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Abstract

Background: Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory
networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been
observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, we study a
collection of 75 CLIP-Seq experiments mapping the RNA binding sites for a diverse set of 51 human proteins to
explore the role of TEs in post-transcriptional regulation of human mRNAs and IncRNAs via RNA-protein interactions.

Results: We detect widespread interactions between RNA binding proteins (RBPs) and many families of TE-derived
sequence in the CLIP-Seq data. Further, alignment coverage peaks on specific positions of the TE consensus sequences,
illuminating a diversity of TE-specific RBP binding motifs. Evidence of binding and conservation of these motifs in the
nonrepetitive transcriptome suggests that TEs have generally appropriated existing sequence preferences of the RBPs.
Depletion assays for numerous RBPs show that TE-derived binding sites affect transcript abundance and splicing similarly
to nonrepetitive sites. However, in a few cases the effect of RBP binding depends on the specific TE family bound; for
example, the ubiquitously expressed RBP HuR confers transcript stability unless bound to an Alu element.

Conclusions: Our meta-analysis suggests a widespread role for TEs in shaping RNA-protein regulatory networks in the

human genome.

Background

The staggering 45 to 60% of nucleotides in the human
genome derived from transposable elements (TEs) remain
an enigma in our understanding of the function and evolu-
tion of the human genome [1,2]. TEs are sequences capable
of propagating by self-replication to new positions in the
genome [3,4]. This ability comes in many forms, allowing
for classification into a multitude of families [5]. The gen-
omic role of TEs has followed an interesting arc — they
were initially described as controlling elements in maize,
due to the impact of insertions on local gene expression
[6]. As their significance was recognized, it was noted that
TEs’ ability to self-replicate meant that a beneficial func-
tional role was unnecessary to explain their conquest of the
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genome [3,4]. This led to their well-known categorization
as junk DNA.

Recent research has revisited the topic of TE impact
on gene expression, noting that the dissemination of highly
similar sequence accomplished by TEs is a powerful way
to link many diverse genomic regions into a regulatory
network [7]. In a number of cases, extant TE sequences
have integrated with established genomic functions and
been co-opted by the genome for critical roles [7,8]. In
the most studied paradigm, some TEs contain DNA bind-
ing site motifs for transcription factors and have rewired
the transcriptional regulatory networks in which these
transcription factors function by introducing many
new binding sites via their insertions throughout the
genome [9-14].

In the substantial portion of the genome transcribed
into RNA [15], TE-derived sequences also appear in RNA
transcripts where they can interact with RNA binding pro-
teins (RBPs), which also often have preferred binding site
motifs [16]. In perhaps the most understood and interesting
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example, the antisense strand of Alu elements contains
motifs that recruit the cell’s splicing machinery and have
thus introduced hundreds of novel exons into various pro-
tein coding genes [17-19]. Sequence derived from TEs has
also been implicated in both degradation [20] and increas-
ing the translation [21] of RNA transcripts. However, the
extent to which these examples generalize is unknown, as
a comprehensive search for interactions between TEs and
RBPs has not yet been performed. Such a search is further
justified by the recent appreciation that long noncoding
RNAs (IncRNAs), a class of more than 10,000 genes with
a rapidly growing list of critical functional roles [22,23],
contain TEs at a rate near the high genomic average but
in biased proportions of the various individual families,
suggesting a possible functional role [24,25].

Crosslinked immunoprecipitation (CLIP)-Seq is the
state of the art technique for mapping the direct binding
sites of an RBP. It involves crosslinking cells to lock RNA-
protein interactions, immunoprecipitating the complexes
using an antibody specifically targeted to the RBP, sequen-
cing cDNA reverse transcribed from the captured RNA,
and statistically analyzing the aligned sequencing reads
[26]. CLIP-Seq has been applied to dozens of RBPs to
study splicing regulation [27-29], translation efficiency
[30-32], and explore RBPs mutated in neurological disor-
ders [33]. These studies largely focused on uniquely map-
ping reads and ignored repetitive sequences, leaving the
extent of RBP binding to TEs unexplored.

Here, we surveyed evidence for RBP binding to TE-
derived RNA sequence in a collection of 75 CLIP-Seq
experiments on 51 RBPs performed in human cells.
We processed all datasets using a standardized CLIP-
Seq analysis pipeline. In these data, RBP interactions
with TE-derived sequences were widespread, and we
detected hundreds of specific pairwise interactions.
Alignment coverage clustered on specific regions of the
TE consensus sequences. From these high coverage re-
gions, we extracted a diversity of TE-specific motifs that
extensively characterize the in vivo binding preferences of
the RBPs. The presence of CLIP-Seq coverage and conser-
vation at nonrepetitive instances of these motifs suggest
that the TEs appropriated existing binding preferences of
the RBPs. RBP binding to TE-derived sites influenced
RNA abundance and splicing to a comparable extent as
binding to nonrepetitive sites in RBP knockdown experi-
ments. Altogether, our comprehensive meta-analysis suggests
a widespread role for TEs in shaping post-transcriptional
RNA-protein regulatory networks in the human genome.

Results
CLIP-Seq alignments are enriched in specific transposable
elements
To comprehensively survey RBP interactions with TEs in
the human genome, we collected and systematically
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processed all accessible CLIP-Seq datasets, settling on 75
experiments mapping 51 RBPs (Materials and methods).
First, we compared the number of aligned reads, relative
to total library size, overlapping all instances of each TE
family in both orientations in the CLIP-Seq to a null
model expectation (Figure 1A). We can split each TE fam-
ily into its sense and antisense orientations because CLIP-
Seq uses a strand-specific library construction method. To
control for differing mappability of the TE families and
varying expression levels of transcripts containing specific
TE families, we compared alignment coverage to simu-
lated coverage from a null model (see Materials and
methods).

