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Abstract 

Methylation of DNA is known to be essential to development and dramatically altered in 

cancers. The Illumina HumanMethylation450 BeadChip has been used extensively as a cost-

effective way to profile nearly half a million CpG sites across the human genome. Here we 

present DiffVar, a novel method to test for differential variability between sample groups. 

DiffVar employs an empirical Bayes model framework that can take into account any 

experimental design and is robust to outliers. We applied DiffVar to several datasets from 

The Cancer Genome Atlas, as well as an aging dataset. DiffVar is available in the missMethyl 

Bioconductor R package. 

Background 

DNA methylation is crucial for normal embryonic development with roughly 3-6% of all 

cytosines methylated in normal human DNA [1]. However, methylation changes are known 

to accumulate with age [2], with up to 30% of CpG sites changing methylation status within 

the first 1.5 years of life [3]. In addition, aberrant methylation patterning is associated with 

many diseases. In particular, in cancer cells, disruption of normal methylation events are very 

common with the number of genes undergoing CpG island promoter hypermethylation 

increasing during tumour development, combined with an extensive loss of DNA methylation 

in other genomic regions [1,4]. This phenomenon is not consistent across all cancers 

however; distinct DNA methylation patterns have been observed between sub-types of the 

same cancer [5-7]. Akalin et al. [5] show that one sub-type of Acute Myeloid Leukemia 

shows widespread hypermethylation in promoter regions and CpG islands neighbouring the 

transcription start site of genes, while a second sub-type displayed extensive loss of 

methylation at an almost mutually exclusive set of CpGs in introns and intergenic CpG 

islands and shores. Abnormal methylation events can potentially silence tumour suppressor or 

growth regulatory genes, activating novel pathways that contribute to tumour progression [8]. 

However, epigenetic changes are potentially reversible, as it is possible to reactivate genes 

that have been silenced by methylation [1], making them an attractive therapeutic target. 

Hence the study of DNA methylation in cancer remains an important topic of interest with 

much still to be discovered. 



Cancer is a heterogeneous disease. Within each type of cancer there is the potential for 

tumour growth to be driven by perturbations in many different molecular pathways, and these 

perturbations will vary from individual to individual. Epigenetic instability or the loss of 

epigenetic control of important genomic domains can lead to increased methylation 

variability in cancer, which may contribute to tumour heterogeneity [9]. In a large study 

profiling 1505 CpG sites of 1628 human samples, of which 1054 were tumours, Fernandez et 

al. [10] observed little variation in the DNA methylation patterns of normal tissue, while the 

established tumours showed greater CpG methylation heterogeneity. Hansen et al. [9] 

propose that increased epigenetic heterogeneity in cancer could underlie the ability of cancer 

cells to adapt rapidly to changing environments. Hence studying the heterogeneity of cancers 

could lead to better understanding of tumourigenesis. 

As mentioned, it has been shown that DNA methylation patterns are associated with an 

individuals’ age [2]. Interestingly, both tumour development and aging are processes which 

result in the global loss of genome wide DNA methylation combined with gains in CpG 

island promoter methylation [11,12]. Hence it has been speculated that the accumulation of 

epigenetic alterations during aging might contribute to tumourigenesis [12]. 

Several technologies are available for profiling DNA methylation, both array and sequencing 

based. While the cost of next generation sequencing has dramatically decreased, it is still too 

expensive for many large studies to profile widespread methylation. The introduction of the 

Illumina 450 K human methylation array is a more affordable alternative for measuring 

genome-wide DNA methylation at 482,421 CpG sites. Consequently, thousands of tumour 

and normal tissues have been profiled using these arrays, with numerous cancer datasets now 

publicly available through The Cancer Genome Atlas (TCGA) [13,14]. Similarly, these 

arrays are being used to profile methylation differences between disease cases and normal 

controls in so called eigenome-wide association studies (EWAS) [15]. 

To date, the main focus when analysing DNA methylation data has been detecting CpG sites 

that are differentially methylated between groups. Methods to detect differences in means for 

high-dimensional biological data are well-established and include approaches such as those 

taken in the Bioconductor [16] software packages limma [17], minfi [18], edgeR [19] and 

DESeq [20]. A CpG site that is statistically significantly differentially methylated between 

groups (for example, cancer versus normal) will have different group means; however, the 

measurements within each group will tend to be quite consistent (Figure 1A). Recently, 

several papers have observed consistent methylation between normal samples and highly 

variable methylation between cancer samples, arguing that identifying features that differ in 

terms of variability may be just as relevant or important as differential methylation for 

understanding disease phenotypes [21-25]. In other words, there is interest in identifying 

differentially variable CpG sites, where the samples in one group have consistent methylation 

values and the samples in the other group have highly variable methylation values (Figure 

1B). 

Figure 1 Differential methylation (DM) and differential variability (DV) in the kidney 

cancer methylation dataset. The plots in (A) and (C) show the M values and absolute 

deviations of the most significant differentially methylated CpG site between the normal and 

cancer samples. There is an obvious shift in mean between cancer and normal (A), but from 

(C) the variability in both groups looks very similar. The plots in (B) and (D) show the M 

values and absolute deviations of the most significant differentially variable CpG site 

between the normal and cancer samples. It is clear that the variability of the cancer and 



normal groups are very different, with very large deviations in the cancer group and 

consistently small deviations in the normal group apparent in (D). 

Methods for detecting differential variability in high dimensional ‘omics data have not been 

well addressed in the literature to date. Jaffe et al. [24] have a sophisticated method to detect 

differential variability over regions, specifically developed for the CHARM array [26]. Bar et 

al. [27,28] propose a three component mixture model on the ratio of the sample variances 

from treatment and control groups. The method aims to separate features that are not 

differentially variable, have inflated variance in the treatment group, or inflated variance in 

the control group. In addition, they perform empirical Bayes shrinkage on the inflation 

factors to stabilise the estimates. Other attempts for determining CpG site-wise differential 

variability include the F-test [9,29] and the Bartlett test [25]. Unfortunately, the F-test and 

Bartlett test are known to be highly sensitive to outliers [30]. While Hansen et al. [9] do not 

address the issue of outliers in the data when using an F-test for equality of variances; Ho et 

al [29] perform an outlier removal step prior to testing for differential variability. By contrast, 

Teschendorff and Widschwendter [25] implement the Bartlett test and claim that features that 

are differentially variable due to outliers are of interest. Their application is specific to the 

early stages of carcinogenesis, where they hypothesised that outliers may play an important 

role. It has been observed, however, that outliers are often a result of technical and biological 

artefacts rather than being biologically relevant to disease. For example, a technical artefact 

could arise due to processes surrounding the technology and biological artefacts could 

include stromal contamination of a tumour sample. Microarrays can suffer from spatial 

artefacts [31] and outliers arising from sample specific GC content biases have been reported 

in RNA sequencing data [32]. Mislabelled samples can also lead to outlying observations 

[33]. Hence, a method that successfully identifies differentially variable sites with a broader 

distribution of methylation values, such as that in Figure 1B, is desirable. Furthermore, the F-

test and Bartlett test assume that the data is normally distributed, which is not the case for 

methylation data [34]. 

