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Abstract

https://code.google.com/p/methclone.

We describe methclone, a novel method to identify epigenetic loci that harbor large changes in the clonality of
their epialleles (epigenetic alleles). Methclone efficiently analyzes genome-wide DNA methylation sequencing data.
We quantify the changes using a composition entropy difference calculation and also introduce a new measure of
global clonality shift, loci with epiallele shift per million loci covered, which enables comparisons between different
samples to gauge overall epiallelic dynamics. Finally, we demonstrate the utility of methclone in capturing functional
epiallele shifts in leukemia patients from diagnosis to relapse. Methclone is open-source and freely available at

Background
While deep genetic profiling has revealed striking details
about clonal evolution that can drive chemoresistance in
cancer progression [1], increasing evidence has shown
that epigenetic genes are consistently mutated in many
cancers, including glioblastoma [2] and leukemia [3].
These modified epigenetic genes create a new mechanism
whereby tumors can evolve and resist therapy, through
changes in the epigenetic states, diversity and clonality.
Previously, epigenetic polymorphism or ‘epipolymorph-
ism’ has been studied using bisulfite conversion sequen-
cing data [4], which has shown that epigenetic changes
can be pervasive across the genome and provide a metric
for the overall epigenetic complexity of a sample.
However, the epigenetic clonality of a sample can
also be estimated from genome-wide epigenetic profiling
methods, such as enhanced reduced representation bi-
sulfite sequencing (eRRBS) [5] or whole-genome bisulfite
sequencing (WGBS) [6]. In eRRBS or WGBS data, each
read can serve as a representative sample of the epigen-
etic diversity from bulk cells, since a single sequence
read can cover multiple CpGs and simultaneously profile
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the potential methylation states (C, ™C) for all CpGs in
that read. Thus, an epiallele is a specific DNA methyla-
tion pattern of a genetic locus, wherein all CpGs within
a single read are effectively ‘phased’ and can represent
the epigenetic haplotype (for example, 4 CpGs in one
read creates 2* possible patterns, or 16 epialleles). Using
these DNA methylation patterns, clonal epigenetic shifts
at a given locus can be found by examining the epialleles
that change their frequencies. At the global scale, this
has been well described before as the epipolymorphism
[4]. However, the clonal dynamics of epialleles between
different individuals, or from within the same individual,
have not been reported before, nor is there an available
method by which to discover the sites and types of al-
tered epigenetic clonality.

To address this challenge, we have developed a novel,
open-source algorithm and freely available set of analysis
tools collectively called methclone [7] that can discover
and annotate epigenetic loci (eloci) that have a large
compositional change of clonal epialleles between two
different stages. Methclone calculates the combinatorial
entropy (AS) change of epialleles at one locus and out-
puts the loci with a ranked list of epiallele changes de-
fined by the entropy change (Figure 1), from no change
(0) to maximum difference in entropy (-144). These
ranked epialleles can be easily integrated with other pub-
lished tools for DNA methylation alignment, QC, and
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Figure 1 Epiallele shift detection by methclone. (a) Schematic plot of epiallele composition of two stages of cells (biggest circles, light green
for stage 1 and light brown for stage 2). Each stage has 12 cells with various epiallele compositions. In each cell, there are two lines, represent
two set of epiallele at the same locus. Four circles above each line represent four adjacent CpG sites (black: methylated CpG; white: unmethylated
CpG). (b) Bisulfite conversion sequencing output reads that spanning at least four CpG sites will capture the epiallele composition at each stage.
(c) methclone workflow. methclone take the bam file from Bismark to calculate the epiallele composition and compare them from different
samples. In the application of the combinatorial entropy, methclone determine the loci that harbor significant epiallele compositional change.

annotation such as methylKit [8] and eDMR [9]. Using
methclone, we found thousands of loci across the
genome harbor significant (AS <-70) changes in their
epialleles, and we found that these occur in genes critical
for cell regulation and cancer development, including
SOX2, SOX9, ERBB2, and BMP1. Moreover, we show
that our metric of epiallele shifts per million loci (EPM)
is a normalized measure of a sample’s global epiallele
clonality that can allow a comparison between different
samples and reveal samples with dramatic changes in a
sample’s overall epigenetic landscape. Taken together,
these methods create a novel, rapid means by which to
detect, trace, and prioritize genomic areas with shifts in
their cells’ epigenetic states and can be used to define
epiallelic clonality, tumor evolution, and epigenome
dynamics.