We found many TE families were enriched for CLIP-Seq
aligned reads from specific RBPs (Figure 1B). Enrichments
and depletions of RBP-TE associations were broadly similar
in mRNA exons, IncRNA exons, and introns (Figure S1 in
Additional file 1). We benchmarked our approach by
comparing it to previous CLIP studies discussing RBP-TE
interactions. STAU1 binding to Alu sequence is a well-
known phenomenon [20,34], and we confirmed that inter-
action here, observing a 3.2- to 4.1-fold enrichment of
STAUI alignments in Alu-derived sequence. Zarnack et al.
[35] found that hnRNP C preferentially binds antisense
Alu elements in RNA, where it prevents U2AF65 binding
and aberrant splicing. Our analysis pipeline reproduced
that interaction, detecting a 2.3-fold enrichment of hnRNP
C alignments in antisense Alu elements throughout the
transcriptome. TDP-43 binding to TE-derived sequence
had also been previously noted [36]. We observed this
phenomenon in the form of significant enrichments to
antisense L1 (1.3- to 1.7-fold) and antisense Alu (1.5-
to 2.3-fold) elements [37]. Together, these results dem-
onstrate that our mapping and normalization pipeline
confirms previously reported TE-driven RNA-protein
interactions.

We further detected hundreds of significant novel en-
richments between RBPs and TEs. The signal strength
from even this low-resolution analysis — considering en-
richment over the entirety of TE sequences - suggested
that RBP-TE interactions are widespread. Thus, we pro-
ceeded to dissect these enrichments and their biological
implications.

CLIP-Seq alignments cluster on specific transposable
element motifs

Having observed overall enrichment of alignments in fam-
ilies of TE-derived sequence, we next asked whether spe-
cific subregions of the repeat consensus sequences drive
these enrichments. Many RBPs have specific sequence
and/or structure preferences [16,38]. These preferred
motifs may appear in TE sequence and manifest as
peaks in alignment coverage on the TE consensus. To
control for uneven mappability and genomic coverage
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Figure 1 CLIP-Seq alignments are enriched and depleted in specific TEs. (A) Across the entire transcriptome (including introns), we counted
overlapping aligned reads in the CLIP-Seq and null model simulation for every TE family in both orientations. The top track draws an example
gene with blue boxes representing exons. The track below draws a set of example TEs, colored by family and with arrowhead describing orientation.
Alignment coverage from CLIP-Seq and null simulation experiments are drawn below, with CLIP-Seq coverage spiking primarily on the purple
TE in antisense orientation to the gene. (B) Heatmap in which we plotted the log2 ratio of the CLIP-Seq and null model counts, normalized by
library size, for every pair of TE family in both orientations on the y-axis and RBP (with publication first author) on the x-axis. The heatmap was
column mean normalized. Black rectangles highlight well-characterized interactions between STAU1 and Alu elements and hnRNP C and
antisense Alu elements. TcMar-Tigger and hAT-Charlie are DNA transposons, which transpose via a cut-and-paste mechanism. ERVL, ERV1, and
ERVL-MaLR are endogenous retrovirus families that have long terminal repeats (LTRs) on both ends. Both long interspersed nuclear elements

copy-and-paste mechanism.

(LINEs) and short interspersed nuclear elements (SINEs) are non-LTR retrotransposons, which mobilize via an RNA intermediate using a

of TEs, we compared CLIP-Seq alignment coverage to
coverage from the uniform null model across TE con-
sensus sequences (see Materials and methods).
Strikingly, both enriched RBP-TE pairs and many others
without enrichment showed strong evidence of RBP bind-
ing to specific subregions within the TE consensus. For
example, hnRNP H1 CLIP-Seq alignments clustered on
two particular subregions of the antisense consensus of L2
elements (Figure 2A,B). Even sharper peaks appeared in
both the sense and antisense orientations of the DNA
transposon Tiggerl (Figure 2C,D), where the large size of
the approximately 2,500-nucleotide element hid the inter-
action in Figure 1. In each case, the underlying sequence

was AG-rich, in line with prior studies on hnRNP H1
binding preferences [39,40].

Having witnessed peaked coverage within TE subre-
gions, we next compared and contrasted the preferences
for these subregions among the many RBPs analyzed. In
some cases, RBPs shared a preference - for example, a
number of RBPs shared hnRNP C’s affinity for two poly-U
tracts of antisense Alu elements, which are well-studied in
their sense poly-A form (Figure S3 in Additional file 1)
[41]. However, even for antisense Alu, we observed a di-
versity of binding profiles among enriched RBPs, with
STAU1, FMRI1, and hnRNP U preferring different sub-
regions (Figure S3 in Additional file 1). RBPs sharing a
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Figure 2 hnRNP H1 CLIP-Seq coverage clusters at specific TE motifs. (A) Two replicates of hnRNP H1 CLIP-Seq alignments show an alignment
coverage peak at the same position of an antisense L2c element in B4GALT2. (B) hnRNP H1 alignments are enriched for antisense L2c overall, and
coverage on the consensus 3" end of the element clusters on two AG-rich positions. Coverage was normalized to sum to one across the TE span.
(C,D) In contrast, Tigger1 is depleted for hnRNP H1 overall, but nearly all alignments cluster on particular positions in both the sense (C) and antisense

similar binding profile in one TE did not generalize to
common profiles in all TEs. For example, the splicing
factor U2AF65 bound near hnRNP C in antisense Alu ele-
ments, where aberrant splicing is repressed [35], but the
two RBPs bind apart in antisense L1 elements (Figure S4
in Additional file 1).

