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REVIEW
Cancer genomics: one cell at a time
Nicholas E Navin1,2,3
Abstract

The study of single cancer cells has transformed from
qualitative microscopic images to quantitative genomic
datasets. This paradigm shift has been fueled by the
development of single-cell sequencing technologies,
which provide a powerful new approach to study
complex biological processes in human cancers.
still reflect an admixture signal. The presence of mul-
Introduction
Biologists have been studying single cancer cells since the
invention of the microscope by Antonie van Leeuwenhoek
in 1665. Many initial observations were based on the
morphological differences between tumor cells, as re-
corded in the late 1800s by early pathologists, such as
Rudolf Virchow [1]. These observations were greatly im-
proved by the development of cellular staining techniques,
such as hematoxylin and eosin. In the 1980s, the devel-
opment of cytogenetic techniques, including spectral
karyotyping (SKY) and fluorescence in situ hybridization
(FISH), galvanized the field by allowing researchers to
visualize the genomic diversity of chromosome aberra-
tions directly in single tumor cells [2-4]. However, only in
the past four years has the field moved from qualitative
imaging data to quantitative datasets that are amenable to
statistical and computational analysis. This paradigm shift
has largely been fueled by the development of whole-
genome amplification (WGA) and whole-transcriptome
amplification (WTA), methods that can amplify the gen-
ome or transcriptome of a single cell from picogram-to-
microgram quantities. By combining these methods with
next-generation sequencing (NGS) technologies, it is now
possible to obtain genome-wide mutational and transcrip-
tional datasets on individual cancer cells.
Single-cell sequencing (SCS) promises to address key

issues in cancer research, including resolving intratumor
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heterogeneity, tracing cell lineages, understanding rare
tumor cell populations and measuring mutation rates.
Such investigations were previously difficult to perform
by sequencing bulk tissue samples, as these are limited
to providing an average signal from a complex population
of cells. While some clonal diversity can be resolved by
deconvoluting deep-sequencing data [5-7] and sequen-
cing different spatial regions of tumors [8], the data

tiple clonal subpopulations and rare tumor cells is dif-
ficult to resolve from these data, and determination of
which combinations of mutations are present in any given
cell is also hard to resolve. In addition to the genomic
heterogeneity within tumors, there is also phenotypic
heterogeneity, which can be caused by genomic muta-
tions, or through epigenetic modifications, transcrip-
tional changes, alterations in protein levels or protein
modifications. Most notably, many solid tumors show
evidence of harboring both epithelial and mesenchymal
populations, the latter of which are often referred to as
cancer stem cells. These stem-like cells are clear pro-
genitors in hematopoietic cancers, but remain a contro-
versial subject with respect to most solid tumors [9-11].
While there is substantial evidence that tumor cells

can communicate with their neighbors and the stroma,
there are also many complex biological processes that
occur through the actions of individual cancer cells.
These processes include the initial transformation event in
a normal cell, clonal expansion within the primary tumor,
metastatic dissemination and the evolution of chemoresis-
tance (Figure 1). SCS provides a powerful new approach
to study the genomic and transcriptomic basis of these
processes directly in human cancers, without the necessity
for model organisms.
In this review, we discuss how SCS approaches are help-

ing to resolve fundamental questions in cancer biology,
including: what is the range and extent of clonal diversity
in human cancers? Do tumors evolve from single cells in
normal tissues, or from multiple cells? Do tumor cells have
an increased mutation rate relative to normal cells? Which
clones are responsible for metastatic dissemination and
evolving resistance to chemotherapy, and are they rare?
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Figure 1 Single-cell processes in cancer. Although single cancer cells interact with their neighbors and the adjacent stromal cells, there are
many biological processes that occur through the actions of individual cancer cells, shown in this illustration. These complex biological processes
in human cancers include: (a) transformation from a single normal somatic cell into a tumor cell; (b) clonal evolution that occurs through a series
of selective sweeps when single cells acquire driver mutations and diversify, leading to intratumor heterogeneity; (c) single cells from the primary
tumor intravasate into the circulatory system and extravasate at distant organ sites to form metastatic tumors; and (d) the evolution of
chemoresistance that occurs when the tumor is eradicated but survived by single tumor cells that harbor resistance mutations and expand to
reconstitute the tumor mass.

Navin Genome Biology 2014, 15:452 Page 2 of 13
http://genomebiology.com/2014/15/8/452
Several groups have begun to address questions such as
these by using SCS in a variety of cancers, but many
technical hurdles still remain in order to distinguish real
biological diversity from technical errors. We will discuss
the advantages and caveats of different SCS techniques, as
well as their applications to clinical practice.