Here we present a new method for detecting differential variability for individual CpG sites 

in methylation data. Our approach is inspired by Levene’s z-test [35]. It is a simple and 

computationally efficient test that is robust against non-normality and outliers. A major 

advantage of our method is that it is suitable for any experimental design; it is not limited to a 

two-group scenario. The method, called DiffVar, is available as a function in the missMethyl 

Bioconductor R package, and depends on the limma framework. We applied DiffVar to 

several publicly available cancer datasets from TCGA, as well as a publicly available aging 

dataset [2]. When we applied DiffVar to the cancer data sets from TCGA we observed that a 

large proportion of the top differentially variable CpG sites are found in CpG islands. 

Interestingly, the top differentially variable CpG islands tend to differ from cancer to cancer. 

We further found that the 10,000 top ranked differentially variable CpG sites have very little 

overlap with the 10,000 top ranked differentially methylated CpG sites, consistent with the 

findings in Teschendorff and Widschwendter [25]. Applying DiffVar to an aging dataset 

revealed that the centenarians have highly variable methylation compared to newborns and 

approximately 17% of the differentially variable CpGs were also differentially methylated. 



Results 

DiffVar: a new method to identify differentially variable features 

The focus of this paper is on methylation data from Illumina’s Infinium 

HumanMethylation450 BeadChip, although our method can be applied to any high 

dimensional data such as gene expression data. The output from the array consists of two 

measurements for each CpG site, the methylated and unmethylated intensity signal. These 

two measurements can be used to calculate either β values, which capture the proportion of 

methylation at each CpG site, or M values, defined as the log2-ratio of the methylated to 

unmethylated intensity. Since M values do not display the severe heteroscedasticity that 

occur with β values [34], DiffVar is performed on M values. If only β values are available 

they can be transformed into M values using a logit transformation, M = logit(β). Similarly M 

values can be converted back to β values for interpretation and visualisation. For more details 

on the array and raw data see ‘Materials and Methods’. 

As mentioned, our method is inspired by Levene’s z-test [35]. Intuitively, a measure of 

variability can be thought of as the distance of each point within a group from the group 

mean. Figure 1C and D show examples of the CpG sites from Figure 1A and B across a large 

kidney cancer and normal dataset from TCGA (see ‘Materials and Methods’). Each sample is 

plotted as a bar with the height of the bar equal to the absolute deviation from the group 

mean. Highly variable groups will be characterised by consistently large deviations (Figure 

1D, red bars representing the cancer group) and low variability groups will have consistently 

small deviations (closer to zero) about the group mean (Figure 1D, blue bars representing the 

normal group). In order to determine if one group is more variable than another, we can 

simply perform a t-test on the absolute or squared deviations of the M values from the group 

mean. This tests the null hypothesis that the group variances are equal. CpG sites that have 

deviations consistently larger in one group compared to another group will be identified as 

significantly differentially variable. Figure 1C shows the absolute deviations from the group 

means for the top differentially methylated CpG site. Although there is a shift in mean M 

values between the two groups, the variations about the mean are similar in both groups; 

hence this CpG site will not be significantly differentially variable. 

In high dimensional data, it is well-known that a simple t-test can result in many false 

discoveries, hence we employ an empirical Bayes modelling framework to stabilise the t-

statistics [36]. Additional variables, which may influence the variability within groups, can be 

taken into account within the linear modelling framework. This ensures that any experiment 

that can be summarised by a design matrix can be accommodated. Unequal sample sizes are 

taken into account by multiplying the absolute or squared deviations from the group mean by 

a leverage factor, nk /(nk + 1), where nk is the sample size for group k. Moderated t statistics 

[36] are computed and Benjamini and Hochberg false discovery rates (FDR) [37] are 

reported. In this manner, a list of differentially variable CpG sites is obtained. For a more 

formal definition of the statistical model see the Additional file 1. 



Simulation study 

DiffVar correctly controls Type I error rate 

Two strategies were used to determine type I error rate control. The first strategy generated M 

values under a hierarchical model while the second strategy involved resampling data from 

the kidney cancer data set, using only the non-diseased samples. Details of the simulations 

are provided in ‘Materials and Methods’. Briefly, a two group scenario with a sample size of 

50 in each group was simulated. M values were generated for ten thousand CpG sites and 

with the same variance for each group. CpG sites were tested for differential variability using 

the F-test, Bartlett’s test, DiffVar with absolute deviations, and DiffVar with squared 

deviations. The numbers of significant raw p-values at cut-offs of 0.001, 0.01, 0.05 and 0.1 

were counted for each of 1000 simulations. Table 1 summarises the results. Under the 

hierarchical model, the type I error rates are very close to the nominal p-value for all tests, 

showing that all tests have good type I error rate control in this scenario, although DiffVar 

with squared deviations appears conservative at 0.001. For the resampled data, the Bartlett 

test and the F test lose type I error rate control for all nominal p-values (Table 1). This is 

likely due to real data containing technical and biological artefacts that produce outliers. By 

contrast, DiffVar with absolute and squared deviations maintains type I error rate control over 

all nominal p-values. DiffVar with squared deviations is conservative at nominal p-values of 

0.001 and 0.01. 