RBPs mapped using the same experimental protocol
within a single study offer a valuable opportunity to ask
whether the binding profiles are broadly similar between

RBPs, which might occur if sequence composition biases
of the protocol overwhelm the true signal. The differences
between hnRNP C and U2AF65, both mapped by Zarnack
et al. [35], in antisense L1 elements described above gen-
eralized to other major elements (Figure S4 in Additional
file 1), lending credence to the authenticity of the detected
interactions. As an additional example, CLIP-Seq HuR
and Ago2 coverage profiles in Kishore et al. [42] diverge
drastically (Figure S5 in Additional file 1).
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Based on our observation that RBP alignment coverage
clusters on specific subregions of TEs, we sought to sys-
tematically identify the underlying sequence motifs. To
this end, we segmented coverage peaks where CLIP-Seq
coverage was greater than three-fold more than the null
model and refer to them hereafter as TE-specific motifs
(TESMs). To standardize the TESMs for further analysis,
we focused on nine nucleotide motifs centered at the max-
imum coverage nucleotide of each peak region. Although
many known RBP motifs are shorter [16], we chose nine
to include additional surrounding context and add specifi-
city in studying the motif occurrences.
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The TESM sequences broadly matched the known bind-
ing preferences of the RBPs. In accordance with prior
work, TE enrichments of the ubiquitously expressed sta-
bilizing RBP HuR were driven by binding to U-rich re-
gions (Figure 3) [43,44]. HuR appears to bind these U-rich
motifs in prevalent antisense Alu, antisense L1, and sense
L2 elements. Its affinity for antisense Alu focuses on the
two poly-U tracts (Figure 3B).

Uridine is known to crosslink more efficiently in PAR-
CLIP experiments [42,45], which was used by all three
groups to map HuR [42-44]. To address the possible con-
cern that this may produce false positives, especially in the

4 5
AU count

A ogam o 1zms B C
ot mo
1. -
I . ~itore 0 —
Genes ITPRIPL2 St Mukherjee /
I Lebedeva
Sim_Kishore
RP11-626G11.3 — Sim_Mukherjee
. _ g 0.04 “"‘ Sim_Lebedeva 0.75
TEs - AluSx - Aluo g “ | E
o
.IA\qu 3 003 ([ o
w o A S os0
@ ‘3\‘ =
Kishore N | \
HuR CLIP 2. g 0.02 ‘\ “‘ LIE_I
o = |l
. 2 0.25
Mukherjee Y 0.01
HuR CLIP
o kb 1 | Y T ‘ Lo h ul L
| - -\ dAlu- RNAS
Lebedeva | ] ll M I 0001 N 0.00 Alu- RNAs
HuR CLIP * h I S ; 260 360 -4 -2 0 2
J o bl il TN . — log2 HuR RIP/Input
E F
D MER107/~ CJ6/.J6
HuR TESMs 4{ -
9-Crich LINE/LY A-rich MSTA/+ cGGAGG»GG
SINE/AlU —
ol LTRERVL-MalR MLT1A0/+ AGQQGQGC
LTR/ERVL
7+ DNA/AT-Charlie L1MB7/+  (2606eCl6
DNA/TcMar-Tigger
5 MLTIK/= | e[ l0c
= V. 6Vgbel
=] 5-
8 AluSx/— Ul
o,
< Tigger3b/- »AC _A(

L1PA16/~  cupell s
L2 yludlwes

MER41B/+ | Jeclls

daté

deeeiec

log10 motif occurrences

Figure 3 HuR binds U-rich motifs in antisense Alu elements. (A) CLIP-Seq alignments from three different studies demonstrated HuR binding
within an antisense AluSx in the 3" UTR of ITPRIPL2, (B) which generalized to genome-wide binding to two poly-U tracts in the antisense Alu consensus,
shown here as alignment coverage normalized by dataset to sum to one across the element. (C) In a formaldehyde RNA immunoprecipitation
(fRIP)-Seq of HUR, genes containing exonic antisense Alu elements (Alu- RNAs) were strongly enriched in the RIP over input compared with
genes devoid of antisense Alu (dAlu- RNAs). Genes targeted via intronic antisense Alu elements also showed strong evidence of binding (Figure
S6 in Additional file 1). (D) Plotting all HuR TE-specific motifs by their nucleotide composition revealed a diversity of motif compositions but a
strong tendency towards Us. The x-axis specifies the expected number of As and Us in the motif model, and the y-axis specifies the expected
number of As and Cs. Point size is proportional to the log2 of the number of CLIP-Seq alignments overlapped by the motif. (E,F) To better reveal the
relationships between the strongest motifs, we collapsed highly redundant motifs into 12 representatives and hierarchically clustered them
using information coverage Euclidean distance (see Materials and methods) [75].
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prominent binding to U-rich antisense Alu-derived se-
quence, we performed an HuR formaldehyde crosslinked
RNA immunoprecipitation and sequencing (fRIP-Seq),
which does not suffer from a uridine bias (see Materials
and methods). Consistent with the enriched CLIP-Seq
alignment coverage, genes containing antisense Alu ele-
ments had far greater fold changes in our fRIP over input
RNA than devoid genes (Figure 3C), which was true for
both exonic and intronic occurrences of antisense Alu
(Figure S6 in Additional file 1). In fact, antisense Alu ele-
ments were the strongest predictor of HuR binding among
all TE families and orientations.

By leveraging the repetitive nature of TEs and combining
CLIP-Seq signal over many copies of similar sequences,
we extensively characterized the in vivo binding prefer-
ences of these RBPs. Plotting the nucleotide composition
of HuR TESMs clearly shows their uridine richness, with a
slight bend towards adenosines, matching prior expecta-
tions of HuR as a binder of AU-rich elements (Figure 3D)
[46]. Surprisingly, we discovered multiple HuR TESMs
with a different, somewhat G-rich composition (Figure 3E).
These motifs only account for a small proportion of the
alignments, but there is a strong enrichment for CLIP-Seq
alignments at both their TE and nonrepetitive occurrences
(Figure S7 in Additional file 1). Though the other HuR
CLIP experiments offer a mixed view of the relevance of
these sites (Figure S7 in Additional file 1), our HuR fRIP-
Seq suggests their validity (Figure S8 in Additional file 1).

Altogether, we delineated 15,424 TESMs from the 75
datasets. The distribution of motif number varied widely
between RBPs because the datasets differ in sequencing
depth and enrichment of bound RNA over input (Figure S9
in Additional file 1). Clustering the datasets by their
TESM coverage profiles revealed a diversity of RBP
binding preferences, with a substantial group of AU-rich
binders (Figure S9 in Additional file 1).