Isolating a single cancer cell
In order to study a single cancer cell, the cell must first
be isolated from the population. Several well-established
methods can be used to isolate single cells that are
a
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Figure 2 Methods for isolating single cancer cells from abundant and
abundant cellular populations include: micromanipulation by robotics or m
and laser-capture microdissection (LCM; 63X objective). (b) Methods for iso
(Johnson & Johnson), DEP-Array (Silicon Biosciences), CellCelector (Automa
(Creatv MicroTech).
abundant in a population, including micromanipulation,
serial dilution, flow-assisted cell sorting (FACS), micro-
fluidic devices and laser-capture microdissection (LCM)
(Figure 2). The advantages and caveats of these collec-
tion methods have been reviewed previously [9]. It is
important to note that most of these methods require
suspensions of cells prepared from fresh cancer tissue.
It is often not possible to obtain cell suspensions as most
archival tumor samples have been flash-frozen or formalin-
fixed paraffin-embedded (FFPE). Freezing often leads to
rupture of the cytoplasmic membrane, but frequently
lector MagSweeper Nanofilters

g Microfluids LCM

rare populations. (a) Methods for isolating single cells from
outh pipetting, serial dilutions, flow-sorting, microfluidics platforms
lating single cells from rare cellular populations include: CellSearch
ted Lab Solutions), MagSweeper (Illumina) and nano-fabricated filters
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leaves the nuclei intact. To circumvent these problems,
several studies [10-12] have shown that single nuclei
can be isolated for SCS applications, often referred to
as single-nucleus sequencing (SNS). Alternatively, LCM
methods can preserve the spatial location of cancer
cells in the context of their tissue geography. However,
LCM introduces a number of technical artifacts, including
slicing the cells during the preparation of tissue sections
and UV damage to DNA or RNA from the laser cutting
energy [13].
While the aforementioned methods are efficient at

isolating single cells from an abundant population, the
isolation of rare cancer cells (<1% of the total tumor cell
population) remains difficult. This is particularly prob-
lematic as there is great interest in the field in isolating
circulating tumor cells (CTCs), disseminated tumor cells
(DTCs) and cancer stem cells (CSCs) in order to under-
stand their role in tumor progression and metastasis.
CTCs and DTCs can occur at very low frequencies (one
in one million mononuclear cells) in the blood or bone
marrow [12,13].
Several new technologies have been developed to

isolate rare CTCs or DTCs from the blood using fluores-
cent markers. The CellSearch magnetic bead system
(Johnson & Johnson) was the first clinical system devel-
oped to detect and enumerate CTCs in blood samples
and is widely used in the clinic today [14]. This system
uses magnets with ferrofluid nanoparticles conjugated to
the antibodies EpCAM and CD45 to enumerate or isolate
CTCs. EpCAM is an epithelial marker that is present on
epithelial tumor cells, but absent in most blood cells.
CD45 is an immunocyte marker that is present on many
blood cells, but absent in the CTCs. The DEP-Array
system (Silicon Biosciences) uses a microfluidics chip with
dielectropheretic cages to navigate individual cells by
charge after identification with fluorescent markers [15].
The advantage of this system is that every cell is pre-
served, and even a single cell in a pool of 100,000 can be
isolated efficiently. Another method, called the CellCelector
(Automated Lab Solutions), uses nanofabricated wells
to isolate and phenotype single cells that can then be
isolated by a robotic micromanipulator [16]. This sys-
tem is high-throughput but requires that single cells be
diluted in suspensions for capture. The nanopost micro-
chip technology involves flowing CTCs through a series
of posts to which antibodies against EpCAM have been
conjugated [17]. Another technology, called Magsweeper
(Illumina), involves dipping a rotating magnet with bound
EpCAM antibodies in order to isolate CTCs and then
moving the magnet into a new buffer for release of the
CTCs [18]. The caveat of the aforementioned methods is
that they depend on identifying rare cells using fluorescent
markers, and thus are highly biased. In CTCs, cells are
generally selected as EpCAM-positive and CD45-negative,
which would miss any tumor cells with a mesenchymal
phenotype. An alternative method, which overcomes this
problem, involves isolating rare tumor cells by size dis-
crimination on nanofabricated filters (CellSieve) [19]. The
principle underlying this method is the fact that most
CTCs are larger in size (>7 μm) than the white blood cells
(<7 μm) and thus can be filtered by size discrimination. In
summary, none of the technologies discussed is perfect for
isolating rare tumor cells, and careful considerations must
be taken in order to avoid biasing the population of single
cells that are selected or missing them entirely.