Table 1 Comparing the type I error rate for the four different methods 

Data generated under hierarchical model 

 Nominal P-value 

Test method 0.001 0.01 0.05 0.1 

Bartlett 0.001032 0.01014 0.0504 0.1006 

F test 0.001011 0.01003 0.05001 0.1001 

DiffVar (abs) 0.0010029 0.01023 0.05094 0.1036 

DiffVar (sq) 0.0007118 0.009800 0.0499 0.1018 

Resampled data from kidney non-diseased samples 

 Nominal P-value 

Test method 0.001 0.01 0.05 0.1 

Bartlett 0.009 0.0257 0.07715 0.1331 

F test 0.0089 0.0253 0.0763 0.1319 

DiffVar (abs) 0.001 0.0104 0.0523 0.105 

DiffVar (sq) 0.0004 0.00665 0.0448 0.0981 

Data was generated in two ways: under a hierarchical model, and by randomly selecting the 

non-diseased kidney samples. Median type I error rates are reported for 1000 simulations 

with no differentially variable or differentially methylated features. For simulations generated 

under the hierarchical model, the standard deviation with which the error rate is estimated 

ranges from approximately 0.00024 for rates near 0.001 to 0.0029 for rates near 0.1 with no 

notable difference between the methods. For the resampled data, the standard deviation 

ranges from approximately 0.0026 for rates near 0.001 to 0.026 for rates near 0.1 with 

DiffVar (sq) being noticeably less variable than the other methods. 



DiffVar is robust to outliers 

To further explore the effect of outliers, the simulations under the hierarchical model were 

modified to incorporate 200 CpGs with a single outlier by randomly selecting one sample and 

substituting the maximum M value over all ten thousand simulated M values. From Table 2 it 

is again apparent that the Bartlett and F-test are extremely sensitive to outliers and have lost 

all type I error rate control, particularly for smaller nominal p-values. DiffVar with absolute 

or squared deviations is robust to outliers and maintains type I error control, although DiffVar 

with squared deviations is once again conservative at nominal rates of 0.001 and 0.01. Figure 

2A shows the number of CpGs with outliers in the top 500 features ranked by each method. 

Although the F and Bartlett tests produce different p-values, they have similar ranking by p-

value, resulting in overlapping curves for Figure 2A and B. It is immediately apparent that 

the top ranked features by Bartlett and F p-values are produced by probes with outliers. In 

contrast, DiffVar using either squared or absolute deviations does not preferentially rank the 

CpG sites containing outliers near the top of the list (Figure 2A). 

Table 2 Comparing the type I error rate for the four different methods in the presence 

of 200 outliers 

 Nominal P-value 

Test method 0.001 0.01 0.05 0.1 

Bartlett 0.01379 0.02601 0.06781 0.1179 

F test 0.01467 0.02663 0.06767 0.1172 

DiffVar (abs) 0.0009701 0.01006 0.05085 0.1019 

DiffVar (sq) 0.0005373 0.008198 0.04880 0.1011 

Median type I error rates are reported for 1000 simulations with no differentially variable or 

differentially expressed features, but with 200 outliers incorporated in the data. The standard 

deviation with which the error rate is estimated ranges from approximately 0.0003 for rates 

near 0.001 to 0.003 for rates near 0.1 with the Bartlett and F test more variable than DiffVar 

at nominal p-values of 0.001 (sd approximately 0.002 compared to 0.0003) and 0.01 (sd 

approximately 0.0018 compared to 0.0010). 

Figure 2 Performance of the four different methods using simulations. Results shown in 

plots (A-D) are averaged over 1000 simulated datasets and results shown in plots (E-F) are 

averaged over 100 resampled datasets at each sample size. Plot (A) shows the cumulative 

numbers of differentially variable CpG probes containing outlier observations when ranking 

by the four different methods. There are no differentially variable CpGs simulated but 200 

outliers are included in the data. Plot (B) shows ROC curves when 200 outliers and 1000 

differentially variable CpGs are present in the simulated data. Plot (C) shows the control of 

the false discovery rate (FDR) of the four methods at a 5% nominal FDR cut-off (horizontal 

dashed black line) over ten different sample sizes. This simulation contains 1000 CpGs which 

are roughly five times more variable in Group 2 compared with Group 1. Plot (D) shows the 

power to detect differentially variable features at ten different sample sizes when Group 2 is 

roughly five times more variable than Group 1. Plot (E) shows the control of the FDR using 

resampled kidney cancer datasets at 11 different sample sizes. Plot (F) shows power to detect 

differentially variable features using resampled kidney cancer datasets at 11 different sample 

sizes. 



DiffVar has fewer false positives in the presence of both outliers and truly 

differentially variable features 

To add complexity to the simulations we incorporated 1000 differentially variable features in 

the simulated data in addition to the 200 outliers. The variability of the 1000 CpGs in the 

second group was roughly twice that of the variability in the first group (see ‘Materials and 

Methods’). Figure 2B shows Receiver Operating Characteristic (ROC) curves for the four 

methods. It is clear that the outliers severely affect the F and Bartlett tests’ ability to detect 

the true differentially variable features. The DiffVar tests always detect more true positives 

and fewer false positives than the F and Bartlett tests, with very little difference between 

absolute or squared deviations. The dip in the curves corresponding to the F and Bartlett tests 

show that the outliers are ranked above truly differentially variable CpGs. DiffVar correctly 

ranks truly differentially variable features at the top of the list and is not affected by outliers. 

Sample size considerations for testing differential variability 

In order to accurately estimate the group variances, larger samples sizes are needed than for 

accurately estimating group means. We investigated a range of sample sizes that would 

enable reliable detection of differentially variable features. Detecting differential variability 

depends on sample size as well as how large the variability in one group is compared to the 

other. We assessed the effect of sample size for DiffVar in two ways. Firstly, through the use 

of simulations, and secondly, by subsetting the kidney cancer dataset which contains 283 

cancer tumours and 160 normal samples. 

Initially, we simulated 50,000 CpGs with 200 outliers and 5000 CpGs sites differentially 

variable between two groups with sample sizes of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. 

We simulated three scenarios with the 5000 differentially variable CpGs having twice, five 

times and ten times the variability in group two compared to group one, and generated 1000 

such datasets for each scenario. Total numbers of differentially variable features were 

assessed at 5% false discovery rate cut-off for the four different methods, with the numbers of 

false discoveries and true discoveries recorded for each dataset. 