Overall, we found CLIP-Seq alignment coverage on
TEs is highly nonuniform, clustering on thousands of
TESMs, which generally matched the known RBP binding
preferences but also uncover possible alternative binding
modes. Enumerating and comparing the TESMs produces
an extensive characterization of the in vivo binding prefer-
ences of the RBPs.

Transposable element-specific RBP motifs are bound and
conserved in the nonrepetitive transcriptome

We next compared the binding preferences of the RBPs
within and outside of TEs. If a TESM is prevalent out-
side of the TE and attracts CLIP-Seq alignment coverage,
it would serve to validate the RBP affinity for that motif.
It might also suggest that the TEs, which are typically
newer entrants into the genome, appropriated existing
RBP sequence preferences.
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For this analysis, we considered only the top 300 TESMs
per dataset, which were chosen by collapsing highly re-
dundant motifs (for example, from homologous positions
of Alu subfamilies) and ranking by coverage enrichment
over the null model (see Materials and methods). Across
all datasets, we elucidated 5,546 TESMs with evidence of
RBP binding. We mapped these motifs in the nonrepeti-
tive portion of the transcriptome to study their properties.

To assess CLIP-Seq coverage of the TESMs outside of
repeats, we compared coverage directly at the motif with
that in a surrounding 200 nucleotide region. We observed
strong evidence that these motifs are bound outside of
TE-derived sequences; 87% had increased coverage at
the motif (Figure 4A), exemplified here by PTB CLIP-
Seq coverage on nonrepetitive occurrences of a motif
found in antisense L1MC4a (Figure 4B). Thus, RBP se-
quence preferences in TEs resemble those outside of
repeats.

To further explore the potential for function in these
nonrepetitive TESM occurrences, we considered their
conservation using PhyloP (Figure 4C) [47]. Due to the
severely different PhyloP backgrounds in the various an-
notation classes, we separated the analysis into introns,
IncRNAs, and 3" UTRs, ignoring coding sequence due
to its much higher conservation signal. Seventy percent
of motifs had a mean PhyloP above the intron baseline
mean, exemplified again by an L1MC4a motif found for
PTB (Figure 4D). The discovery of most motifs was
driven by intronic sequencing coverage; accordingly,
fewer motifs show constraint in the exonic sequence of
3" UTRs (47%) and IncRNAs (45%). Nevertheless, for all
annotation classes, TESM PhyloP distributions were sig-
nificantly greater than expected by random sampling of
9-mers (Figure S10 in Additional file 1), despite the fact
that 9-mers that appear in TE consensus sequences (ap-
proximately the set from which these TESMs were dis-
covered) have a severely decreased PhyloP distribution
overall (Figure S11 in Additional file 1). Motif conserva-
tion and CLIP-Seq coverage were not strongly related
(Figure S12 in Additional file 1).

We next asked whether the PhyloP distributions differed
by nucleotide position within a TESM. Indeed, plotting
these distributions revealed nonuniform conservation of
the motifs. Though in some cases constraint was present
across the entire motif (Figure S13a in Additional file 1),
in other cases only a subset of the nucleotides showed evi-
dence of constraint in interesting and often symmetrical
patterns (Figure S13b,c in Additional file 1). For a final
set, we detected a high mutation rate across the motif
(Figure S13d in Additional file 1), suggesting that many se-
quences throughout the nonrepetitive transcriptome have
mutated towards these motifs.

Altogether, TESMs show evidence of binding to con-
strained sequences in the nonrepetitive transcriptome,
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(See figure on previous page.)

Figure 4 TE-specific motifs are bound and conserved outside of TEs. We mapped 5,546 TE-specific motifs around the nonrepetitive transcriptome.
(A) CLIP-Seq alignment coverage indicated that most motifs were bound; 87% of motif instances showed increased coverage at the motif versus the
surrounding 200 nucleotides. (B) A motif discovered in PTB CLIP-Seq on antisense L1MB2 exemplified this, with coverage both in and out of LTMC4a.
(C) PhyloP conservation scores indicated that many motifs were also conserved. The heatmap plots the median PhyloP score across all intronic motif
instances. (D) At finer resolution, mutation rates differed by position within the motif, exemplified here by a PTB antisense L1MC4a motif.

suggesting that TEs have primarily appropriated the exist-
ing conserved binding preferences of these RBPs rather
than binding through alternative mechanisms.

Transposable element binding affects RNA abundance
and splicing

The evidence that TEs have intercepted existing RBP
binding preferences, coupled with the widespread binding
of RBPs to TEs, begs the question of whether TE binding
sites are functionally similar to nonrepetitive sites. To
investigate this question, we collected RBP knockdown
RNA-Seq experiments matching 12 of the analyzed CLIP-
Seq datasets. These experiments can detect changes in
the abundances and splicing of genes determined to be
targeted by the RBP in the CLIP-Seq and were used in
the original studies to understand the RBPs’ functions.
We identified target genes with the CLIP-Seq using an
enhanced version of established statistical procedures to
call binding sites, considering both exons and introns, and
computed differential expression between the paired RNA-
Seq samples using Cuffdiff (see Materials and methods).

We first asked whether hnRNP C knockdown impacted
TE binding sites similarly to nonrepetitive binding
sites. Target genes tended to be upregulated after RNA
interference-mediated depletion of hnRNP C (Figure 5A),
suggesting a destabilizing effect on bound transcripts that
increases with the number of binding sites (Figure 5B). To
separately measure the effect of TE and nonrepetitive
binding sites, we plotted the cumulative distributions of
Cuffdiff’s differential expression test statistic for genes
bound only in nonrepetitive sequence or only in TEs
(Figure 5C). As hypothesized, genes bound only in nonre-
petitive sequence and only in TEs were similarly upregu-
lated. This result held up separately for mRNAs and
IncRNAs (Figure S14 in Additional file 1).

To better understand the effect of the various types of
binding sites in genes targeted at multiple sites, we com-
puted a linear regression to predict the differential expres-
sion test statistic using the logarithms of the number of
binding sites in each class, further divided by exon and in-
tron. The positive model coefficients augment the case that
TE-derived hnRNP C binding sites repress target genes to
a similar magnitude as nonrepetitive sites (Figure 5D).