Single-cell sequencing technologies
SCS technologies have evolved substantially in the area
of genome and transcriptome sequencing over the past
four years, a technical feat that was considered inconceiv-
able only a few years ago. The development of single-cell
RNA-seq methods has shown significant progress owing
to the fact the each single cell harbors thousands of copies
of each mRNA transcript, while having only two copies of
each chromosomal DNA molecule. Consequently, the field
has seen a proliferation of methods for performing
single-cell RNA-seq [20-25], overcoming many of the
initial technical challenges, including amplification distor-
tions, obtaining full-length transcripts and mitigating 3′
bias. Single-cell RNA sequencing methods (summarized
in Table 1) have been reviewed in detail elsewhere [26,27].
By contrast, the development of single-cell genome

and exome sequencing methods has proved to be more
challenging and will be discussed in detail. Starting with
only two copies of DNA as input material for WGA results
in a number of technical errors, including low physical
coverage, non-uniform coverage, allelic dropout (ADO)
events, false-positive (FP) errors and false-negative (FN)
errors due to insufficient coverage (Figure 3). In sequen-
cing the genome or exome of a single cell, it is often
difficult to achieve high coverage breadth (nucleotide sites
with at least 1X coverage). However, achieving high phys-
ical coverage of the exons or genome is crucial for calling
mutations at the same regions across multiple single cells.
Coverage uniformity (or ‘evenness’) is another technical
challenge with single-cell data, owing to the significant GC
bias that occurs during WGA (Figure 3c). This leads to
deviations from the Poisson coverage distributions that are
normally observed in NGS data, requiring higher coverage
depths to achieve sufficient coverage in regions with low
read counts. FP errors occur due to the infidelity of the
WGA polymerase during amplification and lead to single-
base-pair errors [28,29] (Figure 3a). These errors are most
severe during the initial rounds of genome duplication be-
cause all subsequent molecules inherit the errors, making
them abundant in the pool. Interestingly, most FP errors
generated during a WGA approach called multiple-
displacement amplification (MDA) show a very strong



Table 1 Single-cell sequencing methodsa

Approachb WGA methodc Enzymed Cells/nucleie Applicationsf Coverage breadthg Commercial kitsh References

SCS DNA-seq

SNS DOP-PCR Thermosequenase Nuclei Copy number profiling ~10% WGA4 Sigma [34]

MALBAC DOP-PCR Bst Cells Copy number profiling >90% Bst NEB [31]

BGI MDA MDA Phi29 Cells Genome/exome >90% Repli-G Qiagen [30]

NUC-SEQ MDA Phi29 Nuclei Genome/exome >90% Repli-G Qiagen [37]

SCS RNA-seq

Tang method PolyA priming Reverse transcriptase Cells Transcriptome 3' bias NA [21]

Quartz-seq PolyA priming Reverse transcriptase Cells Transcriptome 3' bias NA [24]

CEL-seq PolyA priming Transcription in vitro Cells Transcriptome 3' bias NA [20]

STRT-seq Template-switching Reverse transcriptase Cells Transcriptome Full-length NA [23]

Smart-seq Template-switching RT MMLV Cells Transcriptome Full-length Clontech [22]

PMA MDA Phi29 Cells Transcriptome 3' bias NA [25]
aTable summarizes the methods for single-cell DNA sequencing and single-cell RNA sequencing. bName of the method; camplification method; denzyme used for
amplification; edescription of whether the method was designed for analysis of cells or nuclei; fdescription of the type of molecular information that is best
measured using the method; greference to the total number of bases that can be covered with sequencing data using the approach; hindication of whether any
commercially available kits have been developed to perform the method. Abbreviations: BGI Beijing Genome Institute, Bst Bacillus stearothermophilus DNA polymerase,
DOP-PCR degenerative-oligonucleotide PCR, MALBAC multiple annealing and looping-based amplification cycles, MDA multiple-displacement amplification, NA not
applicable, PCR polymerase chain reaction, PMA Phi29 DNA-polymerase-based mRNA transcriptome amplification, RT MMLV reverse transcriptase Moloney murine
leukemia virus, SNS single-nucleus sequencing, WGA whole-genome amplification.
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bias for C > T (G > A) transitions [30], which could be
mitigated by filtering or using probabilistic variant
calling models. However, by far the greatest errors that
plague SCS data are ADO events, which can be found
in 10 to 50% of the mutation sites [28,30-33]. ADO occurs
when one allele in a heterozygous mutation (AB) is not
amplified by the polymerase, resulting in a homozygous
genotype (AA or BB) (Figure 3a). These technical errors
Pop
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Figure 3 Technical errors and coverage in single-cell sequencing data
include: false-positive errors, allelic dropout events and false-negative error
Coverage metrics in SCS data include coverage depth and total physical co
can vary from cell to cell, but is often more uniform in standard genomic D
must be accounted for in post-processing analysis of SCS
data as otherwise every mutation will be reported as
showing heterogeneity in the population of single cells.
Importantly, WGA is not a single technique, but

