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Abstract

We present a new de novo transcriptome assembler, Bridger, which takes advantage of techniques employed in
Cufflinks to overcome limitations of the existing de novo assemblers. When tested on dog, human, and mouse
RNA-seq data, Bridger assembled more full-length reference transcripts while reporting considerably fewer
candidate transcripts, hence greatly reducing false positive transcripts in comparison with the state-of-the-art
assemblers. It runs substantially faster and requires much less memory space than most assemblers. More
interestingly, Bridger reaches a comparable level of sensitivity and accuracy with Cufflinks. Bridger is available at
https://sourceforge.net/projects/rnaseqassembly/files/?source=navbar.
Background
RNA-seq is a powerful technique for collecting gene-
expression data at a whole transcriptome level with un-
precedented sensitivity and accuracy [1-4]. Compared
with microarray chips and EST sequencing, RNA-seq
achieves the single-nucleotide resolution, has a substan-
tially higher dynamic range, and allows reliable identifi-
cation of rare transcripts and alternative splicing [2-5].
However, the sequence reads obtained from RNA se-
quencing tend to be very short [6], hence posting tre-
mendous computational challenges to reconstruct the
full-length transcripts from the reads.
At first glance, an RNA-seq assembly problem is simi-

lar to the problem of genome assembly. However short-
read genome assemblers, such as Velvet [7], ABySS [8],
and ALLPATHS [9], cannot be directly applied to tran-
scriptome assembly, due to the following reasons: (1)
DNA sequencing depth is expected to be the same across
a genome while the depths of the sequenced transcripts
may vary by several orders of magnitude [10]; and (2) due
to alternative splicing, a transcriptome-assembly problem
is more complex than a linear problem as in the case of
genome assembly, generally requiring a graph to represent
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the multiple alternative transcripts per locus [11]. These
characteristics have made the transcriptome assembly
problem computationally more challenging than the gen-
ome assembly problem.
A number of RNA-seq based transcriptome assem-

blers have been developed in the past few years. They
fall into two general categories: reference-based and de
novo assembly approaches [10,11]. The basic idea of a
reference-based approach, such as Cufflinks [12] and
Scripture [13], has the following steps. First, RNA-seq
reads are aligned to a reference genome using a splice-
aware aligner such as Blat [14], TopHat [15], SpliceMap
[16], MapSplice [17], or GSNAP [18]. Second, overlap-
ping reads from each locus are merged to build a graph
representing all possible splicing isoforms. Finally, full-
length splicing isoforms are recovered by traversing the
graph. This strategy is used only when a high-quality re-
ference genome is available.
De novo assembly is used when no reliable reference

genome is available, including situations when dealing
with human cancer transcriptomes as their genomes tend
to be considerably altered compared to the corresponding
healthy genomes of the same patients. A number of de
novo assemblers, such as ABySS [19], SOAPdenovo [20],
Oases [21], and SOAPdenovo-Trans [22] have been devel-
oped, some of which do not work well since they rely on
the key ideas of genome-assembly methods. Trinity [11] is
the first method designed specifically for transcriptome
assembly. It assembles a transcriptome by first extending
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individual RNA-seq reads into longer contigs, building
many de Bruijn graphs from these contigs, and then deriv-
ing all the splicing-isoform-representing paths in each
graph. While Trinity has greatly improved the assembly
performance over the previous de novo assemblers, it has
a number of limitations that need improvements. For ex-
ample, Trinity used an exhaustive enumeration algorithm
to search for isoform-representing paths in a de Bruijn
graph, which makes the algorithm highly sensitive to spli-
cing isoforms but suffers from having high false positives.
We believe that by identifying an optimal set of potential
isoform-representing paths, one can reduce the false posi-
tive predictions significantly. In addition, all existing de
novo assemblers, Trinity included, use only paired-reads
to resolve assembly ambiguities, particularly those relevant
to alternative splicing, instead of using more direct evi-
dences to support their predicted transcripts, which tend
to give rise to false predictions. Actually the information
that different locations of the same transcript should have
the same or similar levels of sequence depth provides a
direct and strong constraint on the assembly problem.
While it has been noted that such information will be
useful for the accurate assembly of a transcriptome
[11], none of the current de novo assemblers have in-
cluded this information in a rigorous manner, due to
the technical challenge involved. Hence how to inte-
grate such information into a de novo assembly pro-
gram remains an open problem.
As of now, all the existing de novo assemblers use a