To determine if TE-derived binding sites affect alter-
native splicing, we examined Cuffdiff P-values for the
Materials and methodsstatistical significance of an iso-
form switch (see Materials and methods). Misregulation

of splicing in antisense Alu elements was the primary
phenotype described for hnRNP C in these data [35]; ac-
cordingly, we found that genes bound by hnRNP C had
lesser splicing difference P-values, indicating more alter-
native splicing, after hnRNP C knockdown (Figure S15a
in Additional file 1). Further, genes with more sites had
more evidence for splicing differences (Figure S15b in
Additional file 1). Binding sites in TEs affected splicing
of their genes similarly to nonrepetitive sites (Figure S15c,
d in Additional file 1). Alu and non-Alu TE sites were in-
distinguishable, suggesting the novel insight that hnRNP
C’s function as a splicing repressor generalizes beyond Alu
elements.

We next examined the effect of HuR depletion on genes
with TE-derived binding sites in RNA-Seq experiments
from two studies [42,44]. Both found that HuR stabilized
target genes, as genes targeted in the CLIP-Seq were sig-
nificantly downregulated upon HuR knockdown. We
reproduced these results but focused further analysis on
the Kishore et al. dataset because bound genes were
more affected by the knockdown (Figure 6A; Figure S16
in Additional file 1).

HuR target sites in TEs generally function similarly to
nonrepetitive sites, but depend on the family bound.
Genes targeted via non-Alu TEs were similarly downregu-
lated after HuR knockdown (Figure 6C). Surprisingly,
downregulation was absent for genes targeted only in Alu
elements, which tended to change less than unbound
genes in both directions (Figure 6C). These effects were
apparent in both mRNAs and IncRNAs separately (Figure
S14 in Additional file 1). As above, we computed a linear
regression to quantify the effect of binding sites in these
various annotation classes. The opposing model coeffi-
cients furthered the case that non-Alu TE-derived HuR
binding sites stabilize the gene, but Alu binding sites do
not (Figure 6D,E).

The remaining knockdown experiments further corrobo-
rated the significant effect of TE binding sites. Binding
to TE-derived sites by both hnRNP H1 (Figure S17 in
Additional file 1) and hnRNP U (Figure S18 in Additional
file 1) stabilizes transcripts, while TE binding by PTB
(Figure S19 in Additional file 1), WTAP (Figure S20 in
Additional file 1), and METTL3 (Figure S21 in Additional
file 1) represses transcripts. METTL3 serves as an add-
itional example where activity depends on the TE family
bound; L1 sites buck the general trend and appear to
stabilize the transcript (Figure S21 in Additional file 1).
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Splicing analysis for most experiments was underpowered
by having performed only single replicates, but METTL3
also showed a phenotype, with TE-derived sites increasing
the likelihood of an isoform switch after knockdown
(Figure S21 in Additional file 1).

In summary, RBP knockdown gene expression analyses
establish that TE-derived and nonrepetitive RBP binding
sites affect RNA state similarly, with interesting counter-
examples, like Alu-HuR interactions, where the TE bind-
ing context may alter function. Extrapolating these results,
the thousands of RBP-TE binding sites discovered in this
analysis are candidates for function via RNA-protein
interaction.

Discussion
Recent research has described a substantial role for TEs
in the evolution of gene regulation at the transcriptional

level; for example, TEs have dispersed transcriptional
regulatory signals around the genome, and many sites
have been co-opted for essential functions [7]. However,
the influence of TEs on post-transcriptional regulation has
previously been limited to a few promising examples.
Here, we globally and systematically studied binding of
RBPs to TE-derived sequence in human RNAs using a di-
verse set of CLIP-Seq experiments. We discovered wide-
spread enrichment of RBPs on individual TE families,
driven by sequence composition preferences of the
RBPs for specific regions of those TEs. We described
and studied thousands of these TESMs.

Many RBPs preferred U-rich TESMs, which was of not-
able concern because uridine is known to crosslink more
efficiently in some CLIP experiments [42,45]. In most
cases, the RBPs preference for U-rich sequence was previ-
ously known, such as HuR, hnRNP C, FUS, among others.
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Figure 6 HUR-TE binding sites stabilize genes, unless in Alu elements. (A) As expected for the known transcript stabilizer HuR, targeted
genes were downregulated after HuR knockdown (KD) compared with unbound genes, shown here as the cumulative distributions of the
Cuffdiff differential expression test statistic (CDF). (B) HuR's stabilizing effect depended strongly on the number of binding sites in the gene
span, shown through the decreasing medians and interquartile ranges of the test statistic distribution. (C) Unexpectedly, binding sites in Alu
elements had the opposite effect; genes targeted only in Alu elements were upregulated after HuR knockdown. All other TE binding sites had
the expected effect with similar magnitude as nonrepetitive sites. The Venn diagram indicates the wide scale of TE binding sites, depicting
the number of genes bound only in Alu elements, only in non-Alu TEs, only in non-TEs, and in various mixtures. (D) A linear regression on the
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But to more definitively test the many U-rich interactions
of HuR, we performed a fRIP-Seq, which does not suffer
from more efficient crosslinking of uridines. The experi-
ment validated HuR interaction with many U-rich se-
quences like antisense Alu elements as major contributors
to HuR binding.

We accumulated compelling evidence that TESMs
are relevant not only within TEs but also in the nonre-
petitive transcriptome. For most TESMs, CLIP-Seq
alignment coverage increased over motif occurrences
outside of repeats. These motifs also showed greater
than expected conservation in nonrepetitive 3" UTR,
intron, and IncRNA sequences. Together, these obser-
vations suggest that the RBPs’ sequence preferences for
these motifs were already established, and TE-derived

instances of the motifs intercepted these preferences
upon entry into the genome.