Results and discussion

Detection of significant epiallele shift between different
stages of tumor

One large challenge in understanding cancer is the cellu-
lar basis of relapse, wherein patients treated at diagnosis
with chemotherapy often relapse with a more aggressive
disease within a few months or years. When the disease
returns, the cells may or may not carry the same genetic
or epigenetic background, compared to the status at
diagnosis [5]. To understand this problem at the level of
the epialleles, we obtained samples from six patients
with acute myeloid leukemia (AML), who were first
diagnosed as primary AML and reached first complete re-
mission before presenting with relapsed AML (Additional
file 1: Table S1). Enhanced reduced representation bisulfite
conversion sequencing (eRRBS) was performed to obtain
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the DNA methylation status in the CpG-enriched regions
across the genome, using standard protocols [5]. We first
calculated the methylation pattern from the same location
defined by four adjacent CpGs covered by the same read,
with at least 60 reads covered for each patient’s bisulfite
conversion sequencing data. On average, we observed
773,350 loci covered by both stages of samples for each
patient (S.D. = 108,514, Figure 2a).

Next, we compared the epiallele composition between
diagnosis (D) and relapse (R) stages for six AML patients
(Additional file 1: Table S1). The epiallele composition
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and percentages were calculated for each covered locus,
comparing the D vs. R status within each patient separ-
ately (Figure 3). All patients’ cells were processed at the
same facility with the same purification methods (Ficoll
gradient separation of mononuclear cells followed by
lymphocyte depletion using CD3 and CD19 Miltenyi bead
negative selection). Using the combinatorial entropy (as
defined above), we examined the epiallele composition at
each locus. The combinatorial entropy ranges from 0
to -144. The lower the combinatorial entropy, the larger
the difference in epiallele composition between stages.
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Figure 2 The total number of loci and eloci. (a) The total number of loci composed by four adjacent CpG sites was plotted for each patient.
(b) The number of eloci (log 10 transformed) for each patient (pair-wise comparison between diagnosis and relapse) or between normal bone
marrow samples using three different combinatorial entropy difference cutoffs (€80: -80, e70: -70, e60: -60). (c) The value EPM (log 10 transformed)
for each patient (pair-wise comparison between diagnosis and relapse) or between normal bone marrow samples using three different combinatorial
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by epipolymorphism. Model Il is defined as eloci with decreased epigenetic tumor heterogeneity measured by epipolymorphism.
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Methclone can also give a quantification of the chan-
ging eloci, estimate their mode, and help visualize them.
This can be important for eloci with a large clonal
change, such as those between diagnosis and relapsed
stages. We used the 16 colors to define the 16 patterns
of epialleles (Figure 3) at four loci, where ‘0’ stands for
an un-methylated CpG and ‘1’ stands for a methylated
CpG. Figure 3a shows a location with the fully methyl-
ated epiallele as the major pattern at both stages, with
less than 10% of reads supporting the other three pat-
terns (combinatorial entropy = 0). The second locus has
some heterogeneous epialleles at each stage, but gener-
ally maintained the epiallele spectrum at relapse stage,
with combinatorial entropy = -20 (Figure 3b). For these
samples, we found an average of 99.2% (S.D. = 0.10%) of
their epialleles are sustained after treatment, defined as
having combinatorial entropy from 0 to -20 (Figure 3a
and b).

However, for other loci in more dynamic patients (for
example, AML2 or AML6), the epiallele composition
showed a much larger change (combinatorial entropies
are -80 and -114, respectively). For example, the third
locus in ARHGDIG promoter at the diagnosis stage was
mainly (85%) composed of epialleles ‘0000 and 11% of
‘0001’, but changed to 53% of ‘1000’ at relapse stage, and
other patterns including ‘0100" (29%) and ‘0000" (11%)

(Figure 3c) also showed large shifts. Since the global epi-
genetic heterogeneity as measured by epipolymorphism
increased from the diagnostic stage (0.27) to the relapse
stage (0.62), we propose this epiallele shift is represented
by a drift model (Figure 3c).