de Bruijn graph to represent the assembly problem,
which processes each sequence into a set of overlapping
substrings of length k bps, called k-mers, where k is a
parameter, and recover the splicing isoforms from the
graph [23]. Generally speaking, larger k values tend to
perform better on transcripts with high gene-expression
levels or longer contigs, while smaller k values perform
better on transcripts with low gene-expression levels or
shorter contigs. It seems unlikely that a single k value
will yield an optimal overall assembly. Hence some
assemblers, such as Trans-ABySS [23], Oases-M [21]
(multiple-k version of Oases), and IDBA-Tran [24], use
a multiple-k strategy, in which multiple assemblies
using different k values are merged to get a higher sen-
sitivity, but at the cost of introducing more false posi-
tive transcripts.
In this paper, we present a new assembler, Bridger,

aiming to build a bridge between the key ideas of two
popular assemblers, the reference-based assembler Cuf-
flinks [12] and de novo assembler Trinity [11]. Specific-
ally, we have generalized the main techniques employed
by Cufflinks to overcome the limitations of Trinity, hence
to develop a more general de novo assembler better than
the state of the art. We have tested Bridger on two stan-
dard RNA-seq datasets, one dog and one human, and
on one strand-specific mouse RNA-seq data. In each
case, Bridger assembled more reference transcripts than
the other de novo assemblers, while reporting 10,000 to
30,000 fewer candidate transcripts, which greatly reduced
the false-positive assemblies. In addition, Bridger runs
much faster and requires less memory space than most of
compared methods, and exhibits competitive CPU time.
The performance of Bridger is even comparable with the
reference-based assembler Cufflinks in both sensitivity
and accuracy. In addition, a multiple-k version of Bridger,
Bridger-M, can further improve the assembly sensitivity
by merging assemblies from different k values.

Methods
First recall the definition of a splicing graph introduced
by Heber et al. in 2002 [25]. A splicing graph of a gene
is a directed acyclic graph, whose nodes correspond to
exons and edges represent splicing junctions, where spli-
cing events take place. Bridger will reconstruct different
alternative splicing transcripts by considering only the
splicing junctions, which has been demonstrated to be
feasible by a recent research paper [26].
Bridger builds splicing graphs for all genes encoded in

the genome based on the given RNA-seq data. In an ideal
situation, the constructed graphs would have a one-to-one
correspondence to all the (expressed) genes. Sometimes it
is not the case due to homologous genes and low se-
quence depths for some genes, but it will not seriously
affect us to recover full-length transcripts of individual
genes even if some splicing graphs cover multiple genes or
only parts of a gene. Hence, we assume without loss of
generality that each created graph represents RNA-seq
data of one gene. Bridger uses a rigorous mathematical
model, called the minimum path cover, to search for a
minimal set of paths (transcripts) that are supported by
the provided RNA-seq reads and can explain all the ob-
served splicing events of the created graph. A flowchart of
the Bridger algorithm is given in Figure 1.

Efficient construction of splicing graphs
As in Trinity, Bridger first constructs a hash table from
all RNA-seq reads. For each k-mer occurring in the reads,
the hash table records the abundance of that k-mer and
the IDs of all the reads containing the k-mer. The same re-
moval process of erroneous k-mers (induced from sequen-
cing errors) in Trinity is employed in Bridger [11]. Bridger
constructs splicing graphs as follows:

(1) Select a most frequent k-mer as the main contig of
the initial splicing graph, excluding both low-
complexity (Shannon’s entropy H <1.5) and
singleton (appearing only once) k-mers;

(2) Extend the main contig at the 5′ end through
finding a most frequent unused k-mer, whose (k-1)