In addition, we used real data from the kidney cancer versus normal tissue dataset to 

investigate the effect of sample size. We took a conservative approach to determining the 

“true” differentially variable CpGs by taking the intersection of the significant CpGs at 1% 

FDR using DiffVar (abs), the F test and the Bartlett test when analysing the full dataset. We 

randomly sampled 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 samples for each group and 

re-analysed the subsetted data in order to see how many “true” differentially variable features 

were recovered at 5% FDR. To estimate the false discovery rate, we classed any significant 

differentially variable CpG not in the list of “true” differentially variable CpGs as a false 

discovery. We repeated the sampling procedure 100 times for each distinct sample size. 

The results for the simulated and real data are displayed in Figure 2C, D, E, F and Additional 

file 2: Figure S1. Across all simulation scenarios a similar pattern emerges. While the F and 

Bartlett test tend to have greater power to detect true differentially variable CpGs, this comes 

at a price of more false discoveries, particularly at small sample sizes (Figure 2C, D, E, F and 

Additional file 2: Figure S1). DiffVar (abs) and DiffVar (sq) control the false discovery rate 

correctly at all samples sizes, however DiffVar (sq) is conservative for sample sizes below 40 

(Figure 2C, E and Additional file 2: Figure S1A, C). For data where the variability in group 

two is roughly twice that of group one, larger sample sizes are needed to detect differentially 



variable CpGs (Additional file 2: Figure S1B). For data where the variability in group two is 

roughly ten times that of group one, sample sizes as low as n = 20 show more than 80% 

power to detect differential variability (Additional file 2: Figure S1D). 

A similar story emerges when looking at the kidney cancer data. When n = 5, the Bartlett test 

is the only test to recover significant CpGs in the resampled data (Figure 2F), however it 

shows inflated false discovery rates across all sample sizes (Figure 2E). DiffVar (abs) has 

almost perfect FDR control across all sample sizes, however it lacks power when n = 5. A 

minimum sample size of 10 appears necessary to recover differentially variable CpGs (Figure 

2F). For both the simulated and real datasets we find a trade-off between control of the false 

discovery rate and power but DiffVar (abs) gives the best compromise with a lot fewer false 

positives. 

Application to TCGA methylation datasets 

Top differentially methylated and differentially variable CpG sites have little 

overlap 

We analysed the kidney, lung adenocarcinoma and prostate cancer versus normal tissue 

methylation data from TCGA (see ‘Materials and Methods’ for sample details). All samples 

were hybridised to Illumina’s Infinium HumanMethylation450 arrays. The data was read into 

R using the minfi [18] and illuminaio [38] Bioconductor packages, the raw intensities 

normalised using SWAN [39] and M values and β values calculated. Differential methylation 

was assessed by performing moderated t-statistics on the M values using the limma [17] 

Bioconductor package. Differential variability was determined using DiffVar with absolute 

deviations. Significant differentially methylated CpGs were identified as those with FDR < 

5% and difference in mean β at least 0.1. Significant differentially variable CpGs were 

identified as those having FDR < 5%, as well as having a variability ratio of at least five. In 

other words, the magnitude of the variance in one group had to be at least five times the 

magnitude of the variance in the second group. 

Under these criteria, there were 59,271 significant differentially methylated CpGs in the 

kidney cancer dataset, 77,588 in the lung cancer dataset and 71,361 in the prostate cancer 

dataset. The proportions of these that were hyper-methylated in cancer were 47% in the 

kidney cancer dataset, 47% in the lung cancer dataset and 70% in the prostate cancer dataset 

(Figure 3A). DiffVar detected 109,529 differentially variable CpGs in the kidney cancer 

dataset, 146,453 in the lung cancer dataset and 22,001 in the prostate cancer dataset (Figure 

3B), with the vast majority of these more variable in cancers compared with normal samples 

(Kidney: 99.9%, Lung: 99.8%, Prostate: 95%). 

Figure 3 Analysis of the three TCGA datasets. The top panel (A-C) shows results of CpG 

site-level analysis and the bottom panel (D-F) shows results of the CpG island-level analysis. 

Plot (A) shows the numbers of significantly differentially methylated CpG sites for the three 

cancer datasets; (B) shows the numbers of significantly differentially variable CpG sites for 

the three cancer datasets; (C) shows the overlap of the top differentially methylated and top 

differentially variable CpG sites for each cancer dataset separately. The dotted line shows the 

median overlap profile of two sets of 10,000 randomly selected CpGs. The random sampling 

was repeated 1000 times. Plot (D) shows the numbers of significant differentially methylated 

CpG islands; (E) the numbers of significant differentially variable CpG islands; and (F) 



shows a proportional venn diagram of the overlap of the top differentially variable CpG 

islands between the three different cancers. 

Restricting to only the most highly ranked significant differentially methylated and 

differentially variable CpGs, we found very little overlap between the top ranked 10,000 CpG 

sites (Figure 3C). This phenomenon was observed across all cancer datasets, with the degree 

of overlap between differentially methylated and differentially variable CpGs lower than 

expected by chance (Figure 3C). Kidney cancer had the most overlap (2%) and lung cancer 

had the least overlap (0.5%). This implies that the most significant differentially methylated 

and differentially variable CpG sites are different in the three cancer datasets analysed. 

CpG islands are highly variable in cancer samples compared to normal tissue 

samples 

We next investigated the genomic context of differentially variable probes. We found that the 

top differentially variable CpG sites were mostly in CpG islands. Furthermore there was a 

greater proportion of differentially variable sites in CpG islands compared to the 

differentially methylated CpG sites. This was consistent across the three cancer datasets 

(Figure 4A, Additional file 2: Figures S2A, S3A). An interesting observation in the kidney 

cancer dataset was that the CpG islands were over-represented among differentially variable 

CpG sites but under-represented among differentially methylated CpG sites. The lung and 

prostate cancer dataset had more CpG islands represented among the top ranked differentially 

methylated CpG sites, however there was always a greater proportion of CpG islands 

represented in the top differentially variable CpG sites. Hansen et al [9] found increased 

variability of almost all CpG sites (islands, shores and distal to islands region) in their custom 

made CHARM array. However, when analysing a publicly available colorectal cancer versus 

normal mucosa data from the Illumina Human Methylation 27 K BeadChip array they found 

that differentially variable CpGs were over-represented in sites far from islands and shores, 

and under-represented in islands. This contrasts our findings, and may be due to differences 

in the genomic region composition of the different arrays, differences in sample size (22 

matched colorectal cancer versus normal mucosa), differences in analysis strategy and 

potentially differences in tissue type. 

