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Abstract

Background: Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease, with 30% to 40% of patients failing to
be cured with available primary therapy. microRNAs (miRNAs) are RNA molecules that attenuate expression of their
mRNA targets. To characterize the DLBCL miRNome, we sequenced miRNAs from 92 DLBCL and 15 benign centroblast
fresh frozen samples and from 140 DLBCL formalin-fixed, paraffin-embedded tissue samples for validation.

Results: We identify known and candidate novel miRNAs, 25 of which are associated with survival independently of
cell-of-origin and International Prognostic Index scores, which are established indicators of outcome. Of these 25
miRNAs, six miRNAs are significantly associated with survival in our validation cohort. Abundant expression of
miR-28-5p, miR-214-5p, miR-339-3p, and miR-5586-5p is associated with superior outcome, while abundant expression
of miR-324-5p and NOVELM00203M is associated with inferior outcome. Comparison of DLBCL miRNA-seq expression
profiles with those from other cancer types identifies miRNAs that were more abundant in B-cell contexts. Unsupervised
clustering of miRNAs identifies two clusters of patients that have distinct differences in their outcomes. Our integrative
miRNA and mRNA expression analyses reveal that miRNAs increased in abundance in DLBCL appear to regulate the
expression of genes involved in metabolism, cell cycle, and protein modification. Additionally, these miRNAs, including
one candidate novel miRNA, miR-10393-3p, appear to target chromatin modification genes that are frequent targets of
somatic mutation in non-Hodgkin lymphomas.

Conclusions: Our comprehensive sequence analysis of the DLBCL miRNome identifies candidate novel miRNAs and
miRNAs associated with survival, reinforces results from previous mutational analyses, and reveals regulatory networks
of significance for lymphomagenesis.
Background
Diffuse large B-cell lymphoma (DLBCL) is an aggressive
form of non-Hodgkin lymphoma (NHL) that accounts
for 30% to 40% of newly diagnosed lymphomas. Molecu-
lar profiling has revealed that the activated B-cell-like
(ABC) and germinal center B-cell-like (GCB) subtypes
of DLBCL are defined by their derivation from different
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cells of origin and exhibit differential response to che-
motherapy [1]. In particular, the current combination of
cyclophosphamide, doxorubicin, vincristine, prednisone,
and rituximab chemotherapy (R-CHOP) yields inferior
outcomes in patients with the ABC subtype compared
to patients with the GCB subtype [1]. Thus, these subtype
assignments add prognostic value to the widely used
International Prognostic Index (IPI) that constitutes the
clinical gold standard for identifying patients with poor
prognosis [2,3]. Although gene expression signatures and
single gene mutation (or expression)-based prognosti-
cators have been described [4], many of these molecular
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features are surrogates for either the IPI or cell-of-origin
(COO) subgroups. As such, the identification of additional
biomarkers and therapeutic targets may offer the possibil-
ity of improved tools for clinical management of NHL.
microRNAs (miRNAs) are 17–25 nucleotide RNA

molecules that regulate gene expression at the post-
transcriptional level. Mature miRNAs predominantly
act by directing the miRISC complex to complementary
miRNA binding sites located on messenger RNAs
(mRNAs), which results in cleavage or translational re-
pression of these mRNA targets [5]. Many miRNA sig-
natures have been identified in cancers [5], and several
miRNAs, including miR-155 and the miR-17-92 cluster,
have expression patterns that distinguish DLBCL from
non-malignant B-cells [6]. Expression of several miRNAs,
including miR-155, miR-21, and miR-221, differ between
the ABC and GCB DLBCL subtypes [7]. In addition,
miR-21 expression in tumor cells [7] and serum [8] has
been shown to be associated with DLBCL patient progno-
sis. Subsequent to this finding, several groups [9-12] per-
formed survival analyses on larger DLBCL patient cohorts
using qPCR-based strategies or miRNome-wide microar-
rays and identified miRNAs that were associated with sur-
vival, including miR-21, miR-222, miR-23a, and miR-27a.
Deep sequencing of miRNA (miRNA-seq) provides a

unique opportunity to catalog the repertoire of miRNA
expression and study miRNA dysregulation comprehen-
sively. miRNA-seq has been used to discover candidate
novel miRNAs at various stages of B-cell development
[13] and in NHL cell lines [14]. However, as far as we
are aware, miRNA-seq has not yet been used to profile
DLBCL patient samples.
Here we report on the miRNA-seq expression profiles

of 92 DLBCL tumors and 15 purified benign centroblast
fresh frozen samples, along with an integrated analysis
of the DLBCL miRNome including clinical annotation,
mutational and mRNA expression data. We also sequen-
ced an additional 140 independent DLBCL formalin-fixed,
paraffin-embedded tissue (FFPET) samples to validate
our survival analyses. We identified candidate novel and
known miRNAs expressed in DLBCL, including 25 miR-
NAs that appeared to be associated with survival inde-
pendently of the established indicators of outcome (COO
and IPI) in our Discovery Cohort. Of these 25, six miR-
NAs had their associations with survival replicated in our
Validation Cohort. Abundant expression levels of miR-28-
5p, miR-214-5p, miR-339-3p, and miR-5586-5p were asso-
ciated with superior outcome, while abundant expression
levels of miR-324-5p and NOVELM00203M were associ-
ated with poor outcome. Our comparisons of DLBCL
miRNA expression to miRNA expression obtained from
The Cancer Genome Atlas (TCGA) revealed that the
miRNAs that are characteristic of DLBCL tend to have B-
cell specific functions. In addition, our integrative miRNA:
mRNA expression analysis provides evidence of miRNA-
mediated repression of chromatin modification genes that
are frequently inactivated by somatic mutations, reinfor-
cing the notion that inactivation of these genes is linked to
malignant progression in NHL.