Despite this potentially ‘uninvited’ entry into post-
transcriptional regulatory networks, we found that most
RBP-TE binding sites affect RNA state with the same ef-
fect and to a similar magnitude as binding sites in nonre-
petitive sequence. In addition to reproducing the impact
of hnRNP C binding to antisense Alu elements on splicing
[35], we discovered that many more hnRNP C binding
sites on other TE families also affect splicing and tran-
script abundance upon hnRNP C depletion. Depletion of
additional RBPs (hnRNP H1, hnRNP U, PTB, WTAP, and
METTL3) introduced more evidence for functional TE
binding as genes targeted via TE-derived sites had simi-
larly altered abundance to genes targeted via nonrepetitive
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sites. Thus, we have gathered here considerable evidence
that often-ignored TE binding sites should be considered
alongside nonrepetitive sites for their potential to modu-
late RNA abundance and splicing.

We also observed cases of TE-dependent regulation,
such as HuR binding to antisense Alu elements. HuR
binding sites stabilize the RNA such that HuR depletion
causes downregulation of target genes. While we observed
this influence for most TE-derived binding sites, the many
Alu-derived sites were a conspicuous exception. Alu-
bound genes were both less downregulated and less up-
regulated than unbound genes, suggesting that the
abundance level of these genes is resistant to change in
either direction. Most likely, we are missing the full pic-
ture at these Alu sites and combinatorial binding of
multiple RBPs determine the effect on abundance. Follow-
up experiments are needed to unravel this complex case.

The evidence here that RBP binding to TEs is wide-
spread and can produce measurable and sometimes com-
plex effects on gene abundance and splicing begs the
question of how disrupting these interactions might
affect the health of cells and organisms. RBPs have been
implicated in numerous genetic diseases [48], including
recent associations with neurodegenerative disorders [49]
such as amyotrophic lateral sclerosis [50]. TEs, too, are a
substantial focus of disease research, primarily with re-
spect to deleterious novel transposition events [51,52], but
also via misregulation of TE RNA [53]. Disruption of
RBP-TE interaction homeostasis via RBP mutations or TE
misregulation is a new and important avenue to consider
in the etiology of human disease.

A considerable proportion of TEs in the exonic tran-
scriptome lies in IncRNAs [24,25]. The myriad IncRNAs
implicated for critical roles in development [54-56] and
disease [57,58] emphasize the need for improved under-
standing of IncRNA function. A modular domain struc-
ture for IncRNAs has been hypothesized [59] but has,
thus far, eluded a thorough characterization. Our observa-
tion that TE sequences contain functional RBP binding
sites represents an important step towards characterizing
TEs as one type of modular domain in IncRNAs where
RBP-TE interactions may function.

Alterations to transcriptional regulatory networks are
a major driver of evolutionary change [60,61]. TEs con-
taining transcription factor binding sites play a substantial
role in creating the variation that provides the raw mater-
ial for selection to operate on [9,10,24,62]. Comparisons
across species show that lineage-specific TEs can rapidly
rewire regulatory networks [11-13,63]. Ultimately, these
transcriptional regulatory site changes drive morpho-
logical change because they modulate protein abundance.
Through a variety of mechanisms acting on RNA, such as
splicing, localization, and degradation, post-transcriptional
regulation by RBPs also modulates protein abundance.
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Our observation that RBP binding to TEs is widespread
and can produce measurable effects on gene abundance
and splicing suggests that TEs may also provide variation
for post-transcriptional regulatory evolution. Mapping
RBP-TE interactions in more species and placing them in
the context of development and the adaptive responses of
adult cells will elucidate the degree to which these interac-
tions, too, are a major driver of evolutionary change.

Materials and methods

CLIP-Seq data and processing

We downloaded 75 CLIP-Seq datasets from 31 studies
mapping 51 RBPs from the Gene Expression Omnibus
(GEO), Sequence Read Archive, and EMBL ArrayExpress.

CLIP-Seq experiments typically build sequencing librar-
ies using a small RNA protocol, which attaches a sequence
adapter to the suffix of the short read. Unfortunately,
these adapters are rarely reported in the manuscript or
public database entry. Rather than take on the impractical,
and perhaps impossible, task of acquiring accurate adapter
information for 75 datasets, we implemented an adapter-
ignorant strategy to align the prefixes of these reads up to
the putative adapter sequence.

We aligned with TopHat 2.0.9 [64] to human genome
assembly hgl9, providing GENCODE v18 as reference
annotation [65]. To align read prefixes, we carried out
the following steps. First, we attempted to align the first
20 nucleotides of the read. For every read, if a unique
alignment was found, we returned that alignment. If
multiple alignments were found, we added it back to a
set for re-alignment with an additional nucleotide added
back to the end of the read prefix. We repeated this pro-
cedure, re-aligning ambiguous read prefixes up to the full
read length. When a read that aligned in one iteration fails
to align in the next, we presumably encountered the
adapter and returned the read’s alignment(s) from the pre-
vious iteration. Open source Python code implementing
this strategy is available from [66].

The primary error that this pipeline can make is to
distribute a highly repetitive read in a biased manner to
genomic positions where the nucleotides downstream of
the true read match the prefix of the adapter by chance.
This error is not problematic for the analyses here where
we merely need reads from TE-derived sequence to be
aligned to some instance(s) of the TE family.

Due to low input material, CLIP-Seq experiments tend
to have many PCR duplicated reads. We found allowing
two alignments per chromosomal position struck a good
balance between throwing away misleading PCR dupli-
cates and keeping informative alignments from highly
expressed genes and enriched clusters where redundancy
is expected. Finally, we merged replicate experiments into
one alignment file.
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After alignment and filtering duplicates, numerous data-
sets contained so few reads that their reliability for the
downstream analyses was questionable. Thus, we removed
any dataset containing <200,000 aligned reads.

Multi-mapping reads

Careful interpretation of multi-mapping reads is critical
to studying repetitive TE-derived sequences. We output
20 alignments per read with TopHat, which was found
in a ChIP-Seq analysis of multi-mapping reads to be ap-
proximately the point where accuracy levels off [67].
That is, for reads with greater than 20 alignments, 20
are randomly chosen to be output. In all counting analyses
described, we normalized alignments by the number of
alignments of the read to account for the uncertainty of
the true source alignment. For example, a read with 20
alignments will count 1/20 at each aligned position. As
mentioned above, we note that most analyses performed
only require that the read aligned to any instance of a
TE family, which may or may not be the true source in-
stance of the read.