Further, in the fourth locus in SORCS1 at the diagno-
sis stage (Figure 3d), the major epialleles are ‘0000’
(45%),1100° (32%). At relapse, the major epialleles changed
dramatically to ‘0001” (3% at diagnosis to 92% at relapse),
which represents a large epialleie shift at AS = -114. Also,
the epipolymorphism at diagnosis is 0.68, but decreased
at relapse stage to 0.15. Given this large epiallele shift,
concomitant with decreased epigenetic heterogeneity at
relapse, and we define this type of epiallele shift as the
putative selection model (II). As noted here, the differ-
ences in the epipolymorphism at loci can increase or
decrease, yet mask the change in level of clonality. How-
ever, the AS can provide this metric on a linear scale,
and it also contextualizes the different directions of al-
tered epipolymoprhism (increase and decrease) into two
proposed models (drift vs. selection).

Tumor cells undergo genome-wide, significant epiallele
compositional change after treatment

We then quantified the number of loci that undergo sig-
nificant epiallele shift (eloci) by using three entropy
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cutoffs (e: -80, -70, and -60). The total number of
loci covered by sequencing is similar among samples
(Figure 2a). The number of eloci decreases with more
stringent cutoffs (Figure 2b); we observed that the epial-
lele eloci were widely varied for different patients at the
same cutoff. Specifically, patient AML6 had the highest
number of eloci (n=40,361 at e60), and this was true
regardless of the entropy cutoff (Figure 2b). Also, one
patient (AML3) showed a moderate number of eloci,
with 3,163 at e60. But, the lowest amount of eloci were
observed in AML1, AML4, and AML5, with on average
498 eloci at e60. We then normalized the number of
eloci from each patient relative to the total number of
covered CpGs, to ensure it is not affected by the total
number of covered loci from the ERRBS data; this cre-
ates an estimate of the eloci per million CpGs covered
(EPM, see methods). The number of eloci, though, was
not significantly correlated with the total number of loci,
or sequencing library depth (Additional file 1: Figure
S1). After normalization of the total number of covered
loci by sequencing, AML3 still showed the highest
EPM among all five patients, indicating that the degree
of epiallelic change is indeed highest in this patient
(Figure 2c).

To ensure measurement accuracy, we performed an
additional library preparation, and sequencing of one of
our AML samples (AML6). We found that the replicate’s
DNA methylation levels for all CpGs showed a high R*
(0.96, Additional file 1: Figure Sla), confirming previous
reports showing that variation of the DNA methylation
is mostly not due to the variability in the ERRBS process
itself [5]. We then applied methclone to both technical
replicates, in order to examine the technical noise be-
hind our epigenetic measures. We found that the largest
delta combinatorial entropy (AS) from technical repli-
cates is -32, and the mean is -2, which led to no
significant epiallele shift being detected between these
technique replicates (Additional file 1: Figure S1b). This
also gives an upper bound of technical variation for our
epiallele change metrics, which is well below thresholds
used by default (-60), and shows evidence of very low
technical variation.

To further contextualize the variance of epialleles and
EPM shifts in these leukemia patients relative to
controls, we calculated the EPM for five normal bone
marrow samples (Figure 2). We show that methclone
can also capture inter-individual epiallele differences.
We did pairwise comparison between five NBM samples,
in total of 10 comparisons. We observed a more stable
number of eloci captured between NBM samples, likely
representing the average inter-person epigenetic indi-
viduality at the same loci from the same tissue. On the
other hand, the number of eloci between the same indi-
vidual at different stages of AML actaully showed more
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diverse values of EPM (sd > 10,200 for AML, sd < 498
for NBM, for all three cutoffs). Interestingly, this indi-
cates that the number of different epialleles (eloci)
between unrelated individuals are rather stable, whereas
the number of eloci are much more dynamic within the
same person during a tumor’s treatment and progression.