Results
miRNA sequencing of fresh frozen DLBCL tumor and
centroblast samples
Unlike miRNA microarrays, miRNA-seq provides, at
least in principle, the opportunity to globally determine
the presence and abundance of essentially all miRNAs
across the entire DLBCL miRNome. To quantify ex-
pressed miRNAs, we sequenced 92 tumors from DLBCL
patients (30 ABC-DLBCL, 41 GCB-DLBCL, and 21
unclassified-DLBCL; all of whom were treated with multi-
agent chemotherapy (83 R-CHOP; 17 other regimens; for
clinical characteristics see Additional file 1: Table S1 and
Additional file 2: Table S2) and 15 purified benign centro-
blast samples. Each miRNA-seq library was sequenced to
an average depth of 5.34 (range: 1.34-16.91) million reads,
which we have found is generally sufficient to identify
moderate-to-low-abundance miRNAs including those
exhibiting modest expression differences between samples
that may not be detected by hybridization-based methods
[15].
We observed that 310 known miRNAs (3p or 5p

strands of 221 miRNA species in miRBase version 19)
were expressed at levels of at least 10 reads per million
(RPM) in at least 10% of the samples. Our threshold for
calling expressed miRNAs (>10 RPM in >10% samples)
was based on miRBase criteria [16] for high confidence
miRNAs. In addition to miRNAs, which accounted for
60% of the aligned miRNA-seq reads, our pipeline
also identified the expression of other classes of small
RNAs. For example, an average of 9% of the aligned
reads mapped to rRNAs and 6% to snoRNAs. Other
non-coding RNAs (tRNAs, snRNAs, scRNAs) and DNA
repeat elements were represented by fewer reads (Figure 1a;
Additional file 3: Table S3).

Novel miRNA discovery
We interrogated our 92 DLBCL miRNA-seq libraries to
identify candidate novel miRNA species that were dys-
regulated in NHL. After sequence filtering, we enumer-
ated 234 candidate novel miRNAs (that is, not identified
in miRBase v19; Additional file 4: Table S4). The mean ex-
pression levels of these candidate novel miRNAs (average:
3.84 RPM; range: 0.00-4,979.00 RPM) were lower than
that of the annotated miRNAs (average: 218.50 RPM;
range: 0.00-131,200.00 RPM). Thirty of these putative
miRNAs were expressed at levels of at least 10 RPM in
more than 10% of DLBCL and centroblast samples, and
this subset was used in subsequent analyses. Of these, five
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Figure 1 (See legend on next page.)
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Figure 1 Profiling miRNA in DLBCL. (a) miRNA sequence analysis identifies several small RNA species, with the majority of reads aligning to
miRNA loci. The pie chart depicts the proportion and origin of miRNA-seq aligned reads. Reported proportions are averaged across the 92 DLBCL
and 15 centroblast libraries. (b) Expression of candidate novel miRNA across DLBCL and centroblast libraries. Column labels represent the type of
sample: Dark Blue: ABC-DLBCL; Light Blue: GCB-DLBCL; Gray: Unclassified-DLBCL; Orange: Centroblasts. Row labels are annotated to indicate
whether the miRNA was more abundantly expressed in a sample category. (c) Expression of B-cell enriched candidate novel miRNAs (NOVELM00010M,
miR-10398-3p and NOVELM00260M) in DLBCL, centroblasts, and other cancers. BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma;
CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: colon adenocarcinoma; HNSC: head and neck squamous cell
carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LGG: brain lower grade
glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian serous cystadenocarcinoma;
PAAD: pancreatic adenocarcinoma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma;
STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma. Blue: DLBCL; Orange: Centroblast.
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were more abundant in benign centroblasts than in
patient samples, while one, miR-10393-3p, was more
abundant in DLBCL patient samples than in centroblasts
(Wilcoxon test BH q-value <0.05; log2 fold change >2).
Two miRNAs (miR-10397-5p, NOVELM00288M) were
more abundant in ABC-DLBCL (Wilcoxon test BH q-
value <0.05; Figure 1c). This differential abundance indi-
cated that expression of these candidate novel miRNAs
might reveal regulatory pathways deployed in these DLBCL
subtypes and therefore might be useful in the classification
of tumors. To broadly survey the expression of these miR-
NAs in cancers, we analyzed their expression in 7,266
TCGA miRNA-seq samples from 21 other cancer types.
Three miRNAs (NOVELM00260M, NOVELM00010M,
and miR-10398-3p) were significantly more abundant
(Wilcoxon test BH q-value <0.05; median of expression of
miRNA in other cancers = 0) in B-cell contexts (DLBCL
and centroblast samples; Figure 1b), suggesting that they
may have functions enriched in, or specific to, B-cells.
These 30 highly expressed candidate novel miRNAs were
subjected to further analyses, in which our survival analysis
revealed the associations with survival of some of them,
while our integrative expression analysis revealed the
potential lymphomagenic roles of others.

miRNA expression in DLBCL
To obtain a comprehensive list of candidate novel and
known miRNAs that are characteristic of DLBCL, we
compared the expression of each miRNA in DLBCL
samples with those of benign centroblasts obtained from
our miRNA-seq data. We noted that 63 miRNAs exhib-
ited increased abundance in DLBCL, while 39 miRNAs
exhibited decreased abundance in DLBCL (Wilcoxon
test BH q-value <0.05; log2 fold change > 2; Figure 2a).
Of the miRNAs with increased abundance in DLBCL,
only miR-125b-5p [17] and miR-34-5p [18] have previ-
ously been implicated in lymphomagenesis in mouse
models.
To identify miRNAs that were more abundant in ei-

ther ABC or GCB DLBCL subtypes, we performed differ-
ential expression analysis for each miRNA by comparing
expression values between the two groups. Twenty-three
miRNAs were more abundant in ABC-DLBCL, while 30
miRNAs were increased in abundance in GCB-DLBCL
(Wilcoxon test BH q-value <0.05; Figure 2c). In addition,
our analysis revealed that the miRNAs whose expression
is increased in GCB-DLBCL appear to target transcripts
that are known to be dysregulated in the formation of
germinal center lymphomas [19]. These miRNA:mRNA
pairs, which had anti-correlated expression in our
data, include miR-181-5p:BCL2, miR-181a-5p/miR-28-
5p/miR-3150-3p/miR-589-5p:IFNAR1 and miR-129-5p/
miR-3150b-3p/miR-28-3p:IRF4 (Additional file 5: Table S5).
We further assessed expression levels of each candi-

date novel miRNA in a published HITS-CLIP data set
obtained from primary effusion lymphoma cells (Haecker
et al. [20]). We detected the expression of 12 of the candi-
date novel miRNAs in this external independent data set
(≥1 RPM; ≥1 sample) (Additional file 6: Table S6), thus
providing evidence that these 12 miRNAs do indeed inter-
act with the Ago protein (a subunit of the RISC complex),
and are bona-fide miRNAs. Further, in order to detect the
expression of these candidate novel miRNAs using an or-
thogonal technology, we performed RT-qPCR on tumor
samples. We tested four of the 12 miRNAs that were veri-
fied by HITS-CLIP (NOVELM00060M, NOVELM00113M,
NOVELM00222M, NOVELM00290M). These experiments
confirmed the presence of all four of the tested miRNA
(Additional file 7: Table S7).

