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High-depth sequencing of over 750 genes
supports linear progression of primary tumors
and metastases in most patients with liver-limited
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Abstract

Background: Colorectal cancer with metastases limited to the liver (liver-limited mCRC) is a distinct clinical subset
characterized by possible cure with surgery. We performed high-depth sequencing of over 750 cancer-associated
genes and copy number profiling in matched primary, metastasis and normal tissues to characterize genomic
progression in 18 patients with liver-limited mCRC.

Results: High depth Illumina sequencing and use of three different variant callers enable comprehensive and
accurate identification of somatic variants down to 2.5% variant allele frequency. We identify a median of 11
somatic single nucleotide variants (SNVs) per tumor. Across patients, a median of 79.3% of somatic SNVs present in
the primary are present in the metastasis and 81.7% of all alterations present in the metastasis are present in the
primary. Private alterations are found at lower allele frequencies; a different mutational signature characterized
shared and private variants, suggesting distinct mutational processes. Using B-allele frequencies of heterozygous
germline SNPs and copy number profiling, we find that broad regions of allelic imbalance and focal copy number
changes, respectively, are generally shared between the primary tumor and metastasis.

Conclusions: Our analyses point to high genomic concordance of primary tumor and metastasis, with a thick
common trunk and smaller genomic branches in general support of the linear progression model in most patients
with liver-limited mCRC. More extensive studies are warranted to further characterize genomic progression in this
important clinical population.
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Background
Colorectal cancer (CRC), the third most common cancer
worldwide [1], accounts for about 10% of the global
cancer burden. Colorectal cancer with metastases
limited to the liver (liver-limited mCRC) is characterized
by a unique treatment paradigm [2]. For most cancers,
the presence of liver metastases signals disseminated
cancer with a consequent palliative treatment intent.
However, in a subset of patients with liver-limited
mCRC, surgical resection of all visible disease, often
accompanied by peri-operative chemotherapy, can lead
to long-term disease control, remission and possible cure
[3-5]. This striking natural history, which has motivated
aggressive treatment strategies in the clinic, also raises
questions about the evolving genetic determinants
contributing to disease progression in this distinct
subset of patients with liver-limited mCRC.
Comparative genomic studies examining the degree of

genetic divergence between matched primary tumors
and metastases from individual patients provide insights
into the genetic events involved in tumor initiation and
progression. Several models of cancer progression have
been proposed [6], including linear progression [7]
where genetic alterations accumulate in the primary in a
step-wise manner leading to acquisition of metastatic
traits. In the linear progression model, successful metastasis
is an end-stage event requiring acquisition of a full comple-
ment of traits resulting in advanced clones carrying a large
complement of accumulated alterations found in both the
primary and the metastasis. In the parallel progression [8]
model, tumor cells disseminate from the primary tumor
very early in its development and may be subsequently
genetically modified in the metastatic niche where
they later settle. The parallel progression model predicts
that disseminated tumor cells would be genetically divergent
from cells found in the primary tumor as metastatic cells
and primary cells would adapt to their separate environ-
ments in parallel and acquire distinct genetic alterations.
Across different tumor types [9-14], recent comparative
genomic studies report varying degrees of divergence of
genomic profiles of primary tumors and matched metasta-
ses. Given that liver-limited metastatic colorectal cancer
represents a unique clinical phenotype where the natural
history of the disease makes long-term disease control and
cure possible, we performed a comparative genomic
study to understand the genomic determinants of
cancer progression in this distinct clinical subset.
In this paper, we performed targeted next generation

sequencing (NGS) on the primary colorectal tumor, liver
metastasis and normal colonic tissue representing 54
tissue specimens from 18 patients with liver-limited
mCRC. Our strategy first focuses on evaluating a set of
750 cancer-associated genes comprising genes biologically
and clinically relevant to cancer, such as genes involved in
key oncogenic signaling pathways, oncogenes, tumor
suppressor genes and genes from kinase and chromatin
remodeler families, which we curated from literature
review and existing databases (for example, COSMIC and
cancer gene census). Alterations in cancer-associated
genes likely have biological significance and acquisition of
these alterations is important for clonal progression of
cancer. High depth sequencing of these cancer-associated
genes is necessary to allow evaluation of subclonal architec-
ture of primary and metastatic tumors as cancer progresses.
We thus sequenced, with an Illimuina NGS platform, a
panel of over 750 known cancer-associated genes to
high depths of over 350× (several-fold higher that what is
typically achieved with whole genome or exome
sequencing) and employed three different bioinformatics
algorithms to identify somatic alterations, including those
present at low frequency. Only 39% of the variants identi-
fied were called by all three algorithms and 23% of variants
were called by only one algorithm. Importantly, we vali-
dated 95% of variants identified with an orthogonal NGS
platform, Ion torrent, demonstrating that one may need to
perform several bioinformatics algorithms to take full
advantage of high-depth sequencing data to comprehen-
sively identify somatic variants and elucidate clonal
architecture in comparative genomics studies. Using this
approach, we found high concordance of genomic alter-
ations in both the primary tumor and liver metastasis
across over 750 cancer-associated genes in liver-limited
mCRC. Across our patients, a median of 79.3% of alter-
ations present in the primary tumor were present in the
metastasis (range 18 to 100%) and 81.7% of all alterations
present in the metastasis were already present in the
primary (range 50 to 100%). Shared variants were charac-
terized by high allele frequency whilst variants unique to
the primary or metastasis were generally of low allele
frequency. Next, taking advantage of the relatively large
size of our targeted sequencing panel, we were able to
identify, from sequencing of each patient’s non-neoplastic
tissue, a sizeable number (median of 1,949 per patient) of
heterozygous germline SNPs. In the corresponding
primary tumor or metastatic tissue, the B-allele frequen-
cies of these SNPs would deviate substantially from 0.5 in
regions of allelic imbalance. When mapped onto the
relevant chromosomal locations, broad regions of allelic
imbalance were found to be generally similar in the pri-
mary tumor and in the liver metastasis. In some patients,
however, there were additional small regions of allelic
imbalance private to either the primary or the metastasis.
Additionally, we performed copy number analysis of 87
genes commonly amplified or deleted in cancer using the
Nanostring nCounter v2 Cancer Copy Number Assay on
DNA extracted from the matched normal, primary tumor
and metastatic tumor from our 20 patients. We found that
focal copy number alterations are also generally shared
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between the primary tumor and metastasis. Taken together,
our findings support a linear progression model in CRC
with branched evolution characterized by a common thick
trunk before branching off a smaller set of alterations
unique to the primary or the metastasis.
Although single nucleotide variants (SNVs), broad regions

of allelic imbalance and focal copy number alterations were
generally similar in the primary and metastasis, supporting
linear progression in the majority of our patients with
liver-limited mCRC, we found evidence of a different
mutational signature/context amongst ‘shared’ truncal
variants present in both the primary and metastasis
and ‘private’ branch alterations unique to the primary
or the metastasis. This suggests that beyond linear
progression in the primary and metastasis, there may
be distinct mutational processes involved in different
phases of cancer progression.