encompasses a wide variety of experimental methods and
polymerases (Table 1). The most common WGA methods
used in SCS studies include degenerative-oligonucleotide-
PCR (DOP-PCR) and MDA using either the Phi29 or Bst
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. (a) Technical errors that occur in single-cell sequencing (SCS) data
s due to insufficient coverage. ‘Pop’ indicates a population of cells. (b)
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NA sequencing experiments using populations of cells.
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bacteriophage polymerases. DOP-PCR generates low phys-
ical coverage of a single-cell genome (approximately 10%)
but can accurately retain copy number levels during ampli-
fication, which makes it an ideal method for single-cell
copy-number profiling. This approach was used in the
first SCS method developed, called single-nucleus se-
quencing (SNS), to generate high-resolution (54 kb)
copy-number profiles from sparse NGS data [34,35].
However, the low physical coverage of DOP-PCR in a
single cell makes it a poor tool for measuring mutations
at base-pair resolution. MDA using either the Phi29 or
Bst polymerases can achieve high-coverage (>90%) se-
quencing data from the genome or exome of a single
cell [30,31,36,37]. However, the caveat of MDA is that it
generates non-uniform coverage and can therefore
result in very high distortions of copy-number states.
Phi29 is the ideal polymerase for MDA reactions as it
has an error rate of 10-7, whereas Bst has a much higher
per base error rate at 10-5 [29,38]. Technical errors
accumulate during the WGA reaction, resulting in hun-
dreds of thousands of FP errors in the genome of each
single cell. SCS methods using the Phi29 polymerases
have estimated that the final FP error frequency (ap-
proximately 2.5 × 10-5) would approximate to >160,000
technical errors in each human single-cell genome [25,26].
Many FP errors occur randomly and can be mitigated by
calling mutations that occur in two or more cells at the
same nucleotide site; however, recurrent errors cannot be
eliminated with this approach.
Another SCS DNA method that has been developed is

called ‘multiple annealing and looping-based amplification
cycles’ (MALBAC) and uses the Bst polymerase to form
circular DNA fragments followed by adapter ligation PCR
(Table 1). While the idea of forming circular DNA mole-
cules to inhibit further amplification is elegant, the initial
study did not provide experimental evidence supporting
this phenomenon [31]. If circular DNAs were in fact
formed and did not serve as further templates, the method
would be expected to generate extremely low FP error
rates as each newly synthesized molecule would contain
random errors that are not propagated. However, MAL-
BAC holds the highest FP error rate of all of the SCS
methods, probably due to the high infidelity of the Bst
polymerase (10-5) [31]. For this reason, MALBAC is more
useful for copy-number profiling applications than for the
detection of point mutations or indels at base-pair reso-
lution (similar to other DOP-PCR-based methods such as
SNS). Another method, called NUC-SEQ, uses cells in
G2/M phase of the cell cycle to duplicate the amount of
starting material in a single cell from 6 pg to 12 pg,
followed by limited isothermal amplification using the
Phi29 polymerase and tagmentation to generate libraries
for NGS [29]. This approach improves physical coverage
(>94%) and reduces the ADO (approximately 10%) and FP
error rate of SCS by limiting the isothermal amplification
timeframe for WGA [37] (Table 1).
In summary, the DOP-PCR-based WGA methods and

MALBAC are ideal for copy-number profiling as they
generate very high FP error rates and low physical cover-
age, but provide uniform amplification across the genome.
In contrast, the Phi29-based MDA methods are more
suitable for the detection of point mutations and indels
at base-pair resolution. However, owing to the high
technical error rates, mutations must be detected in
multiple single cells in order to distinguish real biological
variants from technical errors. Furthermore, validation
of individual mutations or transcriptional changes using
an orthogonal technology is imperative at this stage of
the sequencing technologies. An excellent review on the
technical details of WGA and WTA methods has been
published elsewhere [39].

