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Abstract

Whole genome sequencing has enabled the identification of thousands of somatic mutations within non-coding
genomic regions of individual cancer samples. However, identification of mutations that potentially alter gene regulation
remains a major challenge. Here we present OncoCis, a new method that enables identification of potential cis-regulatory
mutations using cell type-specific genome and epigenome-wide datasets along with matching gene expression data.
We demonstrate that the use of cell type-specific information and gene expression can significantly reduce the number
of candidate cis-regulatory mutations compared with existing tools designed for the annotation of cis-regulatory SNPs.
The OncoCis webserver is freely accessible at https://powcs.med.unsw.edu.au/OncoCis/.
Background
Research into cancer-causing mutations has focused pri-
marily on protein-coding mutations owing to difficulties
associated with identifying and interpreting causality of
non-coding mutations. However, projects such as EN-
CODE [1] and the Human Epigenome Atlas [2] have led
to the generation of genome-wide datasets that have
contributed to our understanding of the non-coding re-
gions of the human genome. The integration of these
datasets shed light on the functions of non-coding se-
quences, gene regulatory modules and epistatic inter-
actions underlying disease associations. Moreover, the
rapid advancement of sequencing technologies and the
rapid drop in sequencing costs have now made it feas-
ible to sequence whole genomes of large numbers of
cancer samples. Nevertheless, even though cancer ge-
nomes are being sequenced at an accelerated pace, an-
notation of mutations and inference of their functional
significance remain challenging. Whilst a myriad of tools
are now available for the annotation of protein-coding
mutations (for example, [3-6]), identification of cis-regulatory
mutations remains a major challenge.
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In recent years, computational approaches have been
developed to help identify non-coding germline sequence
variants that have the potential to modify gene regulation.
HaploReg [7] was one of the first databases available for
annotating variants in non-coding regions of the genome.
Using linkage disequilibrium information from the 1000
Genomes Project, it allows for the visualization of linked
SNPs and small indels along with their predicted chroma-
tin state, their sequence conservation across mammals,
and their effect on regulatory motifs. It included a library
of SNPs (based on dbSNP 137), motif instances (based on
position-weighted matrices discovered from ENCODE
experiments), enhancer annotations (adding 90 cell types
from the Roadmap Epigenome Mapping Consortium),
and expression quantitative loci (eQTLs from the GTex
eQTL browser [8]). rSNPBase [9] is a similar database
which curates and annotates regulatory SNPs. It uses data
from genome-wide experiments from the ENCODE pro-
ject to predict regulatory elements which are then used to
annotate the rSNPs. These rSNPs are mapped to the gene
that it may regulate by considering various regulation
mechanisms like proximal/distal regulation and post-
transcriptional regulation. It also takes into account the
linkage disequilibrium correlations between SNPs in order
to associate the regulatory element with a SNP-set as op-
posed to a single SNP. Spatio-temporal and experimental
eQTL labels are also provided in rSNPBase annotations.
The main limitation of both the above databases is that
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they are only suitable for SNPs that have already been
identified and catalogued. As such, they are not suitable
for the study of novel somatic mutations in non-coding
regions.
More recently, a number of tools have been developed

that can be used to interrogate the cis-regulatory potential
of novel non-coding variants in the human genome. These
include RegulomeDB [10], Funseq [11] and GAWVA [12],
all of which leverage a large number of ENCODE datasets
to infer the potential impact of a variant on the cis-regula-
tion of a gene. RegulomeDB provides a heuristic scoring
system which classifies the regulatory potential of pre-
dicted regions in the genome. SNPs that fall within these
regions will be associated with this score as an indication
of its likelihood of affecting gene regulation. GAWVA uses
a similar approach, but implements a computational
model trained using known non-coding disease SNPs to
provide a classifier score which can be used to indicate the
cis-regulatory potential of novel SNPs and mutations. Fi-
nally, Funseq leverages an observation that genomic re-
gions with a high concentration of rare SNPs indicate a
higher degree of negative selection and are thus more
likely to be functionally important such that the function
of the region is more ‘sensitive’ to sequence variation [11].
Therefore, in addition to using ENCODE datasets, Funseq
determines whether a particular variant falls within ‘sensi-
tive’ regulatory regions in the human genome.
While all the above-mentioned methods can be used