B-cell-enriched miRNA expression profiles
Given that miRNA expression is often cell-lineage-specific
[21], we sought to identify B-cell-enriched profiles using a
pan-cancer miRNA-seq analysis. We compared our B-cell
data set (DLBCL and centroblast samples) to TCGA data
from 21 other cancer types to identify miRNAs that were
differentially expressed between our B-cell data set and
all other TCGA cancer types. The 17 DLBCL cases from
the TCGA data set were included in the B-cell test
group for these comparisons. This analysis identified 15
miRNAs that were significantly more abundant in B-cell
contexts when compared with each of the 21 cancer
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types (Wilcoxon test BH q-value <0.05; log2 fold
change >3; Figure 2b; Additional file 8: Table S8). miR-
142-3p was the most significantly increased, displaying
a 64-fold increase in B-cell contexts (Additional file 9:
Figure S1). Interestingly, miR-142 expression was also
more abundant in the benign centroblast samples when
compared with the DLBCL patient samples, suggesting
that miR-142 could play an important role in normal B-
cell function. Of the miRNAs that were significantly
more abundant in B-cell contexts when compared with
other cancers, abundant expression of miR-3150b-3p,
miR-6087, and miR-4491 in B-cells has not been previ-
ously reported. Our analysis indicated that miR-4491
may be involved in suppressing the expression of genes
associated with the innate immune response (GO:0045087)
(Additional file 5: Tables S5 and Additional file 10:
Table S9). Supporting this notion is the observation that
several of these immune response genes are also fre-
quently less abundantly expressed in GCB-DLBCL, inclu-
ding IFNAR1,TLL2,TLR4, and TLR8 [19].
We found that 17 miRNAs were significantly decreased

in abundance in our B-cell data set when compared to
other cancers (Wilcoxon test BH q-value <0.05; log2 fold
change < −3; Figure 2b). Of note, members of the miR-200
family (miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-
200b-5p, miR-200c-3p, and miR-200c-5p) were the most
significantly decreased in abundance. In agreement with
this, it has been reported that reduced expression of miR-
200 family members results in more aggressive DLBCL
through the de-repression of ZEB1 [22].

Integrative analysis of miRNA and mRNA expression
miRNA expression can regulate translation and mRNA
stability. Considering the latter mechanism, we assessed
the relationship between aberrantly expressed miRNA
and mRNA abundance. Using the miRNA and mRNA
profiles from the 92 DLBCL and 15 centroblast samples,
we identified putative miRNA:mRNA regulatory inter-
actions (Additional file 9: Figure S2; Additional file 5:
Table S5). miRNAs that were more abundantly expressed
in DLBCL appeared to interact with genes enriched in the
Gene Ontology (GO) biological processes related to cell
cycle, metabolic processes, chromatin modification, pro-
tein modification, nerve growth factor signaling pathways,
and organelle organization (Figure 3, Additional file 10:
Table S9). Conversely, miRNAs that were expressed at
lower levels in DLBCL appeared to interact with genes
that were enriched in GO biological processes related to
extracellular organization, cellular adhesion, defense
and wounding responses, actin cytoskeleton organization,
blood vessel morphogenesis, and endocytosis (Figure 3,
Additional file 10: Table S9).
miR-10393-3p, the candidate novel miRNA that was

more abundantly expressed in DLBCL than in centroblasts,
appeared to interact with transcripts from chromatin
modifier genes. These genes included BRPF3, RCOR1,
WHSC1L1, WHSC1, CHD6, KDM5C, SMARCA4, MLL2/
KMT2D, and EP300. Although the number of targeted
chromatin modifiers was not sufficient to statistically enrich
the chromatin modification GO Term (GO:0016568), two
of these candidate targets (MLL2/KMT2D and EP300) are
frequently mutated in NHL [23] (Figure 4a and b). This
result is compatible with the notion that chromatin modi-
fication may be dysregulated in NHL patient samples by
both miRNA-mediated repression and by somatic muta-
tion. These two interactions were further validated by
luciferase assays, where over-expression of miR-10393-3p
inhibited the luciferase activity of constructs containing
each of the four predicted MLL2/KMT2D binding sites
(Figure 4c). Sites 1 to 3 of MLL2/KMT2D contain the
full putative miR-10393-3p binding site whereas site 4
contains a 1 bp mismatch. The mismatch in site 4 may
explain the reduced sensitivity to overexpression of miR-
10393-3p for both the perfect binding and mismatched
constructs. The effect of miR-10393-3p over-expression
was similar for each of the four predicted EP300 binding
sites (Figure 4d), where sites 1 and 3 of EP300, which con-
tain the putative miR-10393-3p binding site, were more
sensitive to miR-10393-3p overexpression than sites 2 and
4, which contain a 2 bp and 1 bp mismatch, respectively.

miRNAs associated with DLBCL patient outcome
R-CHOP-treated Discovery Cohort
Given that approximately 40% of DLBCL patients suc-
cumb to their disease, and that prognostic markers for
improved risk stratification are needed, we sought to
identify miRNAs which are associated with patient sur-
vival. For our survival analyses, we considered the subset
of the 92 patients that were uniformly treated with R-
CHOP (n = 83; 29 ABC-DLBCL, 41 GCB-DLBCL, and
13 unclassified-DLBCL). This cohort is hereafter referred
to as the ‘Discovery Cohort’. The characteristics of our
study population, including the parameters that com-
prise the International Prognostic Index (IPI), are shown
in Additional file 1: Table S1. Originally proposed in
1993 [2], the IPI is based on treatment with CHOP, and
its modernized version, the R-IPI [3], which reflects the
changes resulting from addition of rituximab to the ori-
ginal CHOP regimen, remain the primary clinical tools
used to predict outcome for patients with DLBCL [3].
However, even though both IPI and COO segregated
patients into low and high clinical risk groups in our
data set, the log rank P values were not significant (P
value >0.05; Additional file 9: Figure S3).