Genome annotation and distribution of eloci

The epiallele patterns between stages were observed as
global and widespread events (Figure 4). To demonstrate
this, we created a circos plot of the patterning for the
epiallele dynamics of all six AML patients in five tracks
inside the ideogram of hg19. Eloci from AML1 to AML6
were plotted outwardly. To determine region-specific
enrichment of eloci relative to CpG density, we mapped
all eloci to annotated CpG islands. We showed that the
eloci distribution was dramatically different for each pa-
tient across the CpG islands (cpgis), shores (2 kb regions
at each side of CpG islands), shelves (2 kb regions at left
side of left shore and right side of right shores), or un-
annotated areas (location outside of all above regions) of
the genome (Figure 5). On average, 43% of the eloci
were located in the CpG islands, with a smaller portion
of them distributed in the shores (4%) and shelves (1%).
Thus, 51% of eloci were located outside of these CpG-
annotated regions, which indicates that a large fraction
of non-promoter, dynamic epigenetic changes are occur-
ring in these samples, matching results previously ob-
served in leukemia [5]. The eloci from NBM samples
showed lower enrichment of CpG islands (20%), but
higher enrichment in shores (9%) and shelves (4%),
which indicate a different pattern than eloci from AML
samples. As a control, we confirmed that the back-
ground distributions of covered loci from AML and
NBM samples over genes all have similar distribution
(Figure 5b and d).

We then further examined the distribution of eloci as
a function of their proximity to genes (Figure 5) using
all current RefSeq gene models (v66). We observed that
the majority of the eloci were distributed in the genic re-
gions (promoter, intron, exon, Figure 5c), with an aver-
age of 45% of eloci located in the promoter regions
(background: 63%), 16% located in exons (background:
8%) and 15% in introns (background: 12%). Interestingly,
the sites of dynamic changes are enriched for intronic
areas (up to 29%) in AML5, but other samples can have
enrichments for other genomic areas such as exons (for
example, AML2,4-6). This indicates that both the spe-
cific sites of eloci and their global enrichment can
change within a patient over time. While those loci from
pairwise comparisons of NBM samples showed depletion
from promoter regions (8%) and enrichment in intron
(36%) and intergenic (41%) regions, the background dis-
tribution of covered sites is similar between AML and
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Figure 4 Global epiallele pattern reconstruction between diagnosis and relapse stages. The number at the outer track is the chromosome
number. The next track is ideogram of hg19. The five yellow tracks are AML1-6 from inwardly. Black bar in each yellow track stands for eloci
determined using -70 as combinatorial entropy cutoff.

NBM samples. We further examined the eloci of NBMs for
enrichment of enhancers (Broad institute chromHMM),
and found no enrichment for strong or weak enhancers
(Additional file 1: Figure S3). Rather, we observed that two
tumor samples’ eloci were completely depleted of enhancer
(or strong enhancer) marks (AML3,4), again indicating a
larger degree of re-distribution of dynamic epialles in the
tumor samples compared to the NBMs.

We next examined the distance of eloci to the nearest
transcriptional start site (TSS) from RefSeq gene models,
plotting the location upstream of TSS (negative value) to
downstream of TSS (positive value) against the density
of eloci (Figure 5e). We observed lower density of eloci
around the TSS for all samples, which indicates that the
DNA methylation levels at the TSS sites are less dy-
namic than other regions upstream and downstream. A
higher density of eloci was observed downstream of the
TSS, which matches the proportion of eloci that are lo-
cated in the genebody (exon and introns), and notably,
these were significantly different between different tumor
samples (AML3 vs. AML6, P value = 0.00278, Wilcoxon
rank sum test).