for the annotation of somatic mutations, they are better
suited for the annotation of germline variants as they
lack the ability to assess mutations in a tissue/cell-spe-
cific context. Unlike SNPs, which have the potential to
exert a phenotype across all cell types, somatic muta-
tions arising in cancer are confined to altering gene ex-
pression within cancer cells that harbor the mutation.
A
Cell/tissue type Cell line name Description
Lung A549 Alveolar basal epithelial adenocarcinom
Prostate LNCaP Prostate epithelial adenocarcinoma
Liver HepG2 Hepatocellular epithelial carcinoma
Blood K562 Chronic myelogenous leukemia
Blood CD34 CD34+ mobilised hematopoeiticstem/pro
Breast HMEC Normal human mammary epithelial cells
Melanocytes Melano Normal foreskin melanocytes
Cervical HeLa Cervivalepithelial adenocarcinoma 
Colon HCT116 Colon epithelial carcinoma
Pancreas PANC-1 Pacreatic epithelioid carcinoma 
Astrocyte NHA Normal human astrocytes
Osteoblast Osteo Normal human osteoblasts
Mesenchymal stem cell MSC Human mesenchymal stem cell, differen
Neural progenitor cell NPC Human neural progenitor cells, differenti
Embryonic stem cell ESC Human embryonic stem cells, undifferen

Figure 1 Overview of OncoCis datasets and algorithms. (A) Summary o
(B) Schematic diagram illustrating the mutation annotation process implem
gene expression data are available. ES, embryonic stem; HS, hypersensitive;
As such, existing tools targeted at annotation of SNPs
are of limited value to the end user seeking to prioritize
the impact of a mutation on the aberrant expression of a
gene in a particular tumor. Furthermore, other import-
ant features for assessing the potential regulatory impact
of mutations, including transcription factor binding motif
creation and the integration of matched gene expression
data, are not available in existing tools.
To this end, we have developed OncoCis, a user-friendly

webserver for researchers, to annotate cis-regulatory
cancer mutations in a tissue/cell-specific manner. Import-
antly, a set of stringent annotation methods, including lo-
cation of flanking histone marks, motif matching and
integration of gene expression, have been developed to in-
crease the accuracy of the mutation annotations. To valid-
ate OncoCis, we first demonstrated its ability to correctly
annotate the well-studied TERT promoter mutations [13].
We then compared OncoCis with RegulomeDB and
Funseq in their ability to annotate non-coding mutations
derived from whole genome sequencing data from 17
breast cancer samples [14]. Finally, using a specific ex-
ample from the breast cancer dataset, we highlight the
ability to use OncoCis to identify potential cis-regulatory
mutations for further analysis.

Results and discussion
Overview of OncoCis
OncoCis integrates publicly available datasets representing
a wide range of cancer types from genome-wide chroma-
tin accessibility and histone modification profiles obtained
from ENCODE [1] and the Human Epigenome Atlas [2]
to identify mutations that occur within potential cis-regu-
latory regions (see Figure 1A for a list of cell types). These
mutations are further annotated with sequence conser-
vation scores and searched for possible elimination or
List of 
mutations

Gene association

• FANTOM5 associations
• GREAT

Cell type specific
regulatory potential

• DNaseI HS
• Histone marks
• Alteration of TF motifs
• Sequence conservation
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ented in OncoCis. *Differential gene expression is only performed if
TF, transcription factor.
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creation of transcription factor consensus binding mo-
tifs from the JASPAR 2014 database [15]. Enhancer-
transcription start site (TSS) associations generated by
the FANTOM5 consortium [16] and the GREAT tool
[17] are used to map mutations to the most likely gene
on which it may have a regulatory impact. Finally, if
gene expression data are available, differential expression
will be calculated between samples with and without po-
tential cis-regulatory mutations for each gene linked with
a particular mutation (Figure 1B).
To facilitate the use of OncoCis, a user-friendly interface

is provided to enable a user to upload a list of candidate
Figure 2 Screenshot of the OncoCis webserver interface. (A) Input field
mutations, select a specific tissue/cell type representative
of the cancer type from which the mutations are derived
and upload associated gene expression data if available
(Figure 2A). Following the analysis of the mutations by
OncoCis, a summary of the annotations is provided
(Figure 2B). The resulting individual mutation annota-
tions are displayed in an interactive and filterable table
(Figure 2C). The table provides a hyperlink to visualize
mutations and associated contextual epigenomic pro-
files within the UCSC genome browser. Furthermore, to
enhance utility of annotations associated with muta-
tions, OncoCis provides a hyperlink to DGIdb [18] and
s. (B) Summary output. (C) Annotated mutations.
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directly indicates whether an associated gene is poten-
tially drugable. This is particularly useful for researchers
to prioritize genes with therapeutic potential. Finally,
the set of mutation annotations can be conveniently
exported as text files for further offline analysis.