Figure 1 Flowchart of Bridger. (a) The algorithm takes RNA-seq reads (single or paired) to assemble splicing graphs, each of which provides a
complete representation of all alternative splicing transcripts for each locus. (b-d) Each splicing graph is processed independently. (b) Each edge
in a splicing graph represents one splice junction. In this example, edges 1 and 3 are compatible, while edges 3 and 4 are not compatible.
(c) A compatibility graph. (d) A minimum path cover model is applied to recover a minimal set of transcripts that could be tiled together through
overlapping sequence reads and ‘explain’ all observed junctions in a splicing graph.
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suffix is identical to the (k-1) prefix of the main
contig, and extending it by appending the first
nucleotide of the k-mer as the new 5′ end; and do
the same to the 3′ end of the main contig when
possible; continue this step until the main contig
could not be further extended in either end;

(3) Further extend the main contig using a similar
idea in SOAPdenovo-Trans [22] when paired-read
information is available (see Additional file 1:
Methods and Figure S1), which is inspired by
how to connect several short contigs into a longer
one by finding supporting paired-reads during the
scaffolding and finishing step of genome-assembly
[27,28];

(4) For each k-mer in the current splicing graph, check
if it has at least one alternative extension not
Figure 2 Splicing graph construction. (a) Splicing graph after branch exten
because there is an unused 5-mer TCAGC in the hash table that provides an
cannot be further extended. We check the last 4-mer of this branch to see if
bifurcation 5-mer is found (for example, the red 5-mer CTAGC). (b) A modifie
(4-mer CTAG) and adding a new directed edge between two bifurcation k-m
existing in the current graph (for example, the left
red k-mer ATCAG in Figure 2a). Such a k-mer is
called a bifurcation k-mer. For each bifurcation
k-mer, we keep extending it until either encountering
an already used k-mer (the red 5-mer CTAGC in
Figure 2a) or no further extension by using steps (1)
to (3). If the former occurs, then a new bifurcation
k-mer is found (for example, the right red k-mer
CTAGC in Figure 2a), and update the current
splicing graph by merging their matched (k-1)
nucleotides (see Figure 2b). If the latter occurs, a
potential branch point is identified, where paired-
read information, if available, as well as some criteria,
are used to check if it is a true branch point that
should be added into the current graph or it is a false
one resulted from paralogous genes or sequencing
sion. The red k-mer (k = 5) ATCAG on the left is a bifurcation 5-mer
alternative extension. Extend this 5-mer to a new contig until it
there is a matching 4-mer in the current splicing graph. If so, another
d splicing graph by merging the k-1 overlapping nucleotides
ers.
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errors (see Additional file 1: Methods and Figure S2);
Repeats this until no bifurcation k-mer exists;

(5) Now a splicing graph is constructed; all k-mers
used in this splicing graph will be marked to
indicate their lower priority of being reused for
extension in the future;

(6) Remove edges due to sequencing errors through
aligning reads back to splicing graphs using a
similar idea in Trinity [11] and IDBA-Tran [24] (see
Additional file 1: Methods for the detailed criteria),
which can be done efficiently based on the hash
table;

(7) Select a most frequent unused k-mer as a new seed,
repeats steps (1) to (6) until the entire hash table
has been exhausted.

Note that the splicing graph constructed here is differ-
ent from the contracted de Bruijn graph even though
there is a kind of correspondence between them. First, a
splicing junction corresponds to an edge in the splicing
graph, while in the contracted de Bruijn graph, a splicing
junction corresponds to a node, the same as an exon
does (Additional file 1: Figure S7). Second, the splicing
graph can be guaranteed to be acyclic, which is neces-
sary to use the minimum path cover model, while the
contracted de Bruijn graph might have cycles. Finally,
the de Bruijn graph usually suffers from a problem that
the first graph built from the hash table is very huge
because many genes are mixed together by their shar-
ing k-mers. However, the splicing graph constructed
here could keep a size small by using paired-read in-
formation to check if a new branch should be added
(Additional file 1: Method), which makes transcript dis-
covery much easier.
Splicing graphs provide a natural and lossless represen-

tation of all the (alternatively) splicing isoforms in a tran-
scriptome. By analyzing the structure of splicing graphs,
we discovered that a transcript reconstruction can be
achieved based solely on splicing junctions in splicing
graphs; hence recovering each full-length transcript from
a splicing graph can be viewed as finding the most likely
combination of the junctions of this graph.