Results
Customized enrichment and targeted NGS achieves high
coverage across 750 cancer-associated genes
We used the Agilent SureSelect Target Enrichment system
to design a customized enrichment panel comprising all
coding exons of over 750 cancer-associated genes. From
Genomic DNA extracted from 24 frozen tissue specimens
(matched primary tumor, adjacent normal and liver
metastasis) from an initial 8 patients with liver-limited
mCRC (Table 1), we performed library construction,
target enrichment and Illimuina NGS. A median of 504-fold
average base coverage (range 222 to 751×) was obtained
across the target exons (Additional file 1). In all samples, at
least 96% of target bases were spanned by at least 30 reads.
Across samples, a median of 86.4% of target bases were
spanned by at least 200 sequence reads.

Use of three different bioinformatics algorithms enables
sensitive and comprehensive identification of somatic
variants, including those present at low allele frequency
We used three different bioinformatics algorithms to
identify somatically acquired non-synonymous SNVs in
the eight primary tumors and eight metastases, using the
matched normal mucosa as the reference. The three
algorithms, detailed below in the Materials and
methods section, are a Genome Analyzer Toolkit
(GATK)-based pipeline [15], LoFreq [16] and MuTect
[17]. In total, 186 variants were called by the 3 pipelines
(Additional file 2); 72 variants (39%) were identified by
all 3 algorithms; 43 variants (23%) were identified only
by one of the algorithms.
To evaluate the reliability of variants that were called,

we re-sequenced these variants using an orthogonal library
construction, enrichment and sequencing strategy. We
designed custom primers targeting these variants with the
Ampliseq primer design software. We were able to design
customized primers for 180 of the 186 variants. Samples
were prepared for targeted sequencing using the Ion Tor-
rent. One variant had very poor coverage and was thus
not interpretable. Sequence reads provided sufficient
coverage for 179 of the 180 variants. Of the 179 variants
assessed, 170 were validated by orthogonal sequencing
(Ion Torrent). The true positive rate was 95%. We could
evaluate 35 variants that had been called to be present
only in either the primary tumor but not the matched
metastasis (17 variants) or the metastasis but not the
matched primary tumor (18 variants). Of these 35
variants, the absence of the variant in the corresponding
tissue was confirmed in 34 cases. Using this metric, the
true negative rate was estimated to be 97%.
GATK, Lofreq and MuTect identified 136, 156 and 109

variants, respectively. The median variant allele frequency
(VAF) of somatic variants identified by the algorithms was
35% (range 6 to 90%), 28% (2 to 90%) and 24% (3 to 90%),
respectively. Amongst variants on which we performed
orthogonal validation, the true positive rate was 100%
(136/136) for GATK, 98.7% (149/151) for LoFreq and
92.3% (96/104) for MuTect. The distribution, true positive
rate and mean allele frequency of variants identified by
the various algorithms are summarized as a Venn diagram
in Additional file 2. These results show that use of specific
bioinformatics algorithms identifies additional low allele
frequency variants that would otherwise be missed if only
one algorithm was used. Of note, 15, 14 and 4 validated
somatic variants were identified by GATK alone, Lofreq
alone or MuTect alone, respectively. In particular, Lofreq
and Mutect were able to identify somatic variants
that were present at low allele frequency that were
missed by GATK. All variants identified by the GATK
pipeline were true positives. The median allele fre-
quency of variants identified by GATK was 35%
(range 6 to 90%). In contrast, the median allele fre-
quency of variants missed by GATK was 7% (range: 2
to 54%). The true positive rate for somatic variants
missed by GATK and called by either or both Lofreq
and MuTect was 82% (41/50). Nine variants could
not be validated. These false positive variants were
called at low variant allele frequencies (median 7%; range
3 to 13%), which overlapped with the allele frequencies of
some of the true positives.
The true positive rate of our combined approach was

95%. A total of 170 variants were validated; the sensitivity
of each algorithm alone was 75.9% for GATK (129/170),
87.6% for LoFreq (149/170) and 56.4% for Mutect (96/170).
Use of all three algorithms allowed comprehensive

identification of somatic variants in our patients. Taken
together, these validation results provide confidence that
our approach accurately identifies the presence or absence
of somatic alterations in tumor samples, including variants
present at low allele frequency.