Validation of OncoCis using TERT promoter mutations
To validate the ability of OncoCis to identify candidate
cis-regulatory mutations, OncoCis was used to annotate
the TERT promoter mutations, which are currently the
best established example of recurrent cis-regulatory mu-
tations found across a variety of cancers and in particu-
lar cancers of the central nervous system [13,19-21].
OncoCis annotated the two TERT promoter mutations
(chr5:1,295,228 G >A and 1,295,250 G >A) as being -66 bp
and -88 bp from the TERT TSS, respectively. The muta-
tions fall within a DNase I hypersensitive site (DHS) and
flank a H3K4me3 histone mark of neural progenitor cells.
Furthermore, the mutated bases created an ETS factor
binding site in both cases, which was consistent with pre-
vious studies of these mutations [13,19-21] (see Table 1
for full OncoCis annotation). The same mutations were
also analyzed using RegulomeDB and Funseq (Table 1).
RegulomeDB found the mutations to be in categories 2b
and 4, meaning that it only identified one of the sites as
likely to affect transcription factor binding. In terms of
Funseq annotations, neither of the mutations was within
a ‘sensitive’ region. This suggests that while ‘sensitive’
regions may indicate functionally important genomic
regions, causal cis-regulatory mutation can occur out-
side these regions. Significantly, since both RegulomeDB
and Funseq only evaluate the removal of transcription
factor binding motifs, neither tool was able to suggest
the creation of an ETS binding site by the TERT pro-
moter mutations.

Cell type-specific information reduces candidate
cis-regulatory mutations
To further validate the ability of OncoCis to correctly
annotate mutations and to demonstrate the value of using
cell type-specific cis-regulatory information, we analyzed
mutations from 17 whole-genome sequenced breast cancer
samples [14]. In total there were 94,502 mutations across
all samples, of which 93,653 were within non-coding re-
gions of the genome (Figure 3A). To assess the cell type-
specific epigenome profiles most relevant to breast cancer,
data from the human mammary epithelial cell (HMEC)
line was used. Of all mutations, 1,833 fell within a HMEC
DHS (Figure 3A). Comparison of the same set of muta-
tions that fell within DHS across all available cell types
as determined by RegulomeDB and Funseq showed that,
as expected, many more mutations were annotated within
a DHS (Figure 3B; see Additional file 1 for full analysis
output from OncoCis, RegulomeDB and Funseq). Most
mutations (1,680, 91.7%) determined by OncoCis to fall
within HMEC DHSs were present in the non-cell type-
specific sets identified by RegulomeDB and Funseq. This
overlap was significantly greater than randomly drawn
mutations from the dataset (mean 1,063, 57.0%,
P <0.001, one-sample t-test), demonstrating that the
DHS annotations from OncoCis are consistent with
non-cell type-specific DHS annotations. Mutations fall-
ing within HMEC DHSs unique to OncoCis are likely
due to the fact that this dataset was from the Human
Epigenome Atlas, which is not part of the ENCODE
data used by RegulomeDB or Funseq. Importantly,
when only high-priority mutations were selected for
RegulomeDB (category 2; note that there are no muta-
tions in category 1 as the input data contain only som-
atic mutations and are therefore not expected to be
linked to eQTLs) or Funseq (variants within ‘sensitive’
regions under strong evolutionary selection), only a
small portion (25.7% and 15.2% for RegulomeDB and
Funseq, respectively) of these mutations fell within
HMEC DHSs as determined by OncoCis (Figure 3C).
This illustrates that by incorporating cell type-specific
information, OncoCis was able to eliminate a consider-
able number of mutations that would otherwise have
been prioritized by using either RegulomeDB or Funseq.

Incorporation of matched gene expression data helps
prioritize cis-regulatory mutations
As matching gene expression data were available for the
17 breast cancer samples, OncoCis was able to calculate
expression differences of genes associated with muta-
tions in a DHS, between samples with and without a
particular mutation. In total, 18 mutations were found
to potentially alter cis-regulation as they were associated
with the following features; (a) there was altered expres-
sion (adjusted P-value <0.05) of the associated gene in
the sample with the mutation compared with samples
without the mutation, (b) the mutation resided in a re-
gion with at least one active histone mark, (c) mamma-
lian sequence conservation of >0.8 and, (d) caused the
gain or loss of at least one transcription factor binding
motif (Table 2). Of the 18 mutations, all were annotated
as category 5 or above by RegulomeDB (Table 2). By
linking these mutations to a change in gene expression,
RegulomeDB would have effectively categorized all of
these as ‘likely to affect binding and linked to expression
of a gene target’ (category 1) [10]. This again illustrates
the consistency of OncoCis annotations with Regulo-
meDB annotations. Conversely, however, if RegulomeDB
alone was used, a total of 1,227 category 2 mutations
would have been identified (Figure 3C), of which only 6
were amongst the 18 OncoCis prioritized mutations.
Similarly, of 302 mutations determined to be within a
‘sensitive’ region by Funseq, only 3 were within the