Construction of compatibility graphs
To recover all transcripts encoded in a splicing graph,
Bridger constructs a directed acyclic graph C, called a
compatibility graph, in which each edge (junction) of the
splicing graph is represented as a node and a directed
edge (x, y) is placed between nodes x and y if x and y are
compatible, that is, they correspond to consecutive edges
(one goes into the exon from which the other gets out)
in the splicing graph, implying that they may come from
the same spliced isoform. It is not difficult to see that
each transcript to be reconstructed has to correspond to
a directed path of the compatibility graph while the re-
verse is not necessarily true. To make sure a directed path
that we will construct has to correspond to a transcript
encoded in the genome, we need to find a way to compel
all nodes in the path come from the same transcript. To
do so, we need to weight each compatibility graph as fol-
lows: for each node x in a compatibility graph, its cor-
responding junction edge in the splicing graph is an arc
(e’, e”), with arc tail e’ and arc head e”, we assign out-
weight Wx,o and in-weight Wx,i to the node x, where
Wx,o is defined as the ratio between the number of
reads (or paired reads for paired-end sequencing) span-
ning the junction (e’, e”) and the total number of reads
that span all the junctions that have the same arc tail
(or 5′ end exon) e’ with (e’, e”) in the splicing graph; and
Wx,i is the ratio between the number of reads spanning
the junction (e’, e”) and the total number of reads that
span all the junctions that have the same arc head (or
3′ end exon) e” with (e’, e”) in the splicing graph.

Recovery of full-length transcripts
It should be noted that the compatibility graphs can play
the same role as the overlap graphs in Cufflinks, which
are built from reads aligned to the reference genome.
The rationale is as follows. In Cufflinks [12], an overlap
graph is defined over the provided RNA sequence frag-
ments, each represented as a node, in which two frag-
ments are connected by an edge if they are compatible.
All the full-length transcripts were reconstructed from a
set of mutually incompatible fragments. Here, we replace
the compatibility between fragments in Cufflinks by the
compatibility between splicing junctions, and find a set
of mutually incompatible junctions, each of which could
be extended to be a transcript. However, the compatibil-
ity graph defined here is tremendously smaller in size
than overlap graph used in Cufflinks.
Bridger recovers all the full-length transcripts by em-

ploying the same techniques as Cufflinks but on the
compatibility graphs. Specifically, we first compute the
transitive closure G of the compatibility graph C. For the
presentation clarity, we define a bipartite graph, called a
reachability graph, over G. For each node x in G, define
two nodes Lx and Rx with Lx in the left partition and Rx

in the right partition of the bipartite graph; any two
nodes Lx and Ry, one from each partition, have an edge
between them if and only if there is a directed edge
(x, y) in G; and each edge (Lx, Ry) has a weight Wx,y = −
log(1 - |Wx,i - Wy,o|), where Wx,i and Wy,o, respectively,
are in-weight of node x and out-weight of node y in C,
which is intended to reflect the prediction confidence
that two corresponding junctions are from different
transcripts. We then compute a min-cost maximum
cardinality matching M on this bipartite graph. Based
on Dilworth’s Theorem (see Additional file 1: Theorem 1)
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[29], a minimum path cover of the compatibility graph
with the minimum cost can be constructed from this
matching (see Additional file 1: Methods). Note that each
node in the compatibility graph corresponds to two exons
connected by one junction edge in the splicing graph, so
the minimum path cover of the compatibility graph can
be converted into a path cover of the splicing graph, which
meets the following criteria: (1) each junction of the spli-
cing graph is consistent with at least one transcript; (2)
every transcript is tiled by sequence reads; (3) the cardin-
ality of the obtained set of transcripts is minimized subject
to (1) and (2).
For all the predicted transcripts, one additional filter-