Figure 4 Breakdown of significant DM and DV CpG sites by genomic region in kidney 

dataset. Plot (A) shows the proportion of the top 10,000 ranked CpGs in islands, (B) open 

seas, (C) shores and (D) shelves in the kidney cancer dataset, based on UCSC annotation. 

The horizontal dashed line represents the overall proportion of probes for the genomic region 

on the array. 

This led us to examine the proportion of CpG sites in shores, shelves and open seas, based on 

UCSC annotation (Figure 4B, C, D, Additional file 2: Figures S2B, C, D, S3B, C, D). A CpG 

that is not in an island, shore or shelf was classed as being in an open sea. In the kidney 

cancer dataset there is a striking difference in the proportion of differentially methylated and 

differentially variable CpG sites in open seas (Figure 4B), with a large number of 

differentially methylated CpG sites appearing in these regions. There are fewer CpG sites in 

shelves and shores represented on the array, hence interpretation of these regions is more 

difficult. In the lung and prostate cancer datasets the differences between top differentially 

methylated and top differentially variable CpG sites in shores, shelves and open seas is not as 

striking. 



To gain additional insight in to the differentially variable and differentially methylated CpG 

sites that are in open seas, we tested whether ENCODE defined regulatory regions [40] were 

over- or under-represented (see ‘Materials and Methods’ for further details). Of the nine 

human cell types that have these regulatory regions characterised, the normal lung fibroblasts 

annotation is the only tissue relevant to any of our datasets. For the significant differentially 

variable CpGs in open seas in the lung cancer dataset we found that strong enhancers, weak 

enhancers, active promoters and weakly transcribed regions were over-represented; and 

heterochromatin/low signal regions were under-represented. For the significant differentially 

methylated CpGs in open seas, strong enhancers and active promoters were over-represented 

and heterochromatin/low signal regions were under-represented. The results are displayed in 

Additional file 3: Table S1. 

Top differentially variable CpG islands tend to differ between cancer types 

Due to the interesting finding that the differentially variable CpG sites are over-represented in 

CpG islands, we proceeded with a CpG island-level analysis by averaging the intensities of 

the CpG sites across each CpG island. Just over 30% of the probes on the array interrogate 

CpG islands, with 25,744 unique islands represented. Even though between individuals the 

CpG sites are highly variable, within an individual, the M values of the CpG sites in a CpG 

island are highly correlated (Additional file 2: Figure S4). There were 2245 significant 

differentially methylated CpG islands in the kidney dataset, 4195 in the lung dataset and 3939 

in the prostate dataset. The majority of the significant CpG islands were hyper-methylated in 

cancer compared to normal (Kidney: 92%, Lung: 87%, Prostate: 94%, Figure 3D). There 

were 4877 significant differentially variable CpG islands in the kidney dataset, 7495 in the 

lung dataset and 1745 in the prostate dataset. We found an even greater proportion of CpG 

islands were more variable in the cancers compared to the normal tissue (Kidney: 99.9%, 

Lung: 99.9%, Prostate: 98%, Figure 3E). The top 1000 differentially variable CpG islands 

showed a trend of being unmethylated in the normal samples and becoming methylated in the 

cancer samples in the Kidney dataset (Additional file 2: Figure S5). These CpG islands 

tended to differ between cancer types (Figure 3F). This agrees with the findings in Fernandez 

et al. [10], who show that the DNA methylation profile is tumour-type specific over 1054 

cancer samples, with the tumour profiles characterised by a progressive gain of methylation 

in CpG island associated promoters. In our datasets, kidney and lung cancer had the most 

differentially variable CpG islands in common (20%), but across all three cancer datasets the 

overlap was minimal (approximately 5%). 

Infiltrating cells as a cause of CpG variability between cancer samples 

One explanation of the increased variability seen in cancer samples is that cancer cells are 

frequently infiltrated with normal cells. To address this as the underlying cause of differential 

variability we performed a thorough analysis relating the methylation levels and tumour 

purity of the cancer samples in three different cancer datasets (Kidney, Lung and Uterine). 

We included an extra dataset from TCGA (Uterine corpus endometrial carcinoma) to get a 

better understanding of differentially variable CpGs that have tumour methylation signal 

explained by tumour purity in low (lung), medium (kidney) and high (uterine) tumour purity 

contexts (Figure 5A). A differential variability analysis of the Uterine dataset had 101,262 

CpGs significantly more variable in the cancer samples compared to normal samples, and 773 

CpGs significantly more variable in the normal samples compared to the cancer samples. The 

proportions of the top 10,000 differentially methylated and differentially variable CpGs in 

islands, open seas, shores and shelves was similar to the Kidney, Lung and Prostate cancer 



datasets, with a larger proportion of differentially variable CpGs in CpG islands (Additional 

file 2: Figure S6). 

Figure 5 Effect of tumour purity on methylation signal in three TCGA cancer datasets. 
Plot (A) shows the distribution of the ABSOLUTE tumour purity estimates for Uterine, 

Kidney and Lung cancer datasets. Plot (B) shows the correlation of ABSOLUTE tumour 

purity estimates with the methylation signal for the top ranked differentially variable CpG 

site in the Kidney dataset. Plot (C) shows the correlation of ABSOLUTE tumour purity 

estimates with the methylation signal for a CpG site that is classified as differentially 

variable, differentially methylated and has a large R-squared value in the Uterine cancer 

dataset. Plot (D) shows the number of CpGs that have R-squared values of at least 10% in the 

top 50,000 differentially variable CpGs. The black dashed line clearly indicates that less than 

5% of the top 50,000 differentially variable CpG sites are explained by tumour purity. 

Carter et al. [41] have developed and applied an algorithm (ABSOLUTE) to estimate tumour 

purity for a number of publicly available datasets, including 11 TCGA cancer datasets, 

although purity estimates for the prostate cancer samples are not available. There are 

ABSOLUTE estimates available for 196 samples in the Kidney cancer dataset, 236 in the 

Lung dataset and 297 samples in the Uterine cancer dataset. Figure 5A shows a density plot 

of the ABSOLUTE purity estimates for three cancer datasets: Lung (median purity = 0.44), 

Kidney (median purity = 0.56) and Uterine (median purity = 0.76). 