Table 1 OncoCis annotation of the TERT promoter mutations chr5:1,295,228 G > A and 1,295,250 G > A

Motifs Fantom5 RegulomeDB Funseq

Chromosome Position Gene Distance to TSS DHS H3K4me1 H3K4me3 H3K27ac Conservation
mutated base

Created Removed Promoter Enhancer Category Sensitive?

Chr5 1,295,228 TERT -66 1 0 1 0 0.008 ELK1;ELF1;FLI1;ELK4;
GABPA

TFAP2A 1 0 2b No

Chr5 1,295,250 TERT -88 1 0 1 0 0 ELK1;ELF1;FLI1;ELK4;
GABPA

- 1 0 4 No

The category and whether the mutation falls within a ‘sensitive’ region as defined by RegulomeDB and Funseq, respectively, are also shown.
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6

1008

Funseq
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1489

298

881

RegulomeDB
category 2

OncoCis
HMEC DHS

225

29

31
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Number of samples 17
Total mutations 94,502
Non-coding mutations 93,653
Overlap with HMEC profiles

DNase I HS 1,833
H3K4me1 10,931
H3K4me3 701
H3K27ac 5,231

Highly conserved (PhasConsts>0.8) 2,539
Differential expressed (Adj. p-val< 0.05) 224

Figure 3 Analysis of non-coding mutations using OncoCis, RegulomeDB and Funseq. (A) A summary of mutation annotations from 17
whole breast cancer genomes by OncoCis. (B) Overlap of mutations annotated as within DHSs from the whole breast cancer genomes using
OncoCis (from HMEC line), RegulomeDB (mutations within categories 2 to 5) and Funseq (mutations within DHSs). (C) Overlap of mutations
annotated as likely to be functionally important in RegulomeDB (mutations within category 2), Funseq (mutations within ‘sensitive’ regions) and
mutations within cell-specific (HMEC) DHS regions by OncoCis.
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OncoCis prioritized mutations. While ‘sensitive’ regions
under selective pressure are more likely to be important
[11], not all cis-regulatory mutations necessarily fall within
one of these regions as shown in the TERT promoter mu-
tations earlier. More generally, a similar pattern was found
when comparing any mutations annotated by OncoCis as
being associated with differential expression against anno-
tations from RegulomeDB and Funseq (Additional file 2).
Taken together, this demonstrates that, using a more strin-
gent annotation methodology, OncoCis has significant
advantages in identifying relevant mutations with high
cis-regulatory potential.

OncoCis identifies a cis-regulatory mutation that
potentially perturbs the expression of CDK6
To illustrate how OncoCis might be used to select po-
tential cis-regulatory mutations for further experimen-
tal analysis, of the 18 prioritized mutations, the G > C
substitution at chr7:92,347,495 in one of the samples
(PD4107a) was examined. OncoCis determined this
mutation to be associated with a five-fold up-regulation
of CDK6 (Figure 4A,B) when compared with the samples
without the mutation. CDK6 is a gene that activates cell
proliferation [22] and is commonly found to be up-
regulated in cancers, including breast cancer [23]. Exam-
ination of the location of the mutation showed that it fell
within a highly conserved region in intron 4 of CDK6
within a HMEC DHS flanked by H3K4me1 and H3K27ac.
These features suggest that the mutation was located
within a potential regulatory region of CDK6 (Figure 4C).
Furthermore, the substitution of G > C was predicted to
disrupt the consensus binding motif for the transcription
factor THAP. The THAP family of transcription factors
consists of 11 factors that have been shown to play a
variety of roles in controlling cell proliferation, cell cycle
progression, angiogenesis, apoptosis and epigenetic gene
silencing [24]. Examination of the set of THAP factor
expression across the breast cancer samples showed that
they were ubiquitously expressed across the samples
(Additional file 3). Importantly, there is strong evidence
in the literature that THAP1, 5, 7 and 11 act as negative
regulators [24-27] which is consistent with the loss of
THAP binding caused by the G > C substitution resulting
in increased CDK6 expression.
To further validate that the mutation alters CDK6 regula-

tion, an enhancer luciferase reporter assay was performed
to compare the activity of the wild-type and mutant se-
quences. While both the wild-type and the mutant se-
quence enhanced the control SV promoter activity, the
mutant further significantly increased the relative lucif-
erase signal by 1.28-fold over the wild-type (P =0.013,
unpaired t-test; Figure 4D). This is consistent with the