ing step is used to remove those predictions that are not
supported by tiled paired read data with coverage no less
than a cutoff c (c = 2) (see Additional file 1: Figure S3e).
It is worth noting that the sequence depth information
has been implicitly considered in the node weights of
the compatibility graph. Specifically, the smaller the value
|Wx,i - Wy,o| is, the higher the probability that the two
junctions x and y fall into the same transcript is. For junc-
tions from the same transcript, they should have similar
expression levels and hence a similar sequence depth.

Results and discussion
Bridger has been compared to ABySS (version 1.3.4)
[19], Trans-ABySS (version 1.4.4) [23], Trinity (version
2012-10-05) [11], Velvet (version 1.2.01) + Oases (version
0.2.02) [7,21], SOAPdenovo-Trans (version 1.01) [22]
and IDBA-Tran (version 1.1.1) [24] on the following
datasets and using parameters outlined below. Multiple
k versions of Oases and Bridger are named as Oases-M
and Bridger-M in order to differentiate them from their
single k versions. The reference-based assembler Cufflinks
(version 2.0.2) [12] is also included as a benchmark for de
novo assembly.

Datasets: three RNA-seq datasets were used: two
standard (non-strand specific) Illumina datasets from
dog and human, and one strand-specific dataset from
mouse. The mouse and human data are selected because
they were the test data in Oases [21] and Trinity [11]. It
is more convincing to compare with these methods on
the datasets used in their papers. The dog data were
produced in a recent study by Liu, et al. [30], with about
31 million 50 bp paired-end reads with an insert size of
130 bp sequenced. The human data (Accession Codes:
SRX011545 and SRX011546) were collected on human
CD4 T cells [31], with 50 million paired-end reads of
length 45 bp with an insert size of 200 bp, which we
downloaded from the DDBJ SRA database. The mouse
data (Accession Code: SRX062280 in the DDBJ SRA
database) were collected by Grabherr, et al. [11], with 53
million 76 bp paired-end reads with an insert size of
300 bp sequenced from C567BL/6 mouse primary
immune dendritic cells.
Parameter setup: the following parameters are used for
each program: ABySS: ‘abyss-pe c = 2 E = 0 j = 6 in = “left.
fq right.fq”’, k = 25 for dog and human data while k = 33
for mouse data; Trinity: ‘–CPU 6 –bflyHeapSpaceMax
10G –bflyGCThreads 4’ for human and dog data; and
‘–SS_lib_type RF’ for the strand-specific mouse data;
Oases : ‘-ins_length 200 -cov_cutoff 2 -edgeFractionCutoff
0.05’, k = 25 for dog and human data while k = 31 and
‘-strand_specific’ for mouse data; Bridger: k = 25 for dog
and human data while k = 31 and ‘– SS_lib_type RF’ for
mouse data; Cufflink was run using default parameters;
Trans-ABySS, Oases-M, and IDBA-Tran were run by
setting k-mer length k to 21, 25, 29, 33, 37 on the dog
and human data, and 25, 29, 33, 37, 43 on mouse data
(see Additional file 1: Note); and Bridger-M was run by
setting k to 21, 23, 25, 27, 29 on the dog and human data,
and 23, 25, 27, 29, 31 on mouse data. For multiple k
assemblers, all assembly results using different k values
were merged using Oases. For fair comparison of run
time and required memory space, we used k = 25 for all
the programs. Note that k = 25 is only used for the run
time and memory usage comparison, while an optimal k
is found for each assembler for sensitivity and accuracy
comparison in the case that k = 25 is not optimal
(Additional file 1: Note, Figure S5, Figure S6, and
Table S6). Non-default parameters are used for Oases
because these parameters perform better than default
(Additional file 1: Table S7). All the assemblies were
performed on a server with 512 GB of RAM. Only
transcripts with no less than 200 bases were used for
downstream analysis.
Comparing to reference transcripts: the known
transcripts of dog were downloaded from UCSC. The
human and mouse known transcripts were downloaded
from Ensembl Genome Browser. All the assembled
transcripts were compared with these reference
transcripts using BLAT [14], using 95% identity as the
cutoff. If one assembled transcript can full-length cover
one reference transcript with at least 95% sequence
identity and at most 1% indels, we say this reference
transcript is full-length reconstructed. Similarly, ≥80%
length reconstructed reference transcripts were defined
as those reference transcripts having at least 80% of its
sequence was covered by some assembled transcript
and at most 1% indels. The indel cutoff is used mainly
to avoid the potential problem of over-estimating
consistencies between predicted transcripts and the
reference transcripts.