Table 1 Patient characteristics

No. Temporal relationship
of metastasis to
primary tumor

MSI status KRAS/BRAF
mutational
status

Stage at
diagnosis

Month of
surgery for
primary tumor

Adjuvant
therapy

Disease-free
interval

Date of diagnosis
of recurrence

Chemotherapy
for metastasis

Objective response
to chemotherapy

Month of liver
resection

1 Synchronous MSS Wild type
for both

4 Jun 2012 3 cycles of XELOX Partial response Nov 2012

2 Synchronous MSS Wild type
for both

4 Oct 2012 Oct 2012

3 Synchronous MSS Wild type
for both

4 Jan 2011 Jan 2011

4 Synchronous MSS Wild type
for both

4 May 2011 5 cycles of XELOX Partial response Oct 2011

5 Metachronous MSS Wild type
for both

3 Nov 2010 XELOX 22 months Aug 2012 Aug 2012

6 Synchronous MSS Wild type
for both

4 Nov 2012 Nov 2012

7 Metachronous MSS Wild type
for both

3 Nov 2011 Xeloda/RT
and XELOX

8 months Jul 2012 3 cycles of XELIRI Stable disease Nov 2012

8 Synchronous MSS Wild type
for both

4 Jul 2013 Jul 2013

9 Synchronous MSS Wild type
for KRAS

4 Jul 2011 6 cycles of XELOX
and cetuximab

Stable disease Jan 2012

10 Synchronous MSS Wild type
for both

4 Apr 2013 8 cycles of XELOX Stable disease Apr 2014

11 Synchronous MSS Wild type
for both

4 Mar 2014 6 cycles of FOLFOX
with cetuximab from
cycle 3 onwards

Stable disease Apr 2014

12 Synchronous MSS Wild type
for both

4 Aug 2013 Dec 2013

13 Metachronous MSS Wild type
for both

2 Jun 2012 None 19 months Jan 2014 Feb 2014

14 Synchronous MSS KRAS p.G12V 4 May 2014 May 2014

15 Synchronous MSS KRAS p.G12V 4 May 2014 8 cycles of XELOX Partial response May 2014

16 Metachronous MLH-1 and
PMS-2 loss

Wild type
for KRAS

2 Aug 2004 None 78 months Feb 2011 May 2012

17 Synchronous MSS Wild type
for both

4 Mar 2012 2 cycles of XELOX
and cetuximab

Partial response May 2012

18 Synchronous MSS Wild type
for both

4 Mar 2013 Mar 2013

Clinico-pathologic and treatment details for the 18 patients. MSI: microsattelite instability; MSS: microsattelite stable.
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High depth NGS and variant calling using three
algorithms performed on additional patients with
liver-limited mCRC
Having validated our approach for achieving very high true
positive and true negative rates, we applied the same
approach on genomic DNA extracted from an additional
30 frozen tissue specimens (matched primary tumor,
adjacent normal and liver metastasis) from 10 patients
with liver-limited mCRC (Table 1). Across all 18
patients, a median of 385-fold average base coverage
(range 131 to 751×) was obtained across the target
exons (Additional file 1). In all samples, at least 92%
of target bases were spanned by at least 30 reads.
Across samples, a median of 77.7% of target bases were
spanned by at least 200 sequence reads.
GATK, MuTect and LoFreq identified 853, 1494 and

1916 variants, respectively. The median VAF of somatic
variants identified by the algorithms was 20.6% (range 6
to 95%), 15.6% (2 to 93%) and 15.8% (3 to 94%), respectively.
We examined the median tumor and normal allele
frequencies and median depth for mutations that
were identified by only one of the three callers. The
median VAF for the GATK-based algorithm is higher
than those for LoFreq and MuTect. The median total depth
of the variants called only by GATK is also lower than those
called by LoFreq and MuTect (Additional file 3). Although
methodological analysis of factors affecting the sensitivity of
various algorithms is outside the scope of this current paper
on genomic diversity of primary and metastatic CRC
tumors, these data suggest that high coverage allows for
high sensitivity in the tumor but may lead to a higher rate
of false positive calls in the normal, leading to a potential
loss in sensitivity which can be overcome by using
three different variant calling algorithms each with
different parameter settings and heuristic thresholds
intrinsic to each method.

High degree of similarity amongst variants present in
matched primary tumor and liver metastases
After accounting for the nine false positives and one
false negative, 1,976 non-synonymous SNVs were identified
amongst 36 tissue specimens comprising 18 primary and
18 metastatic tumors (median 11 per tumor, range 3 to
872). One patient was an ultra-mutant (POLE mutation)
with 741 variants in the primary and 872 variants in the
metastasis. Across the 18 patients, there were 1,236 distinct
variants (Additional file 4; the ultra-mutant patient had
1,005 distinct variants) and a median of 79.3% of somatic
SNVs present in the primary tumor were present in the
metastasis (range 18 to 100%) and 81.7% of somatic SNVs
present in the metastasis were already present in the
primary (range 50 to 100%) (Table 2 and Figure 1). There
were 740 variants shared in matched primary and metasta-
sis pairs (median 8.5 per tumor; range 3 to 608) (Figure 1),
and 191 variants were found private to the primary and 305
variants were private to the metastasis. Our patients had a
median of 15 distinct variants (range 5 to 1,005), with
a median of 2.5 variants unique to the primary (range 0 to
133), a median of 2 variants unique to the metastasis
(range 0 to 264) and a median of 8.5 variants in common
(range 3 to 608) (Figure 2).

No major differences in genomic similarity amongst
synchronous and metachronous tumors and between
patients with and without prior chemotherapy
We did not observe a major difference in diversity
between metachronous and synchronous patients nor
between patients who received or did not receive prior
systemic chemotherapy between the resection of the
primary and the metastasis, either as adjuvant treatment
after primary resection or ‘neo-adjuvant’ therapy prior to
resection of metastasis. Four of the patients had meta-
chronous metastasis. In these patients, 70% of variants
in the primary were found in the metastasis and 69% of
variants found in the metastasis were found in the primary.
This tended to be lower than for patients with synchronous
metastasis where 76% of mutations in the primary
were found in the metastasis and 81% of variants in
the metastasis were found in the primary. Nine of the
patients had received prior chemotherapy and in
these 69% of variants present in the primary were
present in the metastasis and 77% of variants in the
metastasis were present in the primary. Amongst the nine
patients without prior chemotherapy, 81% of variants
present in the primary were present in the metastasis and
80% of variants in the metastasis were present in the pri-
mary. These differences were not statistically significant.

Characteristics of shared variants and private variants
We examined characteristics of variants more likely to
be shared amongst primary tumor and metastasis
(shared) or those likely to be present only in the primary
or metastasis. Variants were reported in 487 genes; well
described colorectal cancer driver mutations [18] were
often shared. Six distinct KRAS non-synonymous vari-
ants were all found in both the primary and metastasis.
There were 25 and 13 distinct variants in APC and p53,
respectively, reported across the cohort. Of the 25 APC
variants and 13 p53 variants, 21 and 11, respectively,
were found in both the primary and the metastasis
(Additional file 4). Similarly, amongst genes reported by
The Cancer Genome Atlas (TCGA) to be significantly
mutated in CRC, 85% of non-synonymous variants in the
metastasis were already present in the primary (versus
70% for all other cancer-associated genes; P = 0.04).
In 283 genes, variants were identified in more than

one patient (recurrent alterations amongst the patients;
Additional file 5). Overall, variants in genes recurrently



Table 2 Unique and common variants found in the primary tissue and metastasis for each patient in the study

Patient Synchronous or
metachronous

Receipt of
chemotherapy
prior to surgery
for liver
metastasis

Variants common
to primary and
metastasis (number
(mean VAF))

Variants
unique to
primary tumor
(number
(mean VAF))

Total
variants in
primary
(number
(mean VAF))