In order to assess the effect of tumour purity on methylation levels we fitted a linear model 

with methylation level as the response variable and tumour purity as the explanatory variable 

for the cancer samples only. The adjusted R-squared values, which can be interpreted as the 

proportion of the variation in the methylation signal that is explained by tumour purity, were 

obtained for each CpG in each cancer dataset. We classed CpGs that had an adjusted R-

squared value of greater than 10% to be the CpGs that had tumour methylation signal best 

explained by the purity of each cancer sample. For example, for the top differentially variable 

CpG in the Kidney cancer dataset, Figure 5B shows that there is no strong evidence of a 

relationship between methylation signal and tumour purity (adjusted R-squared = 0.0267). By 

contrast, Figure 5C shows the relationship for a CpG (cg08395122) that is identified as 

differentially variable (FDR = 0.0000294, Variability Ratio = 6.14), differentially methylated 

(FDR = 2e-41, Δβ = 0.3), and has a high adjusted R-squared value (0.568) in the Uterine 

cancer dataset. In the case of the CpG in Figure 5C, it is clear that the variability between 

cancer samples is mostly explained by the tumour purity. 

The numbers of CpGs on the array that had more that 10% of variability explained by purity 

were 29,424 in Kidney cancer, 47,353 in Lung cancer and 25,832 in Uterine cancer. However 

most of these were not detected as differentially variable between cancer and normal. Of the 

significant differentially variable CpGs, 3635 CpGs (3.3%) had at least 10% of the variation 

explained by tumour purity in Kidney, 14,986 (10.2%) in Lung and 2745 (2.7%) in Uterine 

cancer. Figure 5D shows the cumulative number of CpGs with at least 10% of the variation 

explained by tumour purity in the top 50,000 most significant differentially variable CpGs. 

The Lung cancer samples, which have the lowest median tumour purity, have the largest 

overlap between top differentially variable CpGs and CpGs with at least 10% of the variation 

explained by tumour purity; while the Uterine cancer samples, which have the highest median 

tumour purity, show the least overlap. 



Application to aging methylation dataset 

In order to study differential variability in aging we used data from Heyn et al. [2] to compare 

methylation in 19 centenarians to 19 newborns. We followed the same analysis strategies 

used for the cancer datasets to determine significant differentially methylated and 

differentially variable CpG sites between centenarian and newborn samples (see ‘Materials 

and Methods’). Of the 31,805 significant differentially methylated CpGs, 9130 (29%) were 

hyper-methylated in centenarians and 22,675 (71%) were hypo-methylated (Figure 6A). We 

also detected 34,680 significant differentially variable CpGs. Intriguingly, although perhaps 

unsurprisingly, 97% of these were more variable in the centenarians than in the newborns 

(Figure 6A). 

Figure 6 Analysis of aging dataset. Plot (A) shows the numbers of significant differentially 

methylated and differentially variable CpG sites and (B) shows the overlap between the top 

10,000 differentially methylated and differentially variable CpG sites. 

Comparing the 10,000 top ranked significant differentially methylated and top ranked 10,000 

differentially variable CpGs, we observed that there was less overlap than expected by chance 

(Figure 6B). Of the 31,805 total significant differentially methylated CpGs and 34,680 total 

significant differentially variable CpGs, there were 5978 CpGs in common. Of the common 

CpGs, 5842 (98%) were more variable in centenarians than newborns, with 47% hypo-

methylated and 53% hyper-methylated). 

A closer look at the genomic composition of the significant differentially methylated and 

differentially variable CpGs revealed that there were more islands and shores represented in 

the top ranked 10,000 differentially variable CpGs compared to differentially methylated 

CpGs (Additional file 2: Figure S7A, C). There were more CpGs in open seas and shelves in 

the top differentially methylated CpGs than in the top differentially variable CpGs 

(Additional file 2: Figure S7B, D). 

The CpGs that were significantly more variable in the centenarians compared to newborns 

corresponded to 7068 genes and the CpG sites that were more variable in newborns compared 

to centenarians corresponded to 484 genes (UCSC annotation). We performed a GOstats 

analysis [42] testing for over-representation of GO terms amongst the genes associated with 

differentially variable CpGs. For the CpGs that are more variable in centenarians compared to 

newborns, many GO categories relating to development were significant (Additional file 4: 

Table S2, p-value cut-off = 0.0001). Far fewer GO terms were significant when testing the 

genes associated with CpGs that were more variable in newborns compared to centenarians; 

however several GO terms related to MHC protein complex were significant, as well as a 

leukocyte mediated immunity GO term (Additional file 4: Table S2). 

Discussion 

In this paper we present DiffVar, a new method to detect differential variability between 

groups of samples. DiffVar is freely available as an R function in the missMethyl 

Bioconductor package. Our test is based on Levene’s z-test for variances and incorporates an 

empirical Bayes modelling framework to appropriately deal with high dimensional data 

issues. We find the test holds its size, is robust to outliers and outperforms the F and Bartlett 

test in terms of controlling the false discovery rate. For smaller sample sizes, the F and 



Bartlett test are more powerful; however this comes at a price of higher false discovery rates. 

DiffVar with absolute deviations represents the best compromise between controlling the 

FDR and power to detect differential variability. 

In order to reliably estimate the variance of a group, more observations are needed than for 

estimating a mean. We found that for group sizes as low as 10 in the kidney cancer dataset 

there was adequate power to detect differential variability, with the power increasing 

dramatically up to group sizes of 50 arrays. However, detection of differential variability is 

also dependent on how large the variability in one group is relative to the other. In addition to 

a false discovery rate cut-off, one can specify a threshold on the variability ratio, which is the 

ratio of the variance in one group compared to the variance in the second group. For example, 

when analysing the cancer and aging datasets, in addition to the FDR cut-off of 5%, we 

required a variability ratio of at least five between the two groups for a CpG to be called 

significantly differentially variable. 