Table 2 OncoCis annotations of mutations from 17 whole breast cancer genomes sorted by differential gene expression P-value of the sample where there is
an associated mutation and the samples without any associated mutation for a particular gene

Distance Gene expression Conservation Motifs Fantom5 RegulomeDB Funseq

Chromosome Position Sample
ID

Gene to TSS Fold
change

P-value DHS H3K4me1 H3K4me3 H3K27ac Mutated
base

Created Removed Promoter Enhancer Category Sensitive?

Chr6 71,108,774 PD4006a COL9A1 -95,988 100.12 1.39E-23 1 1 1 1 1 Hand1::
Tcfe2a

Klf1 1 0 4 No

Chr1 160,094,923 PD4116a ATP1A2 -9,404 71.15 2.99E-19 1 1 0 1 0.981 ELF1;Hltf SP1;ZEB1 1 0 4 No

Chr7 92,347,495 PD4107a CDK6 118,446 5.06 7.75E-07 1 1 1 1 1 - NFIC;
THAP1

1 0 4 No

Chr9 109,651,512 PD4006a ZNF462 -26,135 4.79 2.27E-06 1 1 0 1 0.993 - EHF;Erg;
FLI1;
PPARG::
RXRA;.

0 0 5 No

Chr1 208,412,585 PD4116a PLXNA2 5,080 1.63 4.17E-06 1 1 0 1 0.993 Nobox;
Hltf

- 0 1 4 No

Chr4 7,5560,994 PD4103a BTC 158,888 2.38 7.39E-05 1 1 0 0 0.938 - CREB1;
Mafb

0 0 4 No

Chr5 97,643,723 PD4109a RGMB 461,275 2.50 2.47E-04 1 1 0 1 0.801 - ARID3A 0 1 3a No

Chr17 2,080,270 PD4005a HIC1 -120,667 1.29 4.02E-04 1 1 0 1 1 NFIC - 0 0 5 No

Chr16 57,334,425 PD4115a PLLP -15,841 2.09 8.51E-04 1 1 1 1 1 - TFAP2C 1 0 4 Yes

Chr2 219,147,431 PD4198a TMBIM1 9,849 1.65 2.23E-03 1 1 0 1 0.973 Foxd3 NFATC2;
Erg

1 0 5 No

Chr8 100,811,550 PD4116a COX6C 94,692 2.46 2.63E-03 1 1 0 0 1 - NFKB1;
Stat4;Spi1;
Bcl6

0 0 2b No

Chr14 37,612,228 PD4115a SLC25A21 29,637 1.54 3.15E-03 1 1 0 0 1 Hand1::
Tcfe2a

RUNX1;
RUNX2;
FOXI1

0 0 2b No

Chr1 185,688,035 PD4005a HMCN1 15,647 0.61 4.98E-03 1 1 0 1 0.997 FOXP1;
FOXL1

- 0 0 5 No

Chr2 208,890,286 PD3904a PLEKHM3 -2 1.48 1.09E-02 1 1 1 1 0.998 - ELF5;
GABPA;
FLI1;ELK4;
ELK1

1 0 2b No

Chr10 93,058,182 PD4005a PCGF5 -77,814 0.65 2.28E-02 1 1 0 0 0.935 - Zfx 1 0 2a No

Chr7 22,617,382 PD4107a IL6 -149,383 2.29 2.62E-02 1 1 0 1 1 Hltf;
CEBPA;
CEBPB

AR 1 1 2a Yes
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Table 2 OncoCis annotations of mutations from 17 whole breast cancer genomes sorted by differential gene expressio P-value of the sample where there is
an associated mutation and the samples without any associated mutation for a particular gene (Continued)

Chr6 26,533,145 PD4192a HMGN4 5,426 0.49 2.62E-02 1 1 0 0 0.979 - Zfx 0 1 2b Yes

Chr22 31,644,327 PD4103a LIMK2 -36,078 0.79 3.43E-02 1 1 1 1 0.989 - Klf4;S ;
SP1;K 5;
Klf1;E 1