miRNAs associated with patient survival
To identify miRNAs with expression patterns associated
with patient overall survival (OS) and progression-free
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survival (PFS), we performed log-rank tests on X-tile-
derived [24] low and high expression patient groups of
each miRNA. This revealed that 58 and 45 miRNAs are
associated with OS and PFS, respectively (log-rank q-
value <0.05). Seven of these miRNAs have previously
been associated with DLBCL patient survival: miR-330
[9], miR-93 [10], miR-148a [10], miR-155 [6], miR-151
[10], miR-181a [11], and miR-28 [10]. To determine
which of these miRNAs were associated with OS and
PFS independently of the two established indicators of
DLBCL patient outcome (COO and IPI), we performed
Cox proportional hazards (PH) multivariate analysis
on the X-tile-derived low and high expression patient
groups for each miRNA, along with COO and IPI patient
status. The results of this analysis revealed that 25 miR-
NAs were associated with OS and PFS independently of
COO and IPI (P value <0.05; Figure 5a; Additional file 11:
Table S10).
R-CHOP-treated Validation Cohort
To measure the association of these miRNAs with OS
and PFS, we performed miRNA-seq on the diagnostic
FFPET biopsies of 140 DLBCL patients treated with R-
CHOP. We utilized FFPET samples as these were readily
available to us. This FFPET cohort included 28 cases that
were also in the fresh frozen Discovery Cohort; the 112
unique cases represent an independent Validation Cohort.
The characteristics of our validation study population are
shown in Additional file 12: Table S11. We used the 28
common samples to explore the potential effects of for-
malin fixation. To do so, we compared miRNA expression
from FFPET and fresh frozen samples of these 28 cases
using hierarchical clustering. The result was two clusters:
one consisting predominantly of fresh frozen samples, and
the other consisting predominantly of FFPET samples
(Additional file 9: Figure S6). This result indicates that
FFPET samples are more similar to other FFPET samples
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Figure 4 Chromatin modifying genes may be targets of miRNA-mediated expression in DLBCL. miR-10393-3p is involved in miRNA:mRNA
interactions with chromatin modifiers MLL2/KMT2D and EP300. (a, b) miRNA and mRNA display anti-correlated expression patterns and the mRNA
has a predicted binding site for miR-10393-3p (M10393). Orange dots represent centroblast libraries, red dots represent DLBCL libraries with a
somatic mutation in MLL2/KMT2D or EP300, respectively, and blue dots represent DLBCL patient samples without the mutation. The boxplots to
the top and right of each scatter plot summarize miRNA and mRNA expression in DLBCL (‘D’) and Centroblasts (‘C’); (c, d) Top: Schematic representations
of the putative miR-10393-3p binding sites on MLL2/KMT2D or EP300. Putative seed regions within each site are underlined and in red font. Bottom:
Dose response of miR-10393-3p miRNA activity in HEK-293 cells was assessed using a psiCHECK2 dual luciferase reporter construct containing each of
the putative MLL2/KMT2D or EP300 binding sites. Activity is measured as Renilla luciferase normalized to Firefly luciferase to control for transfection
efficiencies. The data were shown as normalized relative luciferase units (RLU) with respect to the corresponding dose of the control mimic and are
representative of three independent experiments (mean ± SEM). Statistically significant comparisons between the co-transfected M10393 miRNA and
the NC2 control for the perfect binding reporter vector are noted over the solid colored bars. Statistically significant comparisons between perfect
binding and mismatch constructs are indicated above double-headed arrows. *P <0.05. White bars, NC2 negative control mimics; Solid colored bars,
M10393 mimics on perfect binding (PB) sites; Striped colored bars, M10393 mimics on mismatched (MM) sites.
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than they are to matched fresh frozen samples from the
same patient, and is in agreement with a previous study
that reports on RNA degradation observed in FFPET
miRNA-seq data [25].

Validation of miRNAs associated with patient survival
Despite the differences between fresh frozen and
FFPET miRNA-seq expression profiles (Additional file 9:
Figure S6), our survival analyses (as performed in the
Discovery Cohort) based on expression profiles obtained
from the Validation Cohort replicated several associations
of miRNA expression with OS and/or PFS that had been
identified in the Discovery Cohort. Specifically, we vali-
dated the association of 28 of 58 miRNAs (48%) with OS,
and the association of 19 of 45 miRNAs (32%) with PFS
(log-rank P value <0.05). Our analysis also validated the
association of six of 25 miRNAs (24%) with both OS and
PFS independent of COO and IPI (Cox PH P value <0.05;
Figure 5; Additional file 11: Table S10). These six miRNAs
include miR-28 which was previously associated with sur-
vival in DLBCL [10] and five other miRNAs that have not
previously been associated with DLBCL patient survival.
We observed that abundant expression levels of miR-28-
5p, miR-214-5p, miR-339-3p, and miR-5586-5p are associ-
ated with superior outcome, while abundant expression
levels of miR-324-5p and NOVELM00203M are associ-
ated with poor outcome (Figure 5a). Representative
Kaplan-Meier curves and expression values for miR-
5586-5p in both the Discovery and Validation Cohorts
are displayed in Figure 5b-e, while results for the other
five miRNAs are displayed in Additional file 9: Figure S7.

miRNA expression profiles associated with patient survival
We next sought to determine whether DLBCL patients
could be stratified using their miRNA expression profiles.
Unsupervised non-negative matrix factorization (NMF)
consensus clustering (Additional file 9: Figure S4), using
only the miRNA expression profiles of the 83 R-CHOP
treated patients, identified an optimum of two groups of
patients (Figure 6a) with distinct outcome correlations
(Figure 6b) and miRNA expression patterns (Figure 6c).
These two groups did not differ based on any clinical
characteristics, including age, sex, LDH level, number of
extranodal sites, cell-of-origin subtype, or other para-
meters such as presence of a chromosomal break-apart at
BCL2, BCL6, or MYC (Chi-square test P value >0.05).
However, two miRNAs were significantly differentially
expressed between the groups. In the cluster of patients
with poorer outcome, miR-148a was increased in abun-
dance and miR-21 was decreased in abundance com-
pared to the cluster of patients with superior outcome
(Figure 6a).
Low expression of miR-21 in tumors [7] and in serum