We applied our differential variability testing method to several cancer data sets from TCGA 

as well as a publicly available aging dataset. For the cancer datasets, we found that a large 

proportion of sites showed differential variability and, as expected, were more variable in 

cancer compared with normal tissue. For the aging dataset, we found that a large proportion 

of CpG sites were more variable in centenarians than newborns. Interestingly, for the top 

ranked CpGs in both the cancer and aging datasets, the overlap between differentially 

variable and differentially methylated CpGs was less than expected by chance. 

In all cancer datasets we showed that CpG islands were enriched for differential variability. 

This is important because methylation of CpG islands in cancer cells is known to contribute 

to gene silencing [43]. CpG sites that are differentially variable may reflect a loss of 

epigenetic control that could be contributing to tumourigenesis. Another hypothesis is that 

differentially variable CpG sites capture the heterogeneity between patients whose tumours 

arose due to the disruption or activation of different biological pathways. For some cancer 

patients, the methylation status of a differentially variable CpG site is similar to the 

methylation status in a normal cohort, while for other patients the same CpG site shows 

aberrant methylation. This type of analysis has the potential to be used as a starting point to 

identify clusters of patients whose tumours arose via similar molecular mechanisms. For the 

cancer datasets analysed in this paper, we found that only a small proportion of differentially 

variable CpGs could be explained by tumour purity. 

In this paper we have focused on DNA methylation data that has been generated using 

Illumina’s Infinium HumanMethylation450 BeadChip. DiffVar can also be applied to DNA 

methylation sequencing data or any set of β or M values from CpG sites or regions. The 

DiffVar function will transform a matrix of β values into M values by applying a logit 

transformation. In general, the DiffVar method for testing differential variability can be 

applied to any ‘omics data which uses the limma pipeline for analysis, such as microarray 

expression data or RNA-seq data. For RNA-Seq data, DiffVar will perform a voom 

transformation [44] before testing for differential variability. The DiffVar modelling 

framework has the added benefit of giving the user access to other tools in the limma 

package, for example, testing relative to a threshold (TREAT [45]), as well as gene set testing 

functions ROAST [46] and CAMERA [47]. 



Conclusions 

DiffVar is a novel method to test for differential variability in high-throughput genomics data 

such as methylation arrays or gene expression data. We have shown that DiffVar controls the 

false discovery rate while being robust to outliers. DiffVar is available as an R function in the 

missMethyl Bioconductor package. 

Materials and methods 

Illumina Infinium HumanMethylation450 beadchip 

The Illumina Infinium HumanMethylation450 beadchip allows for the simultaneous 

measurement of 482,421 CpG sites. There are two types of probes: Infinium I, which were 

previously used on the Infinium HumanMethylation27 array and constitute 135,501 probes; 

and Infinium II, which make up the rest of the probes. The Infinium I design has two probes 

which measure the methylated and unmethylated state respectively, whereas the Infinium II 

design has a single probe which can detect whether a CpG site is methylated or unmethylated. 

A thorough description of the array design is available in Maksimovic et al. [39]. The 

resulting data is similar to two-colour microarray gene expression data; there is an intensity 

measurement for both the methylated and unmethylated channel for each CpG site. The main 

difference is that the dynamic range for expression data is different to the dynamic range for 

methylation data. SWAN normalisation can be performed on the Infinium I and Infinium II 

probes within each array to reduce the technical biases inherent in the probe design before 

statistical analysis [39]. Once normalisation has been performed, β values for each CpG site 

can be computed as the ratio of the methylated intensity versus the combined methylated plus 

unmethylated intensity. Du et al. [34] recommend the use of M values for statistical analysis, 

which are calculated as the log2-ratio of methylated versus unmethylated intensities. A small 

offset can be added to the numerator and denominator to stabilise the M values. M values 

with an offset of 100 to both the numerator and denominator are used in all statistical 

analyses reported in this paper. 

Datasets 

Throughout the paper we demonstrate our method with publicly available datasets generated 

by The Cancer Genome Atlas (TCGA) Research Network [48], as well as an aging dataset, 

all of which have methylation profiled using the Illumina HumanMethylation450 arrays. In 

all TCGA datasets used, the cancer samples are from solid tumours and the normal samples 

are from solid normal tissue. The raw data in the form of idat files (called “Level 1” data on 

the TCGA website) for the “Methylation450” platform were downloaded from the TCGA 

data portal [49] and sample annotation was downloaded from the Biospecimen Metadata 

Browser [50] by specifying “Analyte” as the element and “DNA” as the analyte. The clear 

cell kidney carcinoma versus normal tissue dataset (KIRC) has 160 normal samples and 283 

cancer samples. The lung adenocarcinoma dataset (LUAD) has 427 cancer samples and 31 

normal samples. The prostate adenocarcinoma (PRAD) has 194 cancer samples and 49 

normal samples. The uterine corpus endometrial carcinoma dataset (UCEC) has 423 cancer 

samples and 34 normal samples. The specific sample identifiers and other sample information 

can be found in Additional file 5: Table S3, Additional file 6: Table S4, Additional file 7: 

Table S5 and Additional file 8: Table S6. For the aging dataset, methylation profiles were 

generated from 19 healthy male centenarian peripheral blood samples and 19 male newborn 



umbilical cord blood samples. The data is available for download from the Gene Expression 

Omnibus (series accession number GSE30870). 

Data analysis 

The data was read into R from raw idat files using the minfi [18] and illuminaio [38] 

packages. For the cancer datasets, CpG sites on the X and Y chromosomes were filtered out. 

An additional filter was applied to all datasets where CpG sites that had a detection p-value of 

greater than 0.01 in one or more samples were excluded from further analysis. This resulted 

in 445,378 CpG sites for the kidney cancer analysis, 419,031 CpG sites for the lung cancer 

analysis, 448,145 CpG sites for the prostate cancer analysis, 421,795 CpG sites for the uterine 

cancer analysis and 483,615 CpG sites for the aging analysis. The raw intensities were 

SWAN normalised [39], and finally β and M values extracted. Statistical analysis was 

performed on the M values. Differentially methylated CpG sites were determined using 

moderated t statistics from the limma package [17]. Significant differentially methylated 

CpGs were defined as having false discovery rate (FDR) of less than 5% and a difference in 

mean beta level of at least 0.1 between the two groups. Differential variability was assessed 

using DiffVar with absolute deviations from the missMethyl package. Significant 

differentially variable CpGs were defined as having FDR less than 5% and a ratio of group 

variances of at least 5. Testing for enrichment of GO categories in the aging dataset was 

performed using the R GOstats package [42]. The R code for the analysis is available in 

Additional file 9. The tables of significant differentially methylated and differentially variable 

CpGs are available from the authors on request. 