1 0 3a No

All mutations in the list are selected based on having a DHS, either a H3K4me1 or H3K4me3 histone mark, conservation (phastCons) >0.8 and the creation or rem val of at least one transcription factor binding motif.
The category and whether the mutation falls within a ‘sensitive’ region as defined by RegulomeDB and Funseq, respectively, are also shown.
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Figure 4 Example of a potential cis-regulatory mutation associated with CDK6. (A) Summary of OncoCis annotations of a mutation that is
strongly suggestive of altering cis-regulation of CDK6. (B) Distribution of expression level of CDK6 in the sample with the potential cis-regulatory
mutation (red) and samples without cis-regulatory mutations of CDK6 (black). (C) Illustration of the location of the potential cis-regulatory
mutation within intron 4 of CDK6 along with its relative position to HMEC DHS, H3K4me1 and H3K27ac peaks. The potential for the mutation to
alter the THAP transcription factor consensus binding site is shown along with cross-species conservation of the mutated base and its adjacent
sequences in mammals. (D) Luciferase reporter assays for the putative CDK6 enhancer (chr7:92,347,263-92,347,759) showing control (SV/luc),
wild-type sequence (SV/luc/CDK6wt), and chr7:92,347,495 G > C mutation (SV/luc/CDK6mut) in the HCC1143 breast cancer cell line. The results
depicted are representative of three independent experiments.
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increased expression seen in this sample relative to the
other breast cancer samples. Since FANTOM5 data sug-
gest that certain cell lines may have alternative CDK6
transcripts arising from this regulatory region, we analyzed
RNA-seq data from this breast cancer sample (PD4107a)
but found no evidence of alternative transcripts initiating
from this intronic enhancer (Additional file 4).
Four of the 18 candidate mutations were associated with

known cancer driver genes: CDK6, IL6, COX6C and HIC1.
The predicted alterations in cis-regulation as a consequence
of these mutations were consistent with the known func-
tion and altered expression of IL6 and COX6C but not
HIC1 (Additional file 5), highlighting the need for valid-
ation in a relevant experimental system. Taken together,
the examples demonstrate the utility of OncoCis for pri-
oritizing potential cis-regulatory mutations in cancer for
further analysis and validation.

Conclusions
As whole cancer genome sequencing becomes increas-
ingly commonplace, there is an urgent need to enable
the prioritization of functionally relevant mutations
within non-coding regions of the genome for functional
validation. Importantly, the application of OncoCis is
not limited to somatic mutations and can also be used
for the annotation of SNPs especially where cell type-
specific gene regulation may be relevant. As more regu-
latory variants and mutations are discovered, there will
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be further potential to develop models for scoring and
prioritizing cis-regulatory mutations. Taken together,
OncoCis provides an avenue to uncover cis-regulatory
mutations and it is hoped that in the process it will help
discover new non-coding cancer driver mutations.

Materials and methods
Data sources
Chromatin accessibility data (DNase-seq) and histone
modification (ChIP-seq) data for each of the cell lines
were obtained from ENCODE [1] or the Human Epige-
nome Atlas [2]. A summary of datasets and associated
accessions used by OncoCis are listed in Additional file
6. For datasets downloaded from ENCODE, broadpeaks
of DNase-seq and histone ChIP-seq data are directly
used for annotation. For all other datasets, raw sequences
files in SRA format were obtained and converted to fastq
format using fastq-dump (version 2.3.2). Fastq files were
aligned using BWA (version 0.7.5) [28] using default pa-
rameters. For peak calling, the findPeaks tool within the
HOMER suite [29] was used with the ‘style’ option set
to ‘histone’.

DNase I hypersensitivity sites: DNase-seq
OncoCis uses DNase-seq data to determine DHSs in
order to identify user defined mutations that fall within
chromatin accessible regions of the genome. DHS peak
lists are defined as described above. OncoCis uses bed-
tools intersect [30] to determine whether or not a muta-
tion falls within a DHS.

Histone modifications: ChIP-seq
OncoCis annotates whether user-defined mutations are
adjacent to specific histone marks, specifically H3K4me1,
H3K4me3 and H3K27ac, which are generally associated
with enchancers, promoters and active cis-regulatory
regions, respectively [31]. In order to determine the
optimal region for search for histone marks flanking
mutations, the distribution of histone ChIP-seq signals
adjacent to DHSs was analyzed. The analysis revealed
that the optimum region for searching for flanking his-
tone marks is 150 to 500 bp on either side of the center
of a DHS (Additional file 7). As a result, mutations fall-
ing within ±150 to 500 bp of a histone ChIP-seq peak
are annotated as flanking the respective histone mark.
For mutations that fall within a DHS, the center of the
DHS peak is used to define the ±150 to 500 bp region
for seeking the presence of a histone peak, otherwise,
the ±150 to 500 bp region is defined from the location
of the mutation.