Transposable element alignment enrichment/depletion
We computed the number of CLIP-Seq reads in each
dataset that overlap each TE family from RepeatMasker
[68] in both orientations using BEDTools [69] and com-
pared the counts with a null model that accounts for the
differing abundances of transcripts and assumes uniform
coverage along those transcripts. CLIP-Seq experiments
typically have substantial background read alignments,
which allowed us to approximate these abundance esti-
mates by running Cufflinks [70] on the CLIP-Seq align-
ments themselves, using the —multi-read-correct option
to more accurately distribute multi-mapping reads. In
order to account for introns, we augmented the GEN-
CODE v18 annotation with unspliced pre-RNA isoforms
[65]. Using these abundance estimates, we simulated new
reads uniformly along the transcripts and mapped these
reads back to the genome. We computed enrichment/de-
pletion as the log ratio of the proportion of reads in the
true and null model datasets overlapping each TE family
in both orientations.

Transposable element consensus alignment coverage

To plot read coverage along the consensus sequence for
each RBP-TE pair, we aligned all reads overlapping each
TE family to its DFAM profile hidden Markov model
[71] using HMMer [72]. To adjust for the influence of
both mappability and the nonuniform presence of the
TE consensus (for example, genomic instances of LINE1
often include only the 3" end [73]), we normalized the
actual read coverage by coverage from the null model
simulated reads described above.
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Transposable element-specific motifs

We characterized sequence motifs underlying the align-
ment coverage peaks by identifying regions of the TE con-
sensus profile hidden Markov model for which CLIP-Seq
alignment coverage was more than three-fold greater than
the null simulation alignment coverage. For each of these
coverage peaks, we represented the motif as a position
weight matrix, with column frequencies defined by the
multiple sequence alignment of aligned reads. We primarily
studied nine nucleotide motifs, centered at the maximum
alignment coverage nucleotide of each peak. We mapped
motifs throughout the transcriptome using PoSSuM and
P-value threshold 1e-5 [74].

Transposable element-specific motif clustering

At multiple stages of the motif analysis, we wanted to
better understand the relationship between motifs and
collapse highly similar motifs (for example, from homolo-
gous positions of Alu subfamilies) to avoid redundant
computation. We chose information coverage Euclidean
distance, an effective distance computed on position
weight matrices, to quantify motif similarity [75]. Infor-
mation coverage measures how informative a column in
the position weight matrix is. For example, a uniform
distribution of the four nucleotides would have zero in-
formation, and a column with only one valid nucleotide
would have maximal information. Given two position
weight matrices, we find their ungapped alignment with
the minimum sum of Euclidean distances between col-
umn nucleotide distributions, weighted by the columns’
information coverages. That is, we more strongly consider
similar nucleotide distributions at informative over unin-
formative columns.

In our analysis of the full set of TESMs across datasets,
we collapsed motifs within each dataset by computing
pairwise distances as above and performing an average
linkage hierarchical clustering, flattening the clusters at a
threshold of 0.15. To form the final set, we chose the top
300 TESMs per dataset after ranking by coverage enrich-
ment over the null model.

HuR formaldehyde RIP-Seq

Cell culture and cross-linking

K562 cells (ATCC catalog number CCL-243) were
grown in RPMI 1640 (Invitrogen; Carlsbad, CA USA;
catalog number 22400105) with 10% fetal bovine serum
and 1% Antibiotic-Antimycotic 100X (Invitrogen; Carlsbad,
CA USA; catalog number 15240062). We collected cells
with a gentle 5 minute spin (500 g) and washed them
with room temperature phosphate-buffered saline. We
re-suspended at 5e6 cells per ml in room temperature
RPMI media sans fetal bovine serum or Antibiotic-
Antimycotic and added formaldehyde to a final concen-
tration of 0.1%. We crosslinked at room temperature for
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10 minutes and then halted it by quenching for 5 minutes
at room temperature after adding glycine to a final
concentration of 125 mM at a medium pace. We spun
cells for 5 minutes at 500 g and washed twice in 4°C
phosphate-buffered saline. We flash froze pellets of
10e6 cells and stored them at -80°C.

fRIP

We re-suspended frozen pellets in 1 ml of RIPA lysis
buffer (50 mM Tris (pH 8), 150 mM KCl, 0.1% SDS, 1%
Triton-X, 5 mM EDTA, 0.5% sodium deoxycholate,
0.5 mM dithiothreitol (add fresh) plus protease inhibitor
cocktail (Thermo Scientific; Waltham, MA, USA; PI-
87785) plus 100 U/ml RNaseOUT™ (Life Technologies;
Woburn, MA, USA; catalog number 10777-019). We in-
cubated cells at 4°C for 10 minutes before lysing on a
Branson® digital sonifier (Emerson Industrial Automa-
tion; St. Louis, MO, USA) using 10% amplitude for 0.7 s
on and 1.3 s off at 30 s intervals for a total of 90 s. We
used chilled tube holders and swapped them out be-
tween shearing runs to reduce temperature elevation.
After lysis, we spun the lysate at 4°C at maximum speed
for 10 minutes. We collected supernatant and diluted by
adding equal volume of fRIP binding/wash buffer (150 mM
KCl, 25 mM Tris (pH 7.5), 5 mM EDTA, 0.5% NP-40,
0.5 mM DTT (add fresh), 1x protease inhibitor cocktail
(add fresh), 100 U/mL RNaseOUT (add fresh)). At this
point, we removed 50 pl of lysate for input sample and
stored it at -20°C for later RNA purification and library
construction. After dilution, we clarified the lysate by
passage through a 0.45 pM syringe filter. We then ‘pre-
cleared’ filtered lysate by incubating with Dynabeads®
Protein G (Life Technologies; Woburn, MA, USA; catalog
number 10004D) at a concentration of 25 ul of beads per
5 million cells for 30 minutes at 4°C with slow rotation.
We flash froze pre-cleared lysate in 1 ml aliquots of ap-
proximately 5 million cells and stored it at -80°C. For fRID,
we thawed lysate on ice and added 6 pg of HuR antibody
(Santa Cruz Biotechnology; Dallas, TX, USA; catalog
number sc-5483). After addition of antibody, we rotated
lysate at 4°C for 2 h before adding 50 pl of Dynabeads®
Protein G. We rotated beads and lysate at 4°C for 1 h be-
fore washing twice with 1 ml of fRIP binding/washing buf-
fer plus 1x protease inhibitor cocktail and 100 U/mL
RNaseOUT. After the final wash, we removed the super-
natant and froze and stored the beads at -20°C.