Comparing Bridger to other methods
We have considered the following measures in the perfor-
mance comparison with other state-of-the-art assemblers:
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the number of reference transcripts reconstructed to full-
length by each method, referred to as sensitivity, and the
rate between the number of full-length reconstructed refer-
ence transcripts and the number of candidate transcripts,
referred to as accuracy. The sensitivity measure used here
may have slightly different meaning from its typical mean-
ing, which is the ratio between the number of full-length
reconstructed transcripts and the number of all ex-
pressed transcripts in the given data, because the de-
nominator of this ratio is unknown and is not easy to
estimate accurately. The accuracy measure indicates the
power of detecting the most reference transcripts using
the least candidates.
For the sensitivity measure, Bridger outperforms all other

de novo assemblers on all of three test data (Figure 3).
Bridger-M is even better than the best reference-based as-
sembler Cufflinks on human and mouse data (Figure 3a
and c), and comparable to Cufflinks on dog data (Figure 3b).
Trinity, a brute enumeration approach which should be
highly sensitive, only performs a little better than Bridger
on human data, but much worse than Bridger on dog and
mouse data. Oases-M performs worse than Bridger, but
considerably better than ABySS, Oases, SOAPdenovo-
Trans, Trans-ABySS, and IDBA-Tran. Note that more
Figure 3 Comparison of the number of full-length reconstructed refe
significant results can be found when checking the num-
ber of ≥80% length reconstructed reference transcripts
(Additional file 1: Tables S1, S2, and S3).
It is worth mentioning that Bridger reports 10,000 to

30,000 fewer candidate transcripts than most assemblers
(Additional file 1: Tables S1, S2, and S3), while exhibiting
high sensitivity. To show this advantage, we define accur-
acy measure to see which assembler detects the most ref-
erence transcripts by the least candidate transcripts.
For the accuracy measure, Bridger has the highest ac-

curacy among all de novo assemblers on all of three test
data (Figure 4). Surprisingly, Bridger even exhibits better
accuracy on dog and human data (Figure 4a), and com-
parable performance on mouse data (Figure 4b and c) in
comparison with Cufflinks. Trinity is much worse than
Bridger in the accuracy measure, indicating that its predic-
tions contain many false positive transcripts. Oases and
SOAPdenovo-Trans are comparable with or even worse
than Trinity. ABySS performs well on mouse data because
it reports a very small set of candidate transcripts, but
it is much worse than Bridger on dog and human data.
Bridger-M has much better accuracy than other multiple-k
assemblers such as Trans-ABySS, IDBA-Tran and Oases-M,
but does not exhibit better performance than Bridger,
rence transcripts for (a) dog, (b) human, and (c) mouse.