Percentage of
variants in
primary found
in metastasis

Variants common
to primary and
metastasis (number
(mean VAF))

Variants unique
to metastasis
tumor (number
(mean VAF))

Total
variants in
metastasis

Percentage
of variants
in metastasis
found in
primary

Total
distinct
variants
in each
patient

1 Synchronous Yes 7 (31%) 6 (5%) 13 (19%) 53.8% 7 (47%) 2 (18%) 9 (40%) 77.8% 15

2 Synchronous No 11 (29%) 1 (3%) 12 (27%) 91.7% 11 (42%) 0 (NA) 11 (42%) 100.0% 12

3 Synchronous No 10 (53%) 0 (NA) 10 (53%) 100.0% 10 (32%) 2 (15%) 12 (29%) 83.3% 12

4 Synchronous Yes 9 (9%) 3 (8%) 12 (9%) 75.0% 9 (33%) 1 (3%) 10 (30%) 90.0% 13

5 Metachronous Yes 11 (32%) 3 (14%) 14 (28%) 78.6% 11 (37%) 2 (21%) 13 (35%) 84.6% 16

6 Synchronous No 10 (21%) 2 (5%) 12 (19%) 83.3% 10 (35%) 5 (12%) 15 (27%) 62.5% 17

7 Metachronous Yes 8 (46%) 2 (22%) 10 (41%) 80.0% 8 (64%) 6 (13%) 14 (42%) 53.3% 16

8 Synchronous No 5 (71%) 0 (NA) 5 (71%) 100.0% 5 (34%) 1 (15%) 6 (31%) 83.3% 6

9 Synchronous Yes 4 (45%) 0 (NA) 4 (45%) 100.0% 4 (29%) 1 (7%) 5 (25%) 80.00% 5

10 Synchronous Yes 5 (51%) 5 (10%) 10 (31%) 50.00% 5 (60%) 5 (15%) 10 (37%) 50.00% 15

11 Synchronous Yes 6 (54%) 2 (16%) 8 (45%) 75.00% 6 (41%) 1 (19%) 7 (38%) 85.71% 9

12 Synchronous No 7 (37%) 1 (4%) 8 (33%) 87.50% 7 (39%) 0 (NA) 7 (39%) 100.00% 8

13 Metachronous No 6 (40%) 10 (8%) 16 (20%) 37.50% 6 (58%) 3 (12%) 9 (43%) 66.67% 19

14 Synchronous No 11 (21%) 5 (4%) 16 (16%) 68.75% 11 (18%) 7 (15%) 18 (17%) 61.11% 23

15 Synchronous Yes 3 (72%) 14 (17%) 17 (26%) 17.65% 3 (42%) 0 (NA) 3 (42%) 100.00% 17

16 Metachronous No 608 (12%) 133 (9%) 741 (11%) 82.1% 608 (20%) 264 (17%) 872 (19%) 69.7% 1005

17 Synchronous Yes 10 (38%) 1 (5%) 11 (35%) 90.91% 10 (34%) 4 (4%) 14 (25%) 71.43% 15

18 Synchronous No 9 (25%) 3 (18%) 12 (23%) 75.00% 9 (45%) 1 (3%) 10 (41%) 90.00% 13

Total 740 (38%) 191 (10%) 931 (30%) 79.4%a 740 (39%) 305 (13%) 1045 (34%) 70.8%a 1236
aAcross the 18 patients, a median of 79.3% of variants in the primary are found in the metastasis, and a median of 81.7% of variants found in the metastasis are found in the primary.
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Figure 1 Distribution of variants across the 18 patients. (A) Pie chart and (B) stacked bar chart showing the proportion of variants that are
shared (green), private to primary (blue) and private to metastasis (red). (C) Scatter plot of all variants found in the 18 patients. The y-axis indicates
allele frequency of variants present in the primary; the x-axis indicates allele frequency of variants present in the matched liver metastasis.
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altered amongst the patients were more likely to be
shared (P = 0.01); 81% (634 of 786) of recurrent mutations
found in the primary were found in the metastasis, and
72% (634 of 880) of recurrent mutations found in the
metastasis were already found in the primary.
Mutations found at higher allele frequency were also
more likely to be present in the corresponding matched
tumor. In the primary tumors, the mean VAF for variants
solely in the primary is 10% versus 38% for variants
‘shared’ with the metastasis (P < 0.01). In the metastatic
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tumors, the mean allele frequency for variants solely in
the metastasis is 13% versus 39% for variants ‘shared’ with
the primary (P < 0.01).
The relative VAFs of variants solely in the primary and

‘shared’ with or common to the primary and metastasis
supports a model where dominant clones from the
primary gave rise to the metastasis and, within each
tissue, further subclones found at lower frequencies
began to develop.
We did observe that certain genes were enriched

amongst variants present only in the metastasis. For
example, variants in MLL3, FAT1 and GNAS were often
observed private to the metastasis. We next examined if
genes associated with shared or private localities were
associated with specific cancer pathways, using Ingenuity
Pathway Analysis (IPA). Interestingly, IPA analysis
showed notch signaling and tight junction signaling
pathway to be altered only amongst private alter-
ations. A list of pathways unique to variants that are
common or unique to variants that are private is provided
in Additional file 6.
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Distinct mutational signatures are observed in shared
variants and private variants
We also examined if any mutational signatures were
enriched amongst common mutations or mutations that
are private to the primary or private to the metastasis.
This analysis could provide insight into distinct muta-
tional processes involved in cancer progression. One pa-
tient has somatic mutations in the POLE gene, which is
involved in DNA replication and repair and mutated
POLE is associated with an unusually high rate of muta-
tions. The mutational process found in POLE ultra-
mutants is associated with a mutational signature com-
prising TCT > TAT and TCG > TTG mutations. This
mutational signature was observed in both the primary
tumor and the metastasis of this patient as well as the
shared variants found in both the primary and metas-
tasis or private only to the primary or metastasis
(Figure 3A). This suggests that the same dominant
mutational process is involved in cancer progression in
this patient with POLE mutation. In the remaining
patients, known colorectal-associated mutagenic processes
T>C T>G(12) (57) (121)

AA CC GGG TTT
A A A A A A A A A AC C C C C C C C C CG G G G G G G G G GT T T T T T T T T T

Sense/Antisense

0

300

S A S A S A S A S A S A

y
T>C T>G(10) (43) (115)