Finally, we compared the epigenetic heterogeneity
changes in eloci from AML or NBM samples (Figure 6).
Since there is no specific direction for comparison

between NBM samples (similar to D vs. R in AML),
we measured the absolute difference in epipolymorphism
at the dynamic epiallelic sites found by methclone. As ex-
pected, we found higher epigenetic heterogeneity in loci
with significant epiallele shifts in AML, compared to those
from NBM (Figure 6). This indicates that the eloci selected
between AML patients at different diagnosis and re-
lapse stages have undergone a larger extent of selec-
tion, drift, or depletion of their epigenetic states. We
then further functionally annotated the two sets of
AML and NBM eloci with GREAT [10] functional
gene annotations. We found that NBM eloci do not
enrich in any pathways or gene ontology terms, while
AML eloci were enriched in: transcription regulatory
region DNA binding, transcription factor binding,
regulatory region DNA binding, chromatin binding
(GO molecular function); cell-cell signaling, cell devel-
opment, cell fate commitment (GO biological process);
cancer (Disease ontology); Wnt signaling pathway,
cadherin signaling pathway, focal adhesion (PANTHER
pathway), and MAPK signaling pathway (MSigDB
pathway). These enrichments indicate that the clonal
changes in epigenetic states contribute to disrupted
pathways in leukemia and contribute to the relapsed
state.
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Conclusion

Dysregulation of DNA methylation or their controlling
genes has been established as a hallmark of certain can-
cers [5,11]. These epigenetic changes impact the bio-
logical activity of cells through their modification of
transcriptional states and regulatory machinery, and the
proportion of cells carrying these mutations is known to
vary at the genetic level [12,13]. But, a method for deter-
mining the proportion of cells that carry these changes
has never been demonstrated at the epigenetic level,
even though it has been reported that a subset of the
CpG sites vary their methylation level between 20% and
80% [8]. Indeed, the epipolymorphism measure was the
first specification that could demonstrate and quantify
intra-sample heterogeneity [4]. However, the change in
epipolymorphism of a sample or locus does not reveal
the underlying clonality. For example, given a locus with
four adjacent CpG sites with similar average methylation
levels, the epipolymorphism may change only slightly
(0.05), whereas the composition of the epiallele pattern
could significantly shift for one or more epialleles (AS -80).
Given two samples with comparable epipolymorphism,
the epiallele composition at specific sites could be com-
pletely different, and only by tracking the epialleles can
one discern the clonal shifts.

Using methclone, we were able to measure widespread
intra-patient epiallele dynamics in AML patients be-
tween diagnosis and relapse. Our approach locates and
quantifies the degree of epiallele compositional changes
that would not captured by global epipolymorpism, as
global heterogeneity can stay the same even when spe-
cific epialleles’ compositions are completely changed. For
example, the AS gives a wider dynamic range than
epipolymophism (0 to -144 vs. 0 to 1) and also reveals
sub-clones that are not apparent by a general epipoly-
moprhism measure (Figure 3). Also, our combinatorial
entropy metric (AS) can reveal and quantify changes that
would be missed by traditional entropy measures such
as Hamming distance [14] (Additional file 1: Figure S4),
indicating a more comprehensive measure of epigenetic
change. Therefore, the epiallele dynamics measured with
Methclone creates a novel means by which the clonal se-
lection and shift of epialleles can be discovered, quanti-
fied, and prioritized.

In this novel application of the combinatorial entropy
calculation [15,16], we were able to measure the extent
of epiallele compositional change between two stages.
Using leukemia samples at diagnosis and relapse stages
as a model, we have determined that methclone can
discern the dynamic loci (eloci) that harbor significant
epiallelic shifts, and these eloci are widespread across the
genome. The connection (if any) between the chemother-
apy received, the status of the patient’s intrinsic folate me-
tabolism and the epiallelic shift observed upon relapse
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remains to be investigated, but is now approachable. In-
deed, methclone revealed that tumors can show a unique
profile of both the sites of epiallelic shift as well as their
distribution across the genome. We demonstrated the
epiallele shift detected between different stages of AML is
fundamentally different from that between randomly se-
lected normal bone marrow. NBM samples are depleted
from gene promoter and CpG islands compared to those
from AML samples (Figure 5), and the eloci from AML
samples significantly enriched for Wnt pathways, MAPK
signaling pathways, ontology in cancer, and transcription
regulatory regions sequence specific DNA binding. These
sites and global measures can be quantified as eloci per
million loci covered (EPM), and this measure, along with
epipolymorphism, could potentially be used as a new
measure of the overall degree of epigenetic dysregulation
in a sample.