Figure 4 Comparison of accuracy for (a) dog, (b) human, and (c) mouse.
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one important reason is that merging assemblies from
different k values will introduce redundancy.
We have also examined the computing resources re-

quired, including the run time, the CPU time, and the
memory usage, for the five single-k assemblers on the
same server. The dynamic memory usage of each assem-
bler is given in Figure 5. Oases performs well on dog
data, but consumes the largest memory on both human
and mouse data, and also takes the longest run time on
the human data. Trinity takes the longest run time on
both the dog and mouse data. Bridger requires less me-
mory and much shorter run time than Trinity and Oases
(Figure 5), especially on human and mouse data. Though
Figure 5 Run time and RAM usage for each assembler in (a) dog, (b)
assemblers: k = 25 and CPU = 6.
ABySS and SOAPdenovo-Trans uses the smallest mem-
ory and the shortest run time, taking its worst sensitivity
into account, they are not a good choice for de novo
transcriptome assembly. For the CPU time (Figure 6),
SOAPdenovo-Trans is the best; Bridger and ABySS also
performs well; Trinity needs the longest CPU time on
all three real data; and the CPU time needed by Oases
has a distinct pattern on different datasets.

New information for dog genome annotation
On the dog dataset, Bridger reported 37,234 transcripts,
15,437 of which are equal or longer than 1,000 bps. By
mapping all transcripts to the dog genome using BLAT
human, and (c) mouse. Same parameter values are used for all



Figure 6 CPU time for each assembler in (a) dog, (b) human, and (c) mouse.
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and 95% identity as cutoff, we noted that 2,683 transcripts
in 2,629 loci were not previously annotated. Interestingly
78.6% (2110/2683) of these novel transcripts were also
predicted by at least one another assemblers under con-
sideration; hence we consider them as possibly true. In
addition, Bridger tends to predict longer un-translated re-
gions (UTRs) than the probably most accurate assembler
out there, Cufflinks (Figure 7).

Conclusions
We present a new de novo method Bridger for transcrip-
tome reconstruction from short RNA-seq reads. Trinity
has been the best de novo assembler using one single
k value since it was released in 2011. Though several
multiple-k assemblers have a little higher sensitivity than
Trinity, they all suffer from the problem of introducing
much more false positive transcripts. Bridger is a single-k
Figure 7 A novel gene containing 10 exons was assembled by all ass
than the reference-based assembler Cufflinks.
de novo assembler that outperforms Trinity in both sensi-
tivity and accuracy. Compared to Trinity, Bridger has the
following advantages: (1) Trinity uses a fixed k-mer length
25, which is not necessarily optimal for all data, while
Bridger allows using different user-specified k values for
different data; (2) Bridger uses a rigorous mathematical
model to search for a minimum set of paths from the
splicing graph as in Cufflinks compared to the nearly
exhaustive search method used in Trinity, which gives
Bridger a lower false positive rate at the same level of sen-
sitivity; (iii) Bridger successfully incorporate the sequence-
depth information, which is implicitly considered in the
node weights of the compatibility graphs, to constrain the
deconvolution of splicing graphs into individual trans-
cripts, hence making its assembly results more accurate;
(4) Bridger utilizes paired read information to help re-
construct more complete splicing graphs, making contigs
emblers. Interestingly, all de novo assemblers captured longer UTR
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even not covered by overlapping k-mers recovered during
assembly - the similar technique can also be found in a
recent assembler SOAPdenovo-Trans [22]; (5) Bridger
is a polynomial-time algorithm, while Trinity is an
exponential-time method. In practice, Bridger uses less
memory and much less run time compared with Trinity.
Minimum path cover model has been used in reference-

based assembler Cufflinks [12], and also been applied
to a recent reference-assisted method called BRANCH
[32], which need use genomic information that can be
partial or complete genome sequences from the same
or related organism. Bridger successfully uses this strat-
egy for de novo transcriptome assembly by introducing
an auxiliary graph, without the help of any genomic in-
formation. When tested on three real data, Bridger
shows best sensitivity and accuracy among all de novo
assemblers, and even comparable to the reference-based
assembler Cufflinks. In addition, it requires much less
computational resources than other de novo assemblers,
except ABySS, which is actually a genome assembler and
hence has the worst performance. With these demon-
strated advantages, we anticipate that Bridger will play an
important role for new discovery in transcriptome study
using RNA-seq data, especially for cancer transcriptomic
data analyses.

Additional file

Additional file 1: This file includes details of Bridger method,
discussion about optimizing k-mer length, plus supplementary
figures and tables.
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