AA CC GGG TTT
A A A A A A A A A AC C C C C C C C C CG G G G G G G G G GT T T T T T T T T T

Sense/Antisense

0

300

S A S A S A S A S A S A

 (17 samples)
T>C T>G(9) (5) (11)

AA CC GGG TTT
A A A A A A A A A AC C C C C C C C C CG G G G G G G G G GT T T T T T T T T T

Sense/Antisense

0

30
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amples)
T>C T>G(9) (6) (2)
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l context of (A) primary and metastasis of patient 16 (ultra-mutant)
mutations that are common to the primary and metastasis in the
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(microsatellite instability and POLE mutations) were
absent. We examined the mutational contexts of variants
shared in the primary and metastasis and variants private
to the primary or the metastasis. Remarkably, we observed
distinct mutational signatures amongst shared mutations
and private mutations. Somatic mutations common to the
primary and metastasis are mostly CpG > TpG mutations,
which have been associated with deanimation of methyl-
ated cytosines and an ‘aging process’, while mutations
private to either the primary or the metastasis were mostly
C >A and other C >T mutations, suggesting that a distinct
complement of mutational processes are active during
different phases of cancer progression (Figure 3B).

Regions of allelic imbalance are similar in the matched
primary and metastasis
Next, we examined if regions of allelic imbalance are
similar or distinct in the primary and metastasis of the
same patient. We identified heterozygous germline SNPs
from each patient’s normal non-neoplastic tissue sample.
In each patient, we identified a median of 1,986 SNPs
(range 1,641 to 3,791). We examined the B-allele fre-
quencies of these SNPs in the corresponding tumor or
metastatic tissue of each patient, which we would expect
to deviate substantially from 0.5 (that is, towards 0 or
towards 1.0) in regions of allelic imbalance. We were
able, therefore, to plot broad regions of allelic imbalance
in each patient’s primary or metastatic tumor. Across
the 18 patients, we found that broad regions of allelic
imbalance were generally similar in the primary tumor
and in the liver metastasis. In some patients, however,
Figure 4 Allellic imbalance. B-allele frequency plots of heterozygous SNP
deviation of B-allele frequency from 0.5 towards either 0 or 1; the x-axis ind
there were additional small regions of allelic imbalance
private to either the primary or the metastasis. For
example, in patient 1, regions of allelic imbalance
were very similar in the primary and metastasis, while
in patient 2, regions of allelic imbalance were gener-
ally similar, although allelic imbalance in chromosome
6q was observed in the primary and not in the metastasis
(Figure 4). This similarity of regions of allelic imbal-
ance in corresponding primary and metastasis further
supports the linear progression model in patients with
liver-limited mCRC.

Focal gains and losses of genes commonly amplified or
deleted in cancer are also similar in the primary and
metastasis
We used the nCounter v2 Cancer CN Assay Kit, a highly
multiplexed assay that enables copy number quantification
for 87 genes commonly amplified or deleted in cancer
to generate a copy number profiles for the primary,
metastasis and normal tissues from the 18 patients
(Additional file 7: Figure S2). We found that focal copy
number gains and losses were also highly similar in the
primary tumor and corresponding liver metastasis, in
further support of the linear progression model in patients
with liver-limited mCRC.

Our data support linear progression in most patients with
liver-limited mCRC
We have summarized the genomic concordance of the
somatic SNVs, regions of allelic imbalance and focal
amplifications or deletions of cancer-associated genes
s in tumor and normal tissue of patients 1 and 2. The y-axis indicates
icates chromosomal number.
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for each of the 18 patients in Additional file 7. Across
the 18 patients, the large majority of variants are common
to both the primary and the metastasis. VAFs of ‘shared’
variants were much higher than ‘private’ variants solely in
the primary or metastasis. Broad regions of allelic
imbalance are similarly present in matched primary
and liver metastasis, although additional regions of
allelic imbalance are observed ‘private’ to the primary
or metastasis in some patients. Focal amplifications
and deletions of cancer-associated genes are also similarly
present in matched primary and liver metastasis with a
smaller number of private copy number changes in either
the primary or metastasis in some patients. Together, this
supports a linear progression model with a thick common
trunk where dominant clones from the primary tumor
give rise to the metastasis and, within each tissue, further
subclones found at lower frequencies begin to develop. Of
interest, while there was a high degree of genomic
concordance, we observed evidence that the mutational
signatures characterize somatic mutations that are ‘shared’
versus those that are private, suggesting that different
mutational processes may regulate different phases of
cancer progression.

Discussion
Our study compares genomic alterations across a large
panel of cancer-associated genes in matched CRC
primary tumors and liver metastasis. Using high-depth
targeted NGS in matched primary CRC and liver metasta-
ses and dedicated bioinformatics algorithms, we compre-
hensively catalogued somatic variants across more than
750 cancer-related genes, including those present at low
allele frequency. We validated the robustness of our
approach with an orthogonal NGS technology (Ion
Torrent) and found a high true positive rate (95%)
and true negative rate (97%), although the latter is
based on validation of identified variants and not all
genes. Our study highlights the benefit and importance of
using different variant-calling algorithms for comprehensive
detection of somatic variants found in the primary or the
metastasis. Only 39% of variants were called by all three
algorithms and 23% of variants were only called by one
algorithm. The sensitivity of each algorithm alone was
75.9% for GATK, 87.6% for LoFreq and 56.4% for Mutect.
Several studies have documented varying sensitivities and
concordance with multiple variant-calling algorithms and
pipelines applied on the constant dataset [19-21]. This was
the motivation behind using three variant calling algo-
rithms in our analysis. Employing any one of the algorithms
alone would lead to missing multiple variants and lead our
study towards different conclusions. With high-depth
sequencing, high coverage allows for high sensitivity in the
tumor but it also leads to higher rates of false positive calls
in the normal, leading to a potential loss in sensitivity in
identifying somatic variants. Specific parameter settings
and heuristic thresholds intrinsic to each algorithm lead
to different predictions for some mutations. An in-depth
analysis of factors that affect the various algorithms is
outside the scope of our current paper and has been
examined elsewhere [19-21]. Our analysis and validation
results only support the use of three variant callers for the
most comprehensive identification of somatic variants in
comparative genomic studies.
We observed remarkable similarity among variants

