choos-
ing the correct number of clusters or a measure of the
uncertainty of a particular clustering, which would serve
to assess its quality.

In this article, we have developed a statistical method-
ology and associated software (DGEclust) for clustering

digital gene expression data, which (unlike previously
published approaches [56-60]) does not require any prior
knowledge of the number of clusters, rather it estimates
this parameter and its uncertainty simultaneously with
the parameters (e.g. location and shape) of each indi-
vidual cluster. This is achieved by embedding the neg-
ative binomial distribution for modelling count data in
a hierarchical Dirichlet process mixture framework. Our
formulation implies that distributional parameters (i.e.
fold-changes) are not all distinct, but they are shared
between genes and between groups of samples. This is a
form of information sharing between genes and between
samples, which is made possible by the particular hier-
archical structure of the proposed model. At each level
of the hierarchy, the number of mixture components, i.e.
the number of clusters, is assumed infinite. This repre-
sents a substantial departure from previously proposed
finite mixture models and avoids the need for arbitrary
prior choices regarding the number of clusters in the
data.
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Despite the infinite dimension of the mixture model,
only the finite number of clusters supported by the data
and the associated parameters are estimated. This is
achieved by introducing a blocked Gibbs sampler, which
permits efficient processing of large datasets containing
more than 20K genes. Unlike MCMC inference methods
for HDPMM based on the popular Chinese restaurant
franchise metaphor [16,41], our algorithm allows all gene-
specific parameters in each sample to be updated simul-
taneously and independently from other samples. This
allows rapid convergence of the algorithm and permits the
development of parallelised implementations of the Gibbs
sampler, which enjoy the increased performance offered
by modern multicore processors.

The second important contribution of this study is
demonstrating how this type of hierarchical clustering can
be used for differential expression analysis. We emphasise
that differential expression can be thought of as a particu-
lar form of clustering. Through comparison with popular
alternatives for both simulated and actual experimental
data, we demonstrate the applicability of this approach for
a wide range of experimental settings and its improved
performance, particularly at small sample sizes, which
reflects the design of current sequencing experiments.

In conclusion, we have developed a hierarchical, non-
parametric Bayesian method for modelling digital expres-
sion data. The novelty of our method is simultaneously
addressing the problems of model selection and esti-
mation uncertainty and exposing the intimate relation
between clustering and differential expression analysis.
We expect our work to inspire and support further theo-
retical research on modelling digital expression data and
we believe that our software, DGEclust, will prove to be
a useful addition to the existing tools for the statistical
analysis of RNA-seq and similar types of data.

Materials and methods

We implemented the methodology presented in this arti-
cle in the software package DGEclust, which is written
in Python and uses the SciPy stack. DGEclust expects
as input and clusters a matrix of unnormalised count
data along with replication information, if this is available.
The output of the clustering process is required as input
to post-processing routines, which compute the poste-
rior probabilities that each particular gene between any
two groups of samples in the data are DE. Further post-
processing routines can generate gene- or library-wise
similarity matrices, which can be used as input to hierar-
chical clustering routines for the generation of heat maps
and dendrograms. DGEclust takes advantage of multi-
core processors to accelerate computations. All analyses
in this article were performed using DGEclust and stan-
dard Python/SciPy tools, as well as DESeq/DESeq?2, edgeR
and baySeq for comparison purposes. When using these
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packages, all parameters were left at their default val-
ues. For baySeq, we used 5K samples when estimating
the priors using the quasi-likelihood approach. To make
a comparison possible, we processed all datasets with
DGEclust for 10K iterations, rejecting the first 5K of them
as burn-in.

Normalisation

Internally, DGEclust uses the same normalisation method
as DESeq. This behaviour can be overridden by providing
a set of library sizes as input. When comparing differ-
ent software packages, we used the default normalisation
method of each package.

CAGE library preparation and data pre-processing
Post-mortem human brain tissue from frontal, tempo-
ral, hippocampus, caudate and putamen regions from
five donors was obtained from the Netherlands Brain
Bank (NBB, Amsterdam, Netherlands). All tissue requests
received at the NBB are reviewed by the NBB’s scien-
tific committee and all materials and data collected are
obtained with written informed consent. The procedures,
information and consent forms of the NBB have been
approved by the Medical Ethics Committee of the VU
Medical Centre (Amsterdam, Netherlands).

Total RNA was extracted and purified using the Tri-
zol tissue kit according to the manufacturer’s instruc-
tions (Invitrogen, Waltham, Massachusetts, USA). CAGE
libraries were prepared according to the standard Illu-
mina CAGE protocol [51]. Briefly, 5 pg of total RNA was
reverse transcribed with reverse transcriptase. Samples
were cap-trapped and a specific linker, containing a 3-bp
recognition site and the type III restriction-modification
enzyme EcoP15], was ligated to the single-strand cDNA.
The priming of the second strand was done with spe-
cific primers. After synthesis of the second strand and
cleavage with EcoP15], another linker was ligated. Puri-
fied cDNA was then amplified with 10 to 12 PCR cycles.
PCR products were purified, their concentration was
adjusted to 10 nM and they were sequenced on a HiSeq
2000 using the standard protocol for 50-bp single-end
runs.

Sequenced reads (tags) were filtered for known CAGE
artefacts using TagDust [64]. Low quality reads and reads
mapping to known rRNA were also removed. The remain-
ing reads were mapped to the human genome (build hg19)
using the Burrows—Wheeler aligner for short reads [65].
Mapped reads overlapping or located within 20 bp on
the same strand were grouped into tag clusters and tag
clusters with low read counts were removed.

URL
The most recent version of DGEclust is available online
under the MIT licence [66].
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Additional file

Additional file 1: Supplementary Material for DGEclust: differential
expression analysis of clustered count data. In this supplementary
material we provide a detailed account of posterior inference in the model
summarised by Equations 5.
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