Simulations 

To check the performance of our method we generated datasets where the truth is known in 

order to gain insight into Type I error rate and false discovery rate control. Data was 

generated under a hierarchical model whereby the variance for each CpG was first sampled 

from an inverse chi-square distribution and the M value for each CpG was sampled from a 

normal distribution with variance equal to the simulated variance. A two group problem with 

50 arrays in each group and ten thousand CpGs were generated in this manner. One thousand 

datasets with no differential variability were simulated by first sampling variances for each 

CpG site from a scaled inverse chi-square distribution with scaling factor d0 s0
2
 and degrees 

of freedom d0 such that the two groups have equal variance. We chose d0 = 20, which 

represents the scenario where the observed variances are shrunk 20/(50 + 20) = 0.29 towards 

the prior variance. In other words, more weight is placed on the observed variance during the 

empirical Bayes shrinkage step. We chose s0
2
 = 0.64, which is slightly more variable than the 

hyper-parameter estimates obtained when analysing the larger TCGA cancer datasets 

(Kidney: 0.26, Lung: 0.11, Prostate: 0.16). The M values were generated to mimic 

methylation data by randomly sampling half the CpGs from a normal distribution with mean 

equal to -2 and variance equal to the sampled variance for the unmethylated CpGs; and the 

remainder representing methylated CpGs had M-values sampled from a normal distribution 

with mean equal to 2 and variance equal to the sampled variance. The range of M values this 

simulation scenario produced is shown in Additional file 2: Figure S8A. 

Type I error rates were also assessed using the M values of the non-diseased samples from 

the kidney cancer dataset. One thousand datasets were generated by first randomly sampling 

ten thousand of the 445,378 CpGs, followed by randomly selecting 100 normal samples, of 

which 50 were allocated to the “normal” group and 50 were allocated to the “cancer” group. 



Theoretically, for each CpG the two groups should have equal variance, although additional 

factors such inter-individual heterogeneity will make the data more variable. The sampling 

strategy should preserve any correlation structure between the CpG sites. The range of M 

values this produced for one such dataset is shown in Additional file 2: Figure S8B. 

To assess the impact of outliers we modified the simulations to include outliers for 200 CpG 

sites. For each of these 200 CpGs the M-value for one simulated sample was replaced with 

the maximum simulated M value over all ten thousand CpGs. We introduced differential 

variability for another 1000 CpGs by simulating larger variances for one of the groups by 

sampling from a scaled inverse chi-square distribution with scaling factor d0 s0
2
 and degrees 

of freedom d0, where d0 = 20 and s0
2
 = 1.5. On average, the variability of the 1000 CpGs in 

the second group is 1.5/0.64 = 2.34 times larger than the variability in the first group. 

Differential variability was assessed using our method DiffVar, the F test for equality of 

variances and the Bartlett test. All three tests had two-sided p-values computed. Type I error 

rates and false discovery rates were calculated and averaged over the 1000 simulations in 

each simulation scenario. 

The simulations to assess the effect of sample size were modified slightly by increasing the 

numbers of simulated CpGs to 50,000 and allowing 5000 CpGs to be differentially variable. 

Three different levels of variability were considered: group two roughly twice, five times and 

ten times more variable than group one. A two group problem with varying sample size (n = 

10, 20, 30, 40, 50, 60, 70, 80, 90, 100) was simulated with 1000 datasets generated for each 

distinct sample size. The numbers of truly differentially variable CpGs recovered at a 5% 

FDR and the numbers of false discoveries was recorded for each sample size. Additional file 

10 shows the R code for the simulations. For the sub-setting and resampling of the kidney 

cancer dataset we defined a set of true positives and true negatives in the following way. CpG 

sites that were differentially variable at 1% FDR using DiffVar (abs), the Bartlett and F test 

when analysing the full dataset were classed as true positives. All other CpG sites were 

classed as true negatives. The false discovery rate for each sub-setted dataset was estimated 

by counting the number of true negatives that were significantly differentially variable and 

dividing by the total number of significant differentially variable CpG sites at a 5% FDR cut-

off. Power for each sub-setted dataset was calculated by counting the number of true 

positives that were significantly differentially variable at 5% FDR and dividing by the total 

number of true positives. 

Overlap analysis of ENCODE regulatory regions 

Ernst et al. [40] used a Hidden Markov Model to segment the genome and computationally 

predict functional elements for nine human cell types, using ChIP-Seq data for nine factors 

plus input. The chromatin state segmentation annotation is available for download at the 

ENCODE website [51]. The only relevant tissue where annotation is available is for normal 

lung fibroblasts. We determined whether CpG sites that were significantly differentially 

variable and in open seas (as opposed to islands, shores and shelves) lay in regions that have 

predicted functional elements using an intersectBed analysis in the Lung cancer dataset. We 

calculated the total number of each functional element represented on the array by taking all 

CpGs in open seas and performing an intersectBed analysis. We then calculated the 

probability of each functional element being over- or under-represented in the list of 

significant differentially variable and differentially methylated CpGs separately using a 



hypergeometric test. The p-values were adjusted for multiple testing using Holm’s method 

[52]. 

Infiltrating cells analysis 

ABSOLUTE tumour purity estimates for the Kidney, Lung and Uterine cancer datasets were 

downloaded from the Synapse website [53]. Adjusted R-squared values were used to 

determine the proportion of variation in the tumour methylation signal explained by the 

tumour sample purity. Adjusted R-squared values were extracted from a linear model fit, 

regressing the methylation signal on the ABSOLUTE tumour sample purity estimates of the 

cancer samples for all CpG sites. This was performed in R using the lm function. CpG sites 

that had adjusted R-squared values of more than 10% were classed as CpGs that had 

methylation signal explained by tumour purity. 

missMethyl Bioconductor package 

The DiffVar method is currently available from Bioconductor in the development version of 

the missMethyl package [54]. Following the next release of Bioconductor (version 3.0), 

scheduled for 14 October 2014, DiffVar will be available in the release version of the 

missMethyl package [55]. 
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