identified in the primary and the matched liver metastasis
in each patient. More than three-quarters of alterations
found in the primary were present in the metastasis. Simi-
larly, more than three-quarters of alterations found in the
metastasis were already present in the primary. In both
the primary and metastasis, the remaining one-quarter of
variants were unique to their respective sites and were
generally of low allele frequency. Variants in genes recur-
rently altered within our dataset and variants found at
higher allele frequency within the primary or metastasis
were more likely to be present at the corresponding site.
As with lung cancer [14], the most well-described

driver alterations in colorectal cancer (for example,
‘hotspot alterations’ in KRAS, BRAF, NRAS and PIK3CA)
are concordant between primary tumors and metastatic
lesions. TP53 alterations are generally concordant pro-
vided there is minimal exposure to cytotoxic chemother-
apy. Notably, 30% of the patients did not have any
alterations in these five driver genes [22]. We performed a
comprehensive approach with high-depth NGS across all
exons of over 750 genes and 3 dedicated variant-calling
algorithms. We comprehensively identified variants in
each tissue, including those at low allele frequency. We
found that across cancer related genes there remains a
very high level of concordance between mutational pro-
files in matched primary CRC and liver metastases from
patients undergoing surgery for liver-limited mCRC.
Several studies have compared the genomic profiles of

matched primary and metastatic lesions and reported
varying degrees of concordance. In kidney [9], breast
[10], liver [23] and pancreatic cancer [11], 32%, 34%,
63% and 64% of mutations, respectively, were shared
between the primary tumor and metastatic sites. In
childhood acute lymphoblastic leukemia, subclones have
variegated genetics and complex, branching evolutionary
histories [12]. Epigenetically and genetically, medulloblas-
toma metastases are substantially diverged from the
primary tumor [13]. There are two critical points to note in
these studies. Firstly, they were generally performed in
heavily pre-treated patients where substantial time had
passed between the first emergence of metastasis and
genomic profiling during which patients received cumula-
tive cycles of chemotherapy and/or targeted therapy and
further genomic alterations in the metastasis would likely
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have accumulated. Secondly, global characterization of the
genome or epigenome was performed as opposed to
focusing on sequence alterations across known cancer-
related genes, which are more likely to be ‘driver’ alterations.
Some of the variation observed by whole-genome analysis
may be bystander mutations that are less relevant to disease
biology; epigenetic alterations may also be more dynamic as
opposed to sequence alterations.
Thus, comparative genomic studies must be interpreted

in the context of the patient’s clinical and treatment
history and the genomic platforms deployed. For instance,
a genomic profiling study of paired primary and metasta-
sis in non-small cell lung cancer [14] performed targeted
NGS of 189 recurrent cancer-related genes and reported
concordance of 94% for alterations recurrent across lung
cancer and 63% for other alterations in cancer-related
genes. Notably, these metastases were sampled and
profiled when recurrence was first diagnosed so patients
had limited systemic therapy except short duration
adjuvant chemotherapy. Our study focused on patients
with liver-limited mCRC, a unique population for whom
the natural history of progression has shaped a distinctive
management paradigm in clinical practice. Importantly,
our patient cohort had synchronous or metachronous
liver metastasis and surgery was performed with no prior
systemic chemotherapy or in patients who have received a
limited number of lines of previous cytotoxic chemo-
therapy regimens. Our study is not powered to detect
small differences in genomic diversity amongst different
subpopulations of patients with liver-limited mCRC. We
did not observe major differences in genomic similarity
between the primary and metastasis amongst patients
with synchronous or metachronous tumors or amongst
patients who received or did not receive prior systemic
chemotherapy.
Varying reports of genomic divergence have been

reported amongst patients with liver-limited mCRC. A
recent study in liver-limited mCRC employed sequencing
across the exome (which would not be at high sequencing
depth) and high resolution copy number variation analysis
across the genome and reported genomic concordance
between the matched primary and metastases in half the
patients but genomic divergence amongst paired tumors
in half of the patients studied [24]. A study that performed
shallow targeted sequencing (median coverage 87×) and
only identified variants above 20% VAF reported substantial
mutational divergence between paired primary and metas-
tasis [25] while another more recent study that deeply
sequenced 230 genes in matched tumors of 69 patients
reported a high level of mutational concordance amongst
non-synonymous mutations and indels [26]. In our
study, we focused on 750 genes known to be biologically
important in cancer rather than across the genome, per-
forming sequencing to high depths (median depth 398×)
and utilized three different variant-calling algorithms to
identify low-frequency variants for greater sensitivity.
When we focus on comprehensive characterization of
cancer-related genes, we found a high degree of concord-
ance between variants amongst primary and matched liver
metastasis from all our patients with liver-limited mCRC.
We also examined broad regions of allelic imbalance using
information from over 1,000 SNPs per patient and
documented focal copy number alterations of com-
monly amplified/deleted cancer genes. Thus, several
lines of evidence support a linear progression model in
colorectal cancer with branched evolution characterized
by a common thick trunk before branching off a smaller
set of alterations unique to the primary or the metastasis.
Our study provides biological insights into liver-limited

mCRC. There is a fundamental difference in the natural
progression of certain metastatic CRC tumors. Due to
biologic characteristics not yet fully defined, certain
metastatic lesions will be limited in number, slow
growing, and potentially confined to the liver, thus
rendering themselves targets for liver-directed therapy.
We identified a high degree of concordance between
sequence alterations in cancer-related genes as one of
these characteristics. Whilst intra-tumoral heterogeneity
and sampling might contribute to different estimates of
genomic similarity, the distribution of allele frequencies
amongst variants observed in our study population sug-
gests that dominant primary and metastatic clones remain
highly similar. The proportions of each variant relative to
other variants in the primary and metastasis are also
highly similar. This would go against tumor self-seeding
where clones from the secondary may seed the primary
but would form a smaller fraction of variants in the pri-
mary. Several models of cancer progression have been
proposed [6]. For liver-limited mCRC, our findings sup-
port a model of linear progression [7] in liver-limited
mCRC over that of parallel progression [8]. Dominant
clones in metastasis closely resemble the primary. Thus,
the acquisition of additional sequence alterations amongst
cancer-associated genes does not appear necessary for
establishment of metastases. Perhaps adaptation to
anatomically different microenvironments, leading to
establishment of metastasis, might be a result of transcrip-
tomic or epigenetic changes rather than new sequence
alterations. Beyond the dominant clones, in both the
primary and the metastasis, a modest complement of
genetic variants unique to each site, typically at low allele
frequency, can also be found. This suggests that in each
organ site, further subclones continue to develop inde-
pendently. More extensive studies will be required to
further characterize genomic progression and to substan-
tiate linear progression as the dominant mode of cancer
progression in this important clinical population of liver-
limited mCRC. In particular, genomic analyses of multiple
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spatio-temporally separated samples within the same
patient and evaluation of the impact of genomic progres-
sion on clinical phenotypes and outcomes, as has recently
been performed in lung cancer, may provide a more de-
tailed picture of clonal ancestry and tumor evolution during
cancer progression [27,28]. Larger sample sizes, analyses of
intra-tumoral heterogeneity and alterations in other levels
of genomic diversity, such as evaluation of the epigenome
and transcriptome, as well as studies in experimental sys-
tems may provide further insights into genomic alterations
as cancer progresses in patients with liver-limited mCRC.
In our study, not every patient’s genomic profile is