Since there are at least two putative means (Figure 3c
and d) by which epialleles can shift between two samples
or time points, we estimate both types with our algo-
rithm. The first model is that drift DNA methylation
changes led to increase of epipolymorphism, caused by a
stochastic or directed DNA methylation process, such as
those mediated by DNA methyltransferases (DNMTs),
proceeding in a step-wise fashion. The second model is
that an enrichment of an epiallele emerges as bulk cells
undergoing selection during chemotherapy or treatment,
leading to a decrease in epigenetic heterogeneity.

However, the epiallele dynamics at two time points/
stages may indicate important regions involved in these
biological processes, and our algorithm attempts to dis-
cern the two models by flagging those epialleles that are
drift versus selection and those which do not change in
epigenetic heterogeneity.

Although this work is focused on DNA methylation,
these methods would be germane to any base-modification
of DNA (epigenome) or RNA (epitranscritpome) with
single-base resolution data and multiple sites assayed within
the same sequencing read [17,18]. Notably, our utilization
of combinatorial entropy (AS) as a measure of epiallelic
shift allows us to gauge the difference of the epiallele com-
position from the same set of epialleles, as well as the epial-
lele changes occurring from an emergence of new epiallele.
Future work could create a more deliberate approaches to
measure greater inter-sample epiallele shift (more epial-
leles), where longer reads are used, or samples could also
undergo an enrichment (capture) of particular epialleles to
get improved assessment of clonality. Also, the general
differences between these epialleles in different tissues from
the same individual have not yet been established, and data
to understand the baseline epigenetic shifts in normal
individuals have only recently begun to be gathered [19].
Nonetheless, the success of measuring the epiallelic shift in
leukemia has already shown promise in serving as an
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estimate of the evolutionary and clonal distance between
stages of diseases or development, thus expanding our
knowledge of epigenetic heterogeneity and how epialleles
can change within a patient, over time, across the genome.

Materials

Data source and preprocessing

Six acute myeloid leukemia (AML) de-identified patient
samples at two time points (diagnosis and relapse
stages), enriched for myeloblast cells, were used in the
experiments, and these samples were also compared to
five CD34+ normal bone marrow samples (AllCells,
Inc.). Institutional review board approval was obtained
at Weill Cornell Medical College (IRB # 0805009783)
and at the Royal Adelaide Hospital, and this study was
performed in accordance with the Helsinki protocols.
DNA was extracted using standard techniques and
ERRBS library preparations were performed as previ-
ously described [5]. Libraries were sequenced on a
HiSeq2500 Illumina machine using 75 bp single-end
reads to an average depth of 74x per covered CpG. We
performed bisulfite treated read alignment to hgl9 gen-
ome and methylation calls as previously described [5].
Briefly, the adaptor sequences in the raw Illumina reads
were removed using FAR software. Then Bismark aligner
was applied for mapping of the preprocessed reads to
human genome, with only uniquely mapped reads kept
for DNA methylation calling. Because CHH and CHG
sites should be all unmethylated, we then calculate the
C- > T conversion rate by calculating the average per-
centage of reads support T among all the reads support
T and C in CHH and CHG sites. We confirmed that the
conversion rate for all samples was at least 99.8%, as
previously described [9].

Data deposition statement

All data have been deposited for public access in the
dbGap database. The accession number is phs000793.v1.
pl [20].

Definition of the algorithm of methclone

The methclone algorithm tests the hypothesis of signifi-
cant epiallelic shift. In order to find the optimized num-
ber of CpG sites to define the epiallele, we calculated the
number CpG sites covered by each read, up to 10 CpGs
(Additional file 1: Figure S5a). We then plotted the num-
ber of patterns of epiallele # against the number of CpG
sites to define epiallele ‘x’ (Additional file 1: Figure S5b),
where 7 =2" The read count per epiallele were then
plotted against CpG number to define epiallele (4 - 10),
which shows a large drop in the read count per epiallele
when changing from four CpGs to five CpGs (Additional
file 1: Figure S5c). The higher the number of CpGs that
is used to define one locus, the higher the read number
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needed to measure the full spectrum of epiallele pat-
terns. Therefore, if one loci defined by x adjacent CpG
sites use m covered reads to calculate 2 epiallele pat-
terns composition, then loci defined by x+ 1 adjacent
CpG sites will use 2xm covered reads to cover 2***
epiallele patterns composition. This further increase the
large drop in the capacity of measurement between
epialleles defined by four CpGs or five CpGs. In order to
have a good coverage for each locus and obtain a full
spectrum of epiallele patterns and wider extent of gen-
omic loci, we choose four CpG sites to define epialleles
in these samples. However, this is a modular option for
the algorithm, which can be increased to find more
epialleles given a longer read length.