[8] of DLBCL patients has been associated with poor
outcome, and high expression of miR-148a has been
associated with poor survival in a COO-based classifier
[10]. In our Discovery Cohort, miR-21 and miR-148a
expression patterns were significantly associated with
OS and PFS (Additional file 9: Figure S5a); and this
trend is also evident in our Validation Cohort, although
not at statistically significant levels (Additional file 9:
Figure S5b). Both of these miRNAs appear to be highly
expressed and highly variable in DLBCL and centroblast
samples and exhibit discontinuous expression patterns
(Figure 6d), suggesting that they may be robustly detec-
ted in clinical samples.
Our integrative analysis revealed that miR-148a candi-

date targets included genes associated with immune
response (GO:0006955); for example, AMICA1, CCR5,
CD28, CD3G, CD8A, CD96, CLEC10A, CSF1, CTSW,
CXCL12, CXCL16, GZMM, ITK, LCP2, MX2, NUB1,
OASL, PRKCQ, SAMHD1, SELL, SIGIRR, TMEM173,
and XCL1. Of note, CXCL12 is a chemokine receptor
which plays a role in germinal center homing [26] and
CCR5 expression is associated with the transformation
of mucosa-associated lymphoid tissue (MALT) lymphoma
to DLBCL [27]. The observation that several immune re-
sponse genes are targets of miR-148a is compatible with
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Figure 5 Survival analyses in the Discovery and Validation Cohorts. (a) miRNAs that were associated with OS and/or PFS in the Discovery
Cohort (n = 83), and Validation Cohort (n = 112). Six miRNAs (miR-28-5p, miR-324-5p, miR-214-5p, miR-339-3p, miR-5586-5p, NOVELM00203M) were
found to be associated with OS and PFS, independently of COO and IPI, in both the Discovery and Validation Cohorts. Light Blue: miRNA associated
with OS; Dark Blue: miRNA associated with OS independently of COO and IPI; Light Green: miRNA associated with PFS; Dark Green: miRNA associated
with PFS independently of COO and IPI; miR-5586-5p Kaplan-Meier curves and scatter plots of expression in (ABC)-DLBCL, (GCB)-DLBCL, and
(U)nclassified-DLBCL: (b) Discovery Cohort OS, (c) Discovery Cohort PFS, (d) Validation Cohort OS, (e) Validation Cohort PFS. Plots for the other
five validated miRNAs are shown in Additional file 9: Figure S7.
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the notion that DLBCL patients with higher miR-148a
expression levels exhibit attenuated immune responses
due to the repression of immune response genes. Further,
six of the genes (CD28, CD3G, CD8A, ITL, LCP2, PRKCQ)
are part of the T-cell receptor pathway, suggesting that
T-cell interactions could be disrupted in patients with
poor prognosis.
Discussion
We report here on the first deep sequencing analysis of
the DLBCL miRNome. We profiled 92 patient samples
(including samples from 83 uniformly R-CHOP treated
patients) and 15 normal centroblast fresh frozen samples
and analyzed the expression of known and candidate
novel miRNAs. We further sequenced miRNAs from
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Figure 6 NMF Identifies two clusters of DLBCL patients with distinct miRNA and outcome profiles. We performed non-negative matrix
factorization (NMF) clustering on 83 R-CHOP treated DLBCL patient samples, using the miRNA expression obtained from miRNA-seq data. (a) NMF
yielded two clusters of patients (see Additional file 9: Figure S4) that had distinct differences in their outcomes. Patients in cluster 1 are indicated
by dark gray bars, while patients in cluster 2 are indicated by light gray bars. Below the consensus matrix is a heatmap showing the expression of
miR-148a and miR-21 in each patient. (b) Kaplan-Meier curves showing overall survival and progression-free survival of patients in both clusters.
Patients in cluster 1 exhibit inferior outcome compared to those in cluster 2. (c) To identify which miRNAs were characteristic of each cluster, we
identified the differentially expressed miRNA between the two clusters. The MA plot shows that miR-21 abundance is increased in cluster 2 patients,
while miR-148a abundance is decreased in cluster 1 patients (Wilcoxon test q-value <0.05). (d) Expression patterns of miR-148a and miR-21
are discontinuous. miRNA expression in DLBCL patient samples is indicated with black squares, while expression in centroblast samples is
indicated with orange diamonds.
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140 FFPET-derived DLBCL samples as a Validation
Cohort for our survival analyses. In addition, our in-
tegrative miRNA:mRNA expression analysis was used
to inform on the potential impact of miRNA dysregu-
lation on B-cell biology and on DLBCL pathogenesis.
These data provide a genome-wide view of miRNA
expression and dysregulation in DLBCL.
Existing miRNA profiling efforts in DLBCL patient co-

horts have largely been probe-based [6,7,9,12,28], which
are biased toward detection of known miRNAs at the
expense of identification of candidate novel miRNAs.
miRNA-seq does not have this same limitation, and thus
provides an opportunity to identify candidate novel
miRNA species. A previous miRNA-seq analysis of 3
DLBCL cell lines identified more than 200 novel miR-
NAs [14]. (Additional file 13: Table S12) Here we report
on the discovery of an additional 234 novel miRNAs in
92 DLBCL tumor samples, where 30 of these were fre-
quently expressed across DLBCL tumor samples and 29
were also detected (median RPM >1) in the FFPET
Validation Cohort (n = 112) (Additional file 6: Table S6).
Of note, miR-10393-3p appeared to be more abundant in
DLBCL tumor samples than in benign centroblasts.
Further, our analysis is compatible with the notion
that miR-10393-3p may play a role in the pathogenesis of
DLBCL through attenuation of chromatin modifier gene
expression.
DLBCL tumors have been shown to have miRNA

expression profiles distinct from those of benign B-cells,
and dysregulated miRNAs have functional roles in B-cell
differentiation and lymphomagenesis [13]. To shed light
on the functions of dysregulated miRNAs, we performed
an integrative miRNA and mRNA expression analysis
which provided a transcriptome-wide view of miRNA:
mRNA interactions that may be acting in DLBCL. This
analysis indicated that the miRNAs that are abundantly
expressed in DLBCL may modulate cell cycle regulation,
cell metabolism and chromatin modification in disease
progression. We and others [23,29] recently reported
the frequent mutation of chromatin modification genes in
NHL, illustrating the relevance of the epigenome in ma-
lignant progression. Our work here presents miRNA-
mediated repression as another mechanism for the
dysregulation of chromatin modification genes that are
mutated in NHL. First, we show that the expression of a
candidate novel miRNA (miR-10393-3p) is abundantly
expressed in DLBCL when compared with centroblasts.
Further, miR-10393-3p exhibits significant expression
profiles that are anti-correlated with the expression
profiles of 11 chromatin modification-related genes, in-
cluding MLL2/KMT2D and EP300, which are recurrent
targets of somatic mutation in NHL [23]. These results
suggest DLBCL progression could proceed through
mutations or miRNA-mediated repression as mechanisms
that modulate the epigenome.
Given that DLBCL comprises molecularly distinct