Intratumor heterogeneity and clonal evolution in
primary tumors
Intratumor heterogeneity has been widely reported in
many human cancer types [7,8,30] and confounds the
clinical diagnosis and therapeutic targeting of tumors.
Intratumor heterogeneity is generally viewed as ‘bad news’
from a clinical standpoint because single samples might
not represent the tumor as a whole. However, the genomic
diversity within tumors provides an excellent opportunity
to study genome evolution because it provides a perman-
ent record of the mutations that occurred during the
natural history of the tumor. By assuming that mutational
complexity increases with time, we can apply phylogenetic
methods to reconstruct the relative chronology of muta-
tions [40]. The first study to use this approach involved
applying SNS to study the evolution of aneuploidy in pa-
tients with triple-negative (ER-/PR-/HER2-) breast cancers
(TNBCs; negative for, respectively, the estrogen receptor,
progesterone receptor and the receptor tyrosine-protein
kinase erbB-2 (HER2)) [34]. This involved undertaking a
comparative analysis of 100 single-cell copy-number pro-
files from two patients with TNBC, which revealed that
copy-number aberrations (CNAs) evolved in punctuated
bursts of evolution, followed by stable clonal expansions
to form the tumor mass. These data challenged the
prevailing model that mutations accumulate gradually
and sequentially over extended periods of time, leading
to more-malignant stages of cancer [41]. Also identified
were four rare tumor cells that showed a 50-fold amplifi-
cation of the KRAS (Kirsten rat sarcoma viral oncogene
homolog) locus that was absent in the major tumor sub-
populations, suggesting that the most malignant popula-
tions in the tumor might also be the rarest.
Although SNS is adequate for copy-number profiling,

it cannot accurately resolve mutations at base-pair reso-
lution owing to low physical coverage (approximately 6%)
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in each single-cell genome. To address this problem, an
MDA-based method was developed called NUC-SEQ that
can be used to perform high-coverage, whole-genome and
exome sequencing of individual nuclei [37]. NUC-SEQ
was applied to study copy-number and mutational evolu-
tion in two breast cancer patients: a TNBC patient and an
ER-positive breast cancer patient. In both tumors, the data
suggested that copy-number rearrangements evolved early,
in punctuated bursts of evolution, followed by stable
expansions to form the tumor masses. By contrast, point
mutations evolved gradually over extended periods of
time, generating extensive clonal diversity. The single-cell
exome sequencing data also identified many rare subclonal
mutations that were validated by targeted deep sequencing
(>140,000X) using a molecular barcoding approach called
duplex sequencing [42] to decrease the error rate of NGS
from 10-2 to 10-10. The data suggested that many subclo-
nal mutations were present at low mutation frequencies
(<1%) in the tumor mass, possibly diversifying the pheno-
types of cancer cells. These rare subclonal mutations
might be important when the tumor cells encounter se-
lective pressures in their microenvironment, such as the
immune system, hypoxia, nutrient deprivation or chemo-
therapy [43,44].
Single-cell exome sequencing has also been used to

study clonal diversity and tumor evolution in several other
human cancer types. Two controversial studies from the
Beijing Genome Institute (BGI) involved sequencing a
renal carcinoma [36] and a myeloproliferative neoplasm
[30]. The authors performed exome sequencing of 25
single cells from the renal cell carcinoma and compared
point mutations between the cells, from which they con-
cluded that no population substructure was evident and
indeed the tumor mass consisted of a monoclonal popula-
tion of cells. Similarly, in the study of JAK2-positive mye-
loproliferative neoplasms, the authors compared exome-
wide point mutations of 58 cells and postulated that the
tumor evolved from a ‘monoclonal origin’ representing a
monoclonal population of tumor cells. The data and con-
clusions in these studies are contradicted by the phylogen-
etic trees, which show large genetic distances existing
between individual tumor cells. This genetic distance
might be due to the high technical error rates of the
method or due to real biological cell-to-cell genetic vari-
ation, but could not be resolved in these datasets. To deal
with the high technical error rates, the authors decided to
combine all of the single-cell data and identified mutations
that occur in the majority of the tumor cells, which is con-
ceptually equivalent to sequencing the bulk tumor en masse.
While the utility of single-cell exome sequencing data

in lineage-tracing studies was not established in the ori-
ginal studies, researchers from the BGI have recently ap-
plied the same method to sequence 66 single cells from
a muscle-invasive bladder cancer, in which two major
tumor subpopulations were found to have diverged from
a common genetic lineage [45]. This lineage is likely to
be accurate as a large number of single cells with dis-
tinct sets of mutations were identified from two major
subpopulations, and the data show that both subpopula-
tions share a large number of founder mutations, sug-
gesting evolution from a common origin. In