solely consistent with a linear progression model. In
patient 15, three high VAF alterations (KRAS, TP53
and SMAD4) are common to both primary and metastasis
but the primary had 14 other mutations not found in the
metastasis. Regions of allelic imbalance were common in
patient 15’s paired primary and metastasis, although the
metastasis had private regions of allelic imbalance in
chromosome 8q. In patient 10, half of the mutations
present in the primary and metastasis were private and
there were also private focal amplifications of several genes.
The primary and metastasis of patient 16 (the POLE

ultramutant) were separated by more than 6 years. Yet, the
genomic similarity is very high at the non-synonymous
SNV level. As is typical for POLE mutated tumors, this
tumor was generally diploid with few regions of allelic
imbalance and few genes focally amplified or deleted. In
this patient, the same mutational signature was also
observed in the primary and the metastasis, suggesting that
the mutational processes regulated by POLE alterations are
present in both the primary and the metastasis.
In the remaining patients who were microsatellite

stable and did not have POLE alterations, despite the high
degree of genomic concordance between the primary and
metastasis, we are amongst the first to report evidence that
the mutational signatures characterizing somatic mutations
that are ‘shared’ between the primary and metastasis are
different from the mutational signatures of mutations that
are private to the metastasis. This suggests that different
mutational processes may regulate different phases of
cancer progression and that the mutational processes that
occur before metastasis happens may be different
from the mutational processes that occur at the site
of the metastasis, perhaps due to its different micro-
environment and tissue context. This biological insight
could have potential impact on designing therapeutic
strategies to target or prevent metastasis.
The aggressive multi-modality management of liver-

limited mCRC has driven improvements in long-term
disease control rates in mCRC. Clinical challenges remain,
including the identification of novel therapeutic targets
and selection of appropriate patients for aggressive multi-
modality therapy. It would be interesting to examine if the
degree of genomic similarity might assist improved
selection of patients with ‘better’ biology for aggressive
multi-modality therapy. Specifically, the high degree of
genomic similarity across cancer-associated genes between
the primary and metastasis in patients with liver-limited
mCRC raises the possibility that key somatic alterations
identified in either tissue may provide relevant and suffi-
cient genomic information to guide treatment decisions in
this clinical subset. With largely similar molecular vulner-
abilities in both tissues, pharmacologic intervention should
work or not work equally well at both sites.

Conclusions
We analyzed high-depth targeted NGS data of over 750
cancer-associated genes, using three variant-calling algo-
rithms to comprehensively identify somatic variants from
matched primary and metastatic tumors of 18 patients with
liver-limited mCRC. We also performed analysis to identify
regions of allelic imbalance and copy number profiling of
89 cancer-associated genes. Through our analysis, we found
high genomic concordance between primary tumors and
metastases, in support of the linear progression model in
liver-limited mCRC.

Materials and methods
Patient selection
We obtained matched primary CRCs, liver metastases, and
adjacent normal tissue for 18 patients from our institution’s
frozen tissue repository. All patients signed written
informed consent to donate their tissue samples for re-
search. Our study was approved by Singhealth Institutional
Review Board ‘Understanding in the evolution of Ca with
next generation genomic tools in patients with synchron-
ous, metachronous or metastatic neoplasms’ 2011/439/B.
The experimental procedures in this study comply
with the Helsinki Declaration. Clinico-pathologic informa-
tion is summarized in Table 1. A pathologist performed
cryosectioning analysis to ascertain adequate tumor con-
tent in each tumor sample and absence of tumor in the
normal sample.

Targeted sequencing of cancer-associated genes
We performed a comprehensive literature and database
review to identify genes biologically and clinically relevant
to cancer, including genes involved in key oncogenic sig-
naling pathways, oncogenes, tumor suppressor genes and
genes from kinase and chromatin remodeler families. Data
repositories including the Catalogue of Somatic Mutations
in Cancer (COSMIC) [29,30], mutations of kinases in
cancer (MokCa), DNA tumor suppressor and Oncogene
Database and Cancer Gene Census [31] were also mined
to identify genes exhibiting recurrent somatic mutations
in cancer. Two generations of targeted panels were
employed in our study, the ‘750 panel’ and ‘800 panel’.
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The ‘750 panel’ comprised all exons of 766 cancer-related
genes. The later generation ‘800 panel’ comprised all exons
of 799 cancer-related genes and 87 introns of 28
genes involved in somatic translocations. This report
focuses on alterations found in exons of cancer-related
genes. A list of genes is provided in Additional file 8. We
used the Agilent SureSelect E-array software to design
unique RNA baits employing 41,628 and 57,682 baits for
the ‘750’ and ‘800’ panels, respectively. Biotinylated RNA
baits were synthesized by Agilent for the SureSelect Target
Enrichment system (Agilent Technologies Santa Clara
California, USA).

DNA extraction, capture enrichment and library
construction
We extracted DNA from tissue specimens with the Gen-
omic DNA extraction kit (Qiagen Venio, Netherlands).
Extracted DNA was evaluated for quality, yield and con-
centration. DNA samples were sheared using a Covaris
S2 (Covaris: Woburn Massachusettes, USA) to a size
distribution (150 to 200 bp) optimal for target enrich-
ment. Size-selected adapter-ligated libraries were incu-
bated with the custom-designed SureSelect baits for
24 h. Following capture, we performed further cycles of
DNA amplification. Samples successfully meeting the
size and concentration criteria were pooled at equimolar
concentrations. Up to six samples with unique index-tag
adapter sequences were combined for multiplex NGS in
each lane on the Illumina HiSeq 2000 (Illumina, San
Diego, California, USA). Short reads from our study has
been deposited in the European Nucleotide Archive
(ENA) under study accession ID PRJEB7714.