subtypes, we sought to identify differentially expressed
miRNAs that were associated with these subtypes. miR-
NAs that were upregulated in ABC-DLBCL included
members of the oncogenic miR-17-92 cluster (miR-106a,
miR-17, miR-20a, miR-92a) [30], and others that have
been implicated in lymphomagenesis in mouse models
(miR-155 [17], miR-21 [31]). Although not previously
implicated in the pathogenesis of ABC-DLBCL, miR-625
has been shown to regulate invasion and metastasis in
gastric cancer by targeting and regulating the expression
of ILK [32]. Members of the miR-29 family, including
miR-29b, target the WNT signaling pathway by attenuat-
ing expression of DNMT3A and DNMT3B [33]. Mem-
bers of the miR-30 family have been shown to bind to
and regulate BCL6 in B-lymphocytes and lymphoma
cells [34]. Thus, decreased expression of miR-30b in
GCB-DLBCL could promote the germinal center pheno-
type through the de-repression of BCL6.
Previously, a pan-cancer miRNA analysis revealed that

miRNA expression profiles tend to be tissue specific and
can distinguish cancer samples of different cancer types
from one another [21]. Another pan-cancer effort dem-
onstrated that expression levels of miR-142 and miR-509
expression to be characteristic of lymphomas when com-
pared with melanomas within a decision tree consisting
of 25 cancer types [35]. Our comparison of DLBCL and
centroblast miRNA expression data to similar data from
TCGA cancers showed that the miRNAs that are fre-
quently expressed in DLBCL (including 3 candidate novel
miRNAs) tended to have B-cell enriched expression
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patterns and candidate functions and they are frequently
dysregulated in B-cell lymphomas. For instance, miR-191
is part of a 6-miRNA signature that can discriminate
B-lineage acute lymphoblastic leukemia (ALL) subgroups
harboring specific molecular lesions [36]. miR-7 is ab-
normally increased in abundance in lymphoid cancers in-
cluding childhood ALL [37] and follicular lymphoma [38].
miR-155 expression is known to be crucial in the B-cell
germinal center transition through regulation of the
master B-cell regulator AID [39], and its expression
levels are crucial for normal B-cell function: over-
expression of miR-155 is associated with DLBCL, while
under-expression is associated with Burkitt lymphoma
[40]. miR-142, the miRNA that displayed the most sig-
nificant increase in abundance in B-cell contexts, has
been shown to regulate B-cell stimulation by downregu-
lating the expression of SAP, CD84 and IL-10 proteins
[41]. miR-142 is also mutated in approximately 20%
of DLBCL cases, where mutations in the seed region
lead to a loss of binding activity to oncogenic RAC1
and ADCY9 mRNA transcripts and a possible gain of
binding activity to transcriptional repressors ZEB1 and
ZEB2 [42].
The ability to accurately predict response to therapy

and survival is advantageous for DLBCL patient treat-
ment planning. In this regard, there have been several
efforts to explore the utility of miRNA expression. For
example, Alencar et al. [11] investigated the prognostic
value of 11 miRNAs using qPCR, while Montes-Monero
et al. [10] similarly evaluated miRNA profiles in 36
patients using microarray-based technology. Our results
reveal that the expression of 25 miRNAs is associated
with both OS and PFS independently of established indi-
cators of patient outcome (COO and IPI). We replicated
our survival analyses in our FFPET-derived Validation
Cohort. We utilized FFPET samples as these were avail-
able to us and fresh frozen samples were not. Studies
have compared miRNA expression profiles obtained
from FFPET and fresh frozen samples, and have shown
that differences between profiles exist [25,43,44]. For
example, miRNAs extracted from FFPET tend to have
shorter average lengths [43], reduced purity [25], and
higher expression levels than miRNAs from fresh frozen
samples [44]. Despite the differences between our fresh
frozen Discovery and FFPET Validation Cohorts, we
replicated the robust association of six miRNAs (miR-
28-5p, miR-214-5p, miR-339-3p, miR-5586-5p, miR-324-
5p, NOVELM00203M) with OS and PFS independently
of COO and IPI. The independent association of these
miRNAs with OS and PFS suggests that there is hetero-
geneity within the groups derived from the COO and IPI
classifications. Further, our integrative analysis indicated
that the mRNA targets of NOVELM00203M are invol-
ved in cell adhesion (GO:0007155), reinforcing the
importance of cell adhesion [45] in the pathogenesis of
DLBCL. miR-28 has previously been associated with
DLBCL patients outcome [10], and is a tumor-suppressor
in Burkitt Lymphoma [46]. However, the other five miR-
NAs we identified as independent factors affecting sur-
vival of patients with DLBCL, miR-214-5p, miR-339-3p,
miR-5586-5p, miR-324-5p, and NOVELM00203M have
not previously been implicated in DLBCL outcome. Al-
though beyond the scope of this study, these miRNAs
may serve as the basis for a future prognostic tool and will
inform further studies of DLBCL biology.
Conclusions
We describe, for the first time, deep and comprehensive
profiling of the DLBCL miRNome using miRNA-seq.
Deep sequencing of miRNA (miRNA-seq) provided us
with a unique opportunity to catalog the repertoire of
miRNA expression and study miRNA dysregulation
comprehensively. Of particular note, our analysis identi-
fied (in both the Discovery and Validation Cohorts) five
known miRNA and one candidate novel miRNA (miR-
28-5p, miR-324-5p, miR-214-5p, miR-339-3p, miR-5586-
5p, NOVELM00203M) that are associated with patient
survival independently of established indicators of out-
come (cell-of-origin and International Prognostic Index
scores). Our integrative analysis of miRNA-seq data with
mRNA expression data from the same patients revealed
that miRNAs that are upregulated in DLBCL appear to
regulate genes involved in modulating the epigenome,
and several of these are recurrently mutated in DLBCL
as previously reported. It thus appears that dysregulation
of the epigenome in DLBCL can be achieved through
these different mechanisms. In addition, our comparison
of DLBCL miRNA-seq expression profiles with those
from 7,238 TCGA miRNA-seq libraries identified miR-
NAs (including three candidate novel miRNAs) that were
more abundant in B-cell contexts, suggesting that these
miRNAs may have B-cell specific functions in malignancy.
Finally, this rich data set should prove valuable for resear-
chers exploring DLBCL biology.
Materials and methods
Lymphoma patient samples (both Discovery and
Validation Cohorts)
This project was approved by the University of British
Columbia–BC Cancer Agency Research Ethics Board as
part of a broad effort to increase understanding of the
molecular biologic characteristics of lymphoid cancers
(REB #H05-60103). Informed consent was obtained in
accordance with the Declaration of Helsinki. Lymphoma
samples were classified by an expert hematopathologist
(RDG) according to the World Health Organization
criteria of 2008.
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Patient sample acquisition (Discovery Cohort)
Benign specimens were purified CD77-positive centro-
blasts sorted from reactive tonsils using Miltenyi mag-
netic beads (Miltenyi Biotec, CA, USA). More details
and the cell-of-origin subtype assignment (performed
using RNA-seq expression values) are reported in Morin
et al. [23]. RNA extraction was performed as reported in
The Cancer Genome Atlas Research Network, 2013 [47].