Transcription factor motif search
For each mutation, both the wild-type and mutant DNA
sequence are generated over a region of ±20 bp of the
mutation site. Each sequence is individually searched for
known consensus transcription factor binding motifs
using the Possum tool [32] against the JASPAR 2014
database [15]. To increase the accuracy of the motif
search, only mammalian transcription factors repre-
sented by more than 20 sequences from the JASPAR
database are used (171 in total). Possum predicts tran-
scription factor binding sites in a DNA sequence using
position-specific scoring matrices and calculates a log-
likelihood ratio score for each transcription factor bind-
ing sequence matrix model against the DNA sequence
such that:

Score ¼ log2
YW

k ¼ 1

q k; Lkð Þ
p Lkð Þ

� �

where W is the size of the motif, q(k,Lk) is the prob-
ability of the nucleotide at Lk at position k of the matrix
and p(Lk) is the background probability of base Lk. In
OncoCis, a score cutoff of >5 is implemented (default of
Possum), Lk is set uniformly to ¼ and no pseudocounts
are added to model matrices.
In order to increase the stringency of potential motif

matches and to help users select mutations that are most
likely to affect gene regulation, an additional filter was
used to select DNA sequences where all well conserved
motif positions (defined as those where a particular base
is present at >80% frequency) match perfectly to the query
DNA sequence. No significant correlation was found be-
tween the numbers of motif matches and the number of
well conserved positions within a motif (Additional file 8).
The use of variation at well conserved motif bases as a cri-
terion for identifying variants that affect cis-regulation was
used recently to discover a SNP that altered binding of
TP53, which is linked to increased cancer risk [33].
Finally, the candidate transcription factors binding the

wild-type and mutant sequences are compared such that
wild-type-specific transcription factor binding motifs are
reported as motifs removed and mutant specific transcrip-
tion factor binding motifs are reported as motifs created.

Mapping mutations to genes
The mutations are mapped to the gene which it is most
likely be affecting using a combination of FANTOM5
enhancer-TSS interaction data [16] and predictions from
the GREAT tool [17], which associates genomic locations
with genes based on proximity, but also incorporates
experimental 3C chromosome conformation capture
information where available. If a mutation falls within
a FANTOM5-predicted enhancer which has an associ-
ation with the TSS of a gene, the mutation will be mapped
to that gene. Otherwise, the mutation will be mapped to
the closest gene within 1 Mbp using GREAT.
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Conservation of mutated base(s)
For all mutations, the phastCons score [34] from mam-
mals is used for determining the conservation of the
mutated base in the case of substitutions and bases in
the case of deletions. For deletions, the reported conser-
vation value is the average of the phastCons score across
all deleted bases. For insertions, no conservation value is
reported. A background mutation value is also calculated
by OncoCis using the average conservation value of all
bases within ±20 bp of the mutation site.

Gene expression analysis
If gene expression data have been provided by the user,
fold change and a P-value associated with that fold
change will be calculated for each gene that has been as-
sociated with a mutation. For the computation of differ-
ential gene expression, only mutations that have been
associated with a gene but also falling within a DHS are
evaluated. For a particular gene, all samples with a muta-
tion within one DHS will be categorized as mutant sam-
ples while the samples without any mutations within
that DHS are categorized as non-mutant. The gene ex-
pression level of each mutant will be compared with the
median of all non-mutant samples to calculate fold
change. A two-sided t-test is conducted between the ex-
pression level of each mutant sample and non-mutant
samples to obtain a P-value for the change in gene ex-
pression. A Bonferroni correction using the number of
DHS-associated mutations is finally applied to obtain a
false discovery rate-adjusted P-value. If the user has gene
expression data of additional normal (non-cancer) sam-
ples, these can be also provided and will be automatic-
ally categorized as additional non-mutant samples as
they will not be associated with any mutations.

FANTOM5 enhancer/promoter transcription start site
predictions
The mutations are further annotated with FANTOM5 en-
hancer [16] and promoter TSS predictions [35] to provide
additional evidence for a mutation to affect gene cis-regu-
lation. For OncoCis, global permissive promoter and en-
hancer datasets were used because CAGE TSSs from
individual cell lines/tissues only arise from active cis-regu-
latory elements and cannot be used to identify promoters
and enhancers that are poised or repressed [35]. Specific-
ally, the enhancer dataset was obtained from [36] and the
promoter TSS dataset from [37]. All enhancer transcript
and promoter TSS predictions were extended by 500 bp
in both directions, since FANTOM5 annotations provide
the location of the transcript rather than the actual enhancer/
promoter. Bedtools intersect [30] is used determine the
overlap.
FANTOM5 enhancer and promoters have been shown

to be complementary to ENCODE regulatory datasets,
but is generally more stringent [35]. Across the breast can-
cer mutation dataset, 238 out of 301 (79.1%) mutations
within a DHS and flanking a H3K4me3 mark overlap with
a FANTOM5 promoter, while 582 out of 1,490 (39.1%)
mutations within a DHS and flanking a H3K4me1 mark
overlap with a FANTOM5 enhancer. This is broadly in
line with the finding that 30 to 40% of ENCODE TSS seg-
ments overlap with FANTOM5 data [35].