Bioinformatics and variant detection
Our bioinformatics pipelines to identify somatic variants
involved three algorithms, GATK, LoFreq and MuTect.

Genome Analyzer Toolkit-based algorithm
We aligned sequence reads to the human reference
genome (hg19) and removed PCR duplicates. GATK
[15] was used for consensus calling to identify and filter
SNVs. We recalibrated base qualities (CountCovariates
and TableRecalibration modules), realigned around
microindels (RealignerTargetCreator, IndelRealigner) and
called variants (IndelGenotyperV2, UnifiedGenotyper,
VariantFiltration). We also filtered the variant list to
remove any variants if the following criteria were
true: (1) two variants within a window of 5 bases; (2)
variant was in a homopolymer run >5; (3) ‘strand
bias’ score > −0.10; (4) mapping quality <30.0; and (5)
depth <5. For a variant to be called as somatic, these
additional filter had to be passed: (1) minimum quality/
depth = 3; (2) minimum variant depth > 2; and (3) mini-
mum depth in normal ≥5.
LoFreq
LoFreq [16] is a sensitive variant caller designed to call
low-frequency variants by exploiting base-call qualities.
To identify variants present at low allele frequency, we
employed LoFreq (lofreq-v0.5.0) using the default set-
tings on the same realigned BAM file generated by the
GATK-based algorithm. The SNVs identified were anno-
tated using the Variant Effect Predictor (VEP, v2.8). Only
missense, nonsense and splice site SNVs were retained.
SNVs that were present in dbSNPv135 were removed un-
less they were also present in COSMIC. To determine
somatic SNVs, the tumor or metastatic sample was com-
pared with the normal sample and only the SNVs that
were unique to the tumor or metastatic sample were
retained.

MuTect
MuTect [17] is a sensitive somatic variant caller that ap-
plies a Bayesian classifier with tuned filters to retain high
specificity. To identify somatic variants present at low al-
lele frequency, we employed MuTect (muTect-1.1.4) using
the default settings on the same realigned BAM file gener-
ated by the GATK-based algorithm. The SNVs identified
were annotated using the Variant Effect Predictor (VEP,
v2.8) [32]. Only missense, nonsense and splice site SNVs
were retained. SNVs that were present in dbSNPv135 were
removed unless they were also present in COSMIC.
We curated variants called by at least one of the above al-

gorithms by manual inspection of the sequencing reads cor-
responding to each position with the Integrative Genomics
Viewer Browser. Gene transcript annotation databases
(CCDS [33], RefSeq [34], Ensembl [35], UCSC Known
Genes [36]) were used for transcript identification and to
determine amino acid changes. Amino acid changes corre-
sponding to SNVs were annotated according to the largest
transcript of the gene.

Validation of somatic variants with Ion Torrent
Ion Torrent custom primers were designed by Ampliseq
primer design software. Libraries were prepared using
Ion Ampliseq Library kit (Life Technologies, Guilford,
Connecticut). DNA (10 ng) was taken and the targets
were PCR amplified with the appropriate primer pool;
the primers were later partially digested and adaptor li-
gated. The adaptor ligated libraries were then purified by
AMpure beads and the concentration was quantified by
Bioanalyser (Life Technologies, Guilford, Connecticut).
Samples were pooled and prepared for sequencing using
the Ion PGM 200 Sequencing Kit (Ion Torrent) protocol.
Pooled samples were loaded on the 318 chip and se-
quenced on the Ion Torrent PGM 200 (Life Technologies,
Guilford, Connecticut) for 125 cycles. Data processing, fil-
tering and base calling were done using the Ion Torrent
server, Torrent Suite v3.6.5.
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Identification of regions of allelic imbalance
We identified positions that are heterozygous in the nor-
mal tissue and with a minimum depth of 20 in the nor-
mal. Allelic imbalances in tumor samples are observed
in B Allele Frequency (BAF) plots as a deviation from
0.5 of SNPs heterozygous in cells with constitutional
genotype.

Detection of copy number variation in cancer-associated
genes
nCounter Cancer Copy Number Variation CodeSets
were used with 300 ng purified genomic DNA extracted
from frozen tissue (extracted as described above). DNA
was fragmented via AluI digestion and denatured at 95°C.
Fragmented DNA was hybridized with the codeset of
89 genes in the nCounter Cancer CN Assay Kit v2
(Nanostring, Seattle, Washington) for 18 hours at 65°C
and processed according to the manufacturer’s instruc-
tions. The nCounter Digital Analyzer counted and tabu-
lated the signals of reporter probes and average count
numbers of >3 were called and confirmed by immuno-
histochemistry, FISH (fluorescence in situ hybridization)
or real-time PCR.

Additional files

Additional file 1: Table S1. Sequencing coverage across the 54 tissue
specimens.

Additional file 2: Figure S1. Distribution of variants. Venn diagram of
variants called by the three bioinformatics algorithms: GATK-based algorithm
(blue), LoFreq (purple) and Mutect (red). Information of the variant-allele
frequency (VAF) of the variants called by the various algorithms and the true
positive (TP) rate is provided in the Venn diagram.

Additional file 3: Table S2. Variant allele frequency and coverage for
variants identified by only one algorithm.

Additional file 4: Table S3. List of 1,236 distinct variants identified in
18 patients.

Additional file 5: Table S4. Recurrent variants and their distribution in
the primary tumor and metastasis.

Additional file 6: Table S5. Ingenuity Pathway Analysis pathways
identified that are unique to shared variants or to common variants.

Additional file 7: Figure S2. Aggregate genomic alterations in each of
the 18 patients. Top panel: somatic non-synonymous alterations in the
primary (blue) and metastasis (red). Middle panel: B-allele frequency plots
of heterozygous SNPs in tumor and normal tissue. The y-axis indicates
deviation of B-allele frequency from 0.5 towards either 0 or 1; the x-axis
indicates chromosomal number. Bottom panel: focal copy number
estimates from Nanostring nCounter Cancer Copy Number v2 panel in
the primary and metastasis. The y-axis indicates estimated copy number;
the x-axis indicates chromosomal number.

Additional file 8: Table S6. Description of Targeted NGS panel. List of
799 cancer-associated genes selected for targeted next generation
sequencing.
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