Patient sample acquisition (Validation Cohort)
These samples were obtained from FFPET blocks from
which one to two 10 μm scrolls of each block were cut.
Subsequently, total RNA, including miRNA, was extrac-
ted from FFPET tissues using AllPrep DNA/RNA FFPET
(Qiagen) and High Pure (Roche) kits in a procedure
developed by the TCGA project through the Biospeci-
men Core Resources at Nationwide Children’s Hospital
and International Genomics Consortium (manuscript in
preparation). The cell-of-origin subtype assignment was
performed as reported in Scott et al. [48].

Library Construction and Sequencing of miRNA-seq
Illumina libraries
miRNA-seq library construction, sequencing, read align-
ment, and miRNA expression profiling was performed
as reported in The Cancer Genome Atlas Research Net-
work, 2013 [47]. Our threshold for calling expressed
miRNAs (>10 RPM in >10% samples) was based on miR-
Base criteria [16] for high confidence miRNAs. The
miRNA-seq bam files of DLBCL samples from both the
discovery and validation cohorts and the centroblasts
are uploaded on EGA (Study#: EGAS00001001025 and
Data Set#(s): EGAD00001001073, EGAD00001001074,
EGAD00001001075); web link: [49].

Discovery of candidate novel miRNAs
Novel miRNA discovery was performed using mirDeep
[50] in each of the 92 DLBCL miRNA-seq libraries.
miRNA-seq reads were extracted from BAM files into a
SAM format that was then analyzed using the mirDeep
algorithm. As recommended by the authors of the soft-
ware, only miRNA-seq reads >17 nucleotides in length
were used for analysis. A list of all candidate novel miR-
NAs and their genomic coordinates was obtained from
the results of each miRDeep run and then merged into a
single file to eliminate duplicate entries. Merging was
performed using a Perl script that considered overlap-
ping genomic coordinates within +/− 2 bp. Each unique
candidate novel miRNA was then given a name with the
following format: ‘NOVEL[M/S]XXXXX’, where M and
S indicated the mature or star strand respectively, and
where the Xs represented a unique index number for
each entry. In several instances, miRDeep had incor-
rectly identified other RNA species (that is, snoRNA,
tRNA) as miRNA. These were identified by intersecting
their coordinates with tracks supplied by UCSC [51]
for these RNA species (using intersect of the bedtools
package v2.16.2), and disregarded in subsequent ana-
lyses. NOVELM00113, NOVELM00156, NOVELM00203,
NOVELM00289, and NOVELM00295 were retained for
analysis, but we note that they also share sequence iden-
tity with mt-tRNA, RNU12, SOX2-OT, RNU4-82P, and
RNA28S5, respectively, and thus may also be classified as
other species of RNAs. The shortlisted genomic coordi-
nates were then used as annotations in our miRNA profil-
ing pipeline to assess the expression of the candidate
novel miRNAs in all 92 DLBCL and 15 centroblast
miRNA-seq libraries.

Analysis of HITS-CLIP data
HITS-CLIP data from Haecker et al. [20] were obtained
from the Sequence Read Archive (ID: SRR580359,
SRR580360, SRR580361, SRR580362, SRR580363). The
reads were aligned and processed for miRNA expression
with the same protocols that were used for our miRNA-
seq libraries.

Quantitative RT-PCR for novel miRNA validation
To measure miRNA expression, leftover total RNA from
tumor tissues utilized for miRNA sequencing were syn-
thesized into cDNA using the Universal cDNA Synthesis
Kit II (Exiqon, Denmark) and qPCR was performed
using the ExiLENT SYBR Green master mix (Exiqon)
following the manufacturer’s protocol. Reverse Tran-
scription conditions used were: 42°C for 60 min, 95°C
for 5 min, and stored at −20°C until ready for use. cDNA
was diluted 1:80 prior to use for qPCR. qPCR conditions
used were 40 cycles of 95°C for 10 s and 60°C for 1 min.
All measurements were performed in triplicates. miRNA
expression was normalized to endogenous RNU48 levels
using the ΔΔCt method.

mRNA isoform-specific expression profiling with mRNA-seq
mRNA-seq sequence data were obtained from Morin
et al. [23]. The mRNA-seq paired-end reads were aligned
to RefSeq hg19 genome using TopHat v1.4.1 [52]. Align-
ments were then interrogated for isoform-specific expres-
sion profiles using Cufflinks v1.3.0 [52]. Only mRNA
transcript isoforms that were expressed at 1 fragment per
kilobase of million mapped reads (FPKM) in at least 10%
of samples were considered for analysis.

Differential expression analysis
Prior to differential expression analysis, miRNA expres-
sion profiles were quantile normalized using the R prepro-
cessCore package. Evaluation of the differential expression
of miRNA and mRNA was performed using the Wilcoxon
ranked-sum test for each miRNA and mRNA. Significantly
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differentially expressed miRNA had Bejamini-Hochberg
(BH) multiple test corrected P values (q-values) <0.05.

Integrative miRNA:mRNA expression analysis
For the integrative miRNA:mRNA expression analysis
we considered miRNAs and mRNA transcript isoforms
that were expressed in >10% of DLBCL and centroblasts
samples. A Spearman correlation coefficient (rho) score
and P value was generated for each miRNA:mRNA pair.
The P values were then multiple-test corrected for
each miRNA with the BH algorithm. Significantly anti-
correlated pairs were those that had Spearman correlation
coefficient scores <0 and adjusted q-values <0.05. To ac-
count for correlations that might have been stochastic
noise, the rho distribution was then divided in 40 bins and
the counts for each bin compared with counts from a null
distribution. miRNA:mRNA pairs in each bin were sorted
by adjusted p-value, and only those that ranked above the
threshold set by counts from bins derived from null dis-
tribution were considered for further analysis. The null
distribution was derived by performing the Spearman
correlations 100 times, each time randomizing the
miRNA-seq library IDs.
Two algorithms were used for miRNA target pre-

diction: TargetScan6.0 [53] and miRanda [54]. Target
prediction was performed on all RefSeq hg19 mRNA
transcript isoform sequences (including the 5’-UTR,
CDS and 3’-UTR). While it is generally accepted that
miRNAs target the 3’-UTR of mRNA transcripts, there
are also reports of miRNA target sites in the CDS (that
is, Forman et al. [55]; Duursma et al. [56]; Qin et al.
[57]; Ott et al. [58]). In addition, the binding of miRNAs
to binding sites within the 5’-UTR is as effective as
binding to sites within the 3’-UTR [59]. Further, binding
of miRNAs to CDS regions has been confirmed using
large-scale high throughput approaches for isolating
Argonuate-bound target sites. (Chi et al. [60]; Hafner
et al. [61]). Thus, although evidence for binding sites in
5’-UTR and CDS regions is still accumulating, evidence
for them exists in the literature and so we included them
in our analysis along with those within the 3’-UTR.
Although we required that candidate binding sites be
identified using both TargetScan6.0 [53] and miRanda
[54], it is possible that certain predictions represent false
positives.
miRNA sequences and input data for annotated miR-