RNA purification and library construction

We resuspended the frozen beads in 56 pl of RNase-free
water and added 33 pl of 3x reverse-crosslinking buffer
(3x phosphate-buffered saline (without Mg or Ca), 6%
N-lauroyl sarcosine, 30 mM EDTA, 15 mM dithiothrei-
tol (add fresh)), 10 pl of Proteinase K (Life Technologies;
Woburn, MA, USA; catalog number AM9516), and 1 pl
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of RNaseOUT to both the re-suspended beads and input
sample. We performed protein degradation and reverse-
crosslinking for 1 h at 42°C, then another 1 h at 55°C.
We added beads and reaction buffer to 1 ml of TriZol
(Life Technologies; Woburn, MA, USA; catalog number
15596-026). After agitation, we added 200 pl of chloro-
form followed by approximately 15 s of vigorous agita-
tion and a 20 minute microcentrifuge spin at 4°C at
maximum speed. We collected the aqueous layer, added
it to 750 pl of ethanol plus 1 pl GlycoBlue™, and ran it
over a Qiagen RNeasy® min-elute column (Qiagen; Valencia,
CA, USA; catalog number 74204). We extracted RNA
using the buffer RWT/3X isopropanol modification de-
tailed in ‘Appendix B: Optional On-Column DNAse
Digestion...” of the Qiagen miRNeasy® Mini Handbook.
We eluted RNA in 15 pl of RNase-free water. To remove
ribosomal RNA, we fed =70 ng of input and fRIP RNA
into the Ribo-Zero™ Magnetic Gold Kit (Epicentre;
Madison, W1, USA; catalog number MRZG12324) followed
by a cleanup using Agencourt RNAClean XP beads
(Beckman Coulter; Brea, CA, USA; catalog number
A63987) and elution with 19.5 pl of Elute, Prime, Frag-
ment mix from the TruSeq RNA Sample Preparation Kit
(lumina; San Diego, CA, USA; catalog number RS-122-
2001). We performed library construction per the vendor’s
instructions, starting with the ‘Incubate RFP’ step. We
pooled the resulting ¢cDNA libraries and subjected them
to paired-end sequencing on an Illumina HiSeq 2500 at a
depth of 31 base pairs per read.

Computational analysis

We aligned fRIP-Seq reads to hgl9 and GENCODE v18
reference annotation using TopHat 2.0.9 [64] and ran
Cuffdiff 2.1.1 [76] to estimate gene abundances and per-
form statistical comparisons between the fRIP versus in-
put alignments. Raw reads and Cuffdiff output have
been deposited in GEO as record GSE61238.

CLIP-Seq peak calling

To study the impact of RBP knockdown, we needed
to define bound and unbound genes. We did so by
annotating binding sites from the CLIP-Seq alignment
coverage using a method based on prior CLIP-Seq
scan statistic-based peak calling strategies [77], but
with enhanced modeling of the multi-isoform struc-
ture of most human genes. A software implementa-
tion is available at [66].

Our peak calling strategy proceeded as follows. To
avoid false positive peak calls from the very frequent
PCR duplications without grossly betraying the scan
statistic model assumptions (that is, that duplicate reads
occur naturally), we first capped the number of reads
aligning to the same chromosome and position at two.
Next, to parameterize the scan statistic model, we estimated
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isoform abundances using Cufflinks and the —multi-read-
correct and —compatible-hits-norm options. As described
above, we augmented the reference transcriptome with
unspliced pre-RNA isoforms in order to capture intron
binding sites. We computed enriched 30-nucleotide win-
dows using a Poisson scan statistic approach [78], where
each window was parameterized based on the abundances
of the overlapping isoforms. We weighted multi-mapping
read alignments by the inverse of their read’s total number
of alignments. Merging enriched windows produced the
final peak calls. This procedure can be framed as an
isoform-aware version of the Poisson-based methods
commonly used for CLIP-Seq peak calling [77]. Finally,
to focus this analysis on high confidence RBP targets,
we removed peak calls overlapping particularly challen-
ging genomic regions using a precomputed index, similar
to the Genome Mappability Score [79], but computed
with TopHat.

Knockdown differential expression

We determined differentially expressed genes after RBP
knockdown by aligning RNA-Seq reads to hgl9 and
GENCODE v18 reference annotation using TopHat 2.0.9
[64] and running Cuffdiff 2.1.1 [76] to compare RNA-Seq
alignments. Because most experiments were performed as
only single replicates, and were thus underpowered to de-
tect significant changes, we primarily studied the differen-
tial expression test statistic assigned to every gene, which
quantifies the significance of the observed change in
the number of fragments per kilobase per million reads
(FPKM).

Cuffdiff analyzes differential splicing by computing the
Jensen-Shannon metric between the two conditions’
distributions of FPKM among the multiple isoforms from
a transcription start site. Again, due to underpowered
experiments, we primarily studied the P-values assigned
to each gene transcription start site, which measure the
significance of the observed splicing difference.

Visualization
Genome browser figures were constructed with GViz
[80] or IGV [81].

Data availability

All CLIP-Seq datasets are publicly available with accession
numbers specified in Additional file 2. HuR fRIP-Seq reads
and Cuffdiff output are available as record GSE61238 in
GEO.

Additional files

Additional file 1: Supplementary figures.

Additional file 2: CLIP-Seq dataset descriptions and public database
accessions.
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