All 16 possible patterns for epiallele of four adjacent
CpG sites are shown in Additional file 1: Figure S6. If
one epiallele has been enriched from one stage to an-
other, then the region harbors an epiallele shift that may
lead to a drift model or selection model (Figure 3c and
d). Before these two models can be distinguished, a
means to find those sites with the largest change must
first be established. To do this, methclone compares the
prevalence of the epiallele patterns at one group to an-
other the full set of all covered loci. The bigger the dif-
ference in the epiallele patterns composition, the more
likely it is a hotspot that harbors epiallele shift.

Foreground combinatorial entropy

In order to quantify the degree of epiallelic shift, we ap-
plied combinatorial entropy [15,16,21], a measure to
compare the difference distributions of the epialleles be-
tween different stages. The estimated change between
stage k=1 and stage k=2 at locus j were defined by §j,
which is the sum of the nature logarithm transformation
of the total number of permutations Z; ;:

Ny,

S=> S=> IZy=> In— T
k=12 k=1,2 k=1, H»_ !

where Ny ; is the total number of epialleles at stage k at
locus j. The read count of epialleles was normalized by
the sequencing library size. We then normalized the
total number of reads covering each locus to be constant
(200) to control the entropy dynamic range. Ny ; is the
total number of epiallele for pattern i in stage k at locus
j. This is calculated using Nj; times the percentage of
reads support pattern i in satge k at locus j. When four
adjacent CpGs define locus j, the number of patterns in
total is 16. In the combinatorial formula, the total num-
ber of permutations of Nj; epialleles is divided by the
product of the number of indistinguishable permutations
for each epiallele pattern i (where there are Njg;
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indistinguishable read support epiallele 1, N, ; indistin-
guishable read support epiallele 2, ..., and Ny, indistin-
guishable read support epiallele 16). When each stage only
has one pattern, the entropy S; is equal to zero (for ex-
ample, all four adjacent CpGs unmethylated or all methyl-
ated). When all 16 epiallele patterns exist with a uniform
distribution at each stage, the entropy S; is maximal.

Background combinatorial entropy

The background epialleles distribution is defined when
all patterns of epialleles are uniformly mixed between
the two stages. For locus j, one can compute the com-
binatorial entropy S, as defined by Equation 1 (above).
S; with fixed epialleles across stages has a maximal value

given by the background entropy §; for uniformly dis-
tributed epialleles,

Nt

! kZI;Z “ k;Z e k;Z i Hi:l7...,16N' !
(2)

where N ikj 18 the expected epialelles for pattern i in the

locus j of the stage k, provided that all the epiallele pat-
terns are uniformly distributed across stages:

. Ni,;Nij
Nigj= # (3)
Here N;; is the total number of epiallelwith pattern i
in locus j across two stages. N; is the total number of
epialles in locus j.

Eloci definition and epiallele patterns reconstruction
measurement

We define eloci as those that have different distributions
of epialleles between two stages. Using the entropy dif-
ference AS; between foreground and background com-
binatorial entropy, one can quantify the degree to which
the composition of epialleles at a given loci j are dis-
tinctly different between two stages. The lower the value
of AS;, the mo different between stages. The locus j is
defined as elocus if:

AS]' = Sj—Sj < a (4-)

Where a is the cutoff to determine if the entropy dif-
ference is large enough to discern whether the epiallele
patterns’ distribution has a significant change between
two methylomes. AS; ranges from 0 to -144. The distri-
bution of AS over the average read coverage (Additional
file 1: Figure S7) and average DNA methylation (Additional
file 1: Figure S8) shows that there is no strong correlation.
We performed the analysis using a range of values «a
from -60 to -80 with a decrement of 10. The result reported
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by methclone is a list of eloci and the corresponding epial-
lele patterns distribution.