NAs was obtained from TargetScan and miRanda, re-
spectively, while candidate novel miRNA sequences
were obtained from miRNA-seq consensus sequences.
miRNA:mRNA pairs were considered to have a miRNA-
mediated repression interaction if they had anti-correlated
expression profiles and where the miRNA had a predicted
binding site (determined by both algorithms) on the
mRNA.
Gene Ontology (GO) term enrichment analysis
GO term enrichment analysis was performed using the
MGSA (v 1.10.0) R package [62]. The lists of predicted
target genes (obtained from the integrative expression
analysis) for each miRNA were assessed separately for
enriched GO Bioprocess terms. Significant terms were
those with standard error measurements <0.05 and esti-
mates >0.2. To assess whether groups of miRNAs (that
is, where a group might consist of miRNAs that are up-
regulated in DLBCL), together enriched particular GO
Terms more so than by random chance, a Fisher’s Exact
test was performed for each enriched term. The num-
bers of miRNAs in the category and out of the category
that enriched the GO term were compared. The Fisher’s
Exact Test P values were then multiple-test corrected
with the BH algorithm, where significant enrichments by
a category were those with q-values <0.05.

Cell culture
HEK-293 cells were maintained in Dulbecco’s Modified
Eagle Medium (DMEM; Life Technologies, Burlington
ON) supplemented with 10% (v/v) fetal bovine serum
(FBS; Life Technologies) in a 37°C incubator with 5%
CO2, humidified atmosphere.

Plasmid constructs
The MLL2/KMT2D or EP300 genomic or mismatched
sequences corresponding to the predicted miR-10393-
3p binding sites were synthesized (IDT Technologies,
Coralville, IA, USA) and cloned into the XhoI/NotI restric-
tion sites of the psiCHECK2 vector (Promega, Madison,
WI, USA) directly downstream of the Renilla luciferase
reporter gene and verified by DNA sequence analysis. The
mismatched sequences were designed to be exactly com-
plementary to the seven nucleotide seed regions of each
of the predicted miR-10393-3p binding sites to MLL2/
KMT2D or EP300.

MicroRNA mimics
MicroRNA expression was increased using MIRIDIAN
microRNA mimics (ThermoScientific, Waltham MA) di-
rected against miR-10393-3p (M10393; 5’-UUGGUCAG
AUUUGAACUCUUCA-3’) and negative control #2 (NC2;
non targeting control against C. elegans cel-miR-239b).
Mimics were resuspended in nuclease-free water at a stock
concentration of 100 μM.

Dual-Luciferase reporter assays
HEK-293 cells were seeded onto 24-well plates the day
before transfection. Perfect binding or mismatched
reporter constructs were co-transfected with miR-10393-
3p mimics or NC2 control mimics using TurboFect
Transfection Reagent (ThermoScientific) in OPTI-MEM
(Life Technologies) without FBS. Six hours following
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transfection, the media was changed to DMEM supple-
mented with 10% FBS. Cells were reseeded the following
day into 96-well plates and 48h following transfection,
cells were lysed and luciferase activities were assayed
using the Dual-Glo Luciferase Reporter Assay System
(Promega). The Renilla to Firefly luciferase ratios were
calculated for each well to account for transfection efficien-
cies. These experiments were performed in quadruplicates
and were shown as means ± SEM. Statistical comparisons
were performed using unpaired two-tailed T-tests with
Bonferroni multiple-test correction, where significant dif-
ferences were those with adjusted P value <0.05.

Survival analysis
Progression-free survival (PFS; event = progression of
disease or death from any cause) and overall survival
(OS; event = death from any cause) were estimated. For
each miRNA, we used X-tile cohort separation [24] to
categorize patients into low and high expression groups,
and then performed log-rank tests based on these
derived groups. For the multivariate analysis for each
miRNA, we considered the aforementioned low and high
expression groups along with COO and IPI status using
the Cox proportional hazards (Cox PH) method. All cal-
culations were performed using the Survival R package
[63]. Survival analyses were performed as above for both
the discovery and validation cohorts. Significant asso-
ciations with survival were those with P value <0.05. In
addition, P values obtained from the log-rank tests in
the discovery cohort were subjected to multiple-test cor-
rection using the BH algorithm, and significant associa-
tions for that analysis were those with corrected P values
(q-values) <0.05.

NMF clustering of miRNA-seq expression
miRNAs that were expressed at levels >10 RPM in at
least 10% of the 92 DLBCL and 15 centroblast samples
were included in the NMF clustering analysis. Because
we were interested in assessing associations with out-
come between groups of patients, we only considered
the data from the 83 patients that were uniformly
treated with R-CHOP for this clustering analysis. We
generated unsupervised consensus clustering results as
described in The Cancer Genome Atlas Research Net-
work, 2013 [47]. We used the default Brunet algorithm
and 100 iterations for the rank survey and clustering
runs. A preferred cluster result was selected by consider-
ing the profiles of the cophenetic scores of the consen-
sus membership matrix for clustering solutions having
between two and eight clusters. We chose the 2-group
(k = 2) solution as it had the second highest cophenetic
score and produced a visually clean consensus matrix
when compared with the other solutions (Additional
file 9: Figure S4). Since some of the k = 3 to 8 solutions
have relatively high cophenetic scores, there is likely het-
erogeneity within ‘cluster 2’ of the k = 2 solution. However,
we chose to present the k = 2 solution because the focus
of our analysis was on the characterization of ‘cluster 1’,
the cluster that does not lose its integrity as we increase
the number of clusters. That is, in the k = 8 solution, ‘clus-
ter 1’ (from the k = 2 solution) still appears as a distinct
cluster of patients with poor outcome that is characterized
by reduced expression of miR-21 and abundant expression
of miR-148a.
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