Analysis of breast cancer mutations using OncoCis and
comparison with RegulomeDB and Funseq
To assess the function and annotations of OncoCis in
comparison with RegulomeDB [10] and Funseq [11], mu-
tations from 17 whole breast cancer genome sequenced
samples [14] with matching gene expression data were
used. RegulomeDB and Funseq were chosen as they are
currently the only two tools which provide a webserver
for the annotation of novel mutations. For OncoCis, the
mutation list and gene expression datasets were uploaded
to the webserver. HMECs were selected as the cell type.
For RegulomeDB, the list of mutations was submitted to
the webserver in bed format (there are no further parame-
ters required) and the full output of the results was
exported. For Funseq the list of mutations was also sub-
mitted to the webserver in bed format with the option for
minor allele frequency set to 0. The mutations annotations
from the three tools were compiled for further analysis
and comparison (Additional file 1).
To evaluate the significance of the overlap between

mutations within HMEC DHS regions from OncoCis in
comparison with mutations within DHS annotations from
RegulomeDB and Funseq, a bootstrapping analysis was
performed. To achieve this, 1,833 mutations (the total
number of mutations that were found to overlap with
HMEC DHSs by OncoCis) were randomly selected from
the full set of 93,459 non-coding mutations and the
overlap with the combined DHS annotations from Reg-
ulomeDB and Funseq was assessed. This procedure was
repeated 1,000 times to give an average overlap of 1,063
mutations (standard deviation of 21) with RegulomeDB
or Funseq, which is significantly less than the overlap of
1,680 mutations (P <0.001, one sample t-test) also with
DHS annotation by RegulomeDB or Funseq as shown in
Figure 3B.

Luciferase report assay
The minus strand of a conserved DHS (chr7:92,347,263-
92,347,759) flanking the chr7:92,347,495 G > C mutation
was synthesized as both wild-type (SV/luc/CDK6wt) and
mutant (SV/luc/CDK6mut) versions using GeneArt Strings
(Life Technologies, Mulgrave, VIC, Australia) and cloned
into the downstream multiple cloning site of pGL2P
(Promega, Alexandria, NSW, Australia). HCC1143 breast
cancer cells were cultured in RPMI1640 media supplemented
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with 15% fetal bovine serum, HEPES, sodium pyruvate,
glutamine, and penicillin/streptomycin. For transfec-
tions, cells were seeded at 4 × 105/well cells in six-well
plates and transfected the following day using Lipofecta-
mine2000 (Life Technologies) with 2 μg of CDK6 re-
porter construct or vector control (SV/luc) and 0.5 μg
of pEFBOS LacZ. At least two separate experiments
were performed in triplicate wells. After 48 hours, cells
were lysed and luciferase and β-galactosidase activity
was assayed as described [38]. To control for transfec-
tion efficiency, relative luciferase activity was calculated
as the ratio of luciferase to LacZ activity.
Webserver implementation
OncoCis is implemented as a webserver at [39]. The
backend application has been implemented using Java
(1.6) with datasets stored in a MySQL database. PHP
was used to implement the front-end web interface. The
OncoCis standalone application with the source code is
available at the server website.
Additional files

Additional file 1: Annotations of all non-coding mutations in the 17
breast cancer samples using OncoCis, RegulomeDB and Funseq.

Additional file 2: Comparison of differential gene expression and
transcription factor binding site creation annotations in OncoCis
and annotations from RegulomeDB and Funseq.

Additional file 3: Expression of THAP transcription factors across
the breast cancer samples.

Additional file 4: Analysis of RNA-seq data to identify potential
alternative TSS in CDK6.

Additional file 5: Examples of other candidate mutations from the
breast cancer dataset prioritised by OncoCis.

Additional file 6: Accession of datasets implement in OncoCis.

Additional file 7: Illustrating the distribution of histone profiles
adjacent to DHSs.

Additional file 8: Analysis of the effect of number of well
conserved positions in motifs against its frequency of being found
to be created/removed.
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