To compare the epiallelic loci (eloci) between samples
with various coverage, we also defined a variable EPM
(the number of eloci changed per million loci covered by
sequencing data) to measure the overall epiallele pattern
reconstruction between two stages as

10°
EPM =— X E 5
- Q
Where E is the total number of eloci detected between
different stages, C is the total number loci covered by
both samples.

Epipolymorphism calculation

Epipolymorphism was calculated as previously described
by Landan et al. [4]. Epipolymorphism has been used to
measure epigenetic heterogeneity [22], but it does not

represent the epiallelic shift between samples. For each
16

loci, the epipolymorphism e = I—Z p?, where p; is the
i—1

percentage of ith epiallele.

Hamming distance for epiallele shift detection
Hamming distance can measure the diversity between
two strings with fixed length by calculating the number
of site at which the corresponding symbols differ. We
implemented hamming distance here for each locus of
four adjacent CpGs, where the symbols are 16 different
epiallele patterns. The cutoff for the existence of the pat-
tern is 5% at each stage. Although the correlation be-
tween the hamming distance and the entropy are very
high (Pearson correlation: 0.84, Additional file 1: Figure
S4), there are cases where the hamming distance is high,
for example, when the hamming distance is five, there
are more than five epiallele patterns, and the entropy
range is from -20 to -110. So, these data show how the
combinatorial entropy difference can affect differences
that are masked by the Hamming quotient, through le-
veraging the information of the epiallele proportion.
However, to make Methclone more comprehensive,
we also supplied a script to calculate the hamming dis-
tances between the major epiallele patterns of two sam-
ples/stages, as well as using the existence of epialelle
patterns that have more than 5% as the symbols in the
hamming distance. This can be found here: [23], as well
as other useful scripts that interface with the code. Inter-
estingly, we see that there is an overall similar trend of
increasing Hamming distance revealing greater epiallele
shift (Additional file 1: Figure S4), but most importantly,
there are clear cases where the hamming distance is the
same, yet the clonal architecture is dramatically differ-
ent. We believe these additional data point to the limited
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dynamic range of a Hamming discrete count, but if
other algorithms become available that use Hamming
distances in other ways, we can easily modify our scripts
to accommodate these other methods (as here).

Single nucleotide polymorphism calculation

We applied Bis-SNP [24] to detect single nucleotide
polymorphisms in the ERRBS data and removed any loci
that overlap with C>T or G>A SNPs. We have pro-
vided and example on our website of how to remove any
sites that show genetic variation during an analysis,
should a user wish to ensure common variants are not
impacting their measurement of epialleles or to partition
their analysis. See [25].

Genomic locations annotation

RefSeq gene model and CpG islands track were down-
load from UCSC genome browser website and were used
for loci and eloci annotation with GenomicRanges [26].
Circos plot were plotted using RCircos [27].

Pathway enrichment analysis

Pathway enrichment analysis was performed using the
GREAT [10] Great associates genomic regions with nearby
genes’ regulatory domains. Specifically, we used the fol-
lowing parameters for the definition of regulatory domain:
5,000 bp upstream, 1,000 bp downstream of TSS as basal
regulatory domain and this is extended up to 50 kb
maximum. These genes then were included to calculate
enrichment statistics using the binomial test and the
hypergeometric test. Only the gene ontology terms and
pathways significant by both tests are included (FDR
q-value <0.01).

Additional file

Additional file 1: Figure S1. The number of eloci against the number
of loci covered (a) and sequencing library size (b). Figure S2. Technical
reproducibility of RRBS and AS. Figure S3. No enrichment for enhancer
for eloci from NBM samples. Figure S4. Hamming distance vs. delta
combinatorial entropy (AS). Figure S5. Coverage of CpGs by sequencing
data. Figure S6. Sixteen patterns of epialleles defined by four CpGs within
one read. Figure S7. Average read coverage against delta combinatorial
entropy. Figure S8. Average DNA methylation against delta combinatorial
entropy. Table S1. Clinical information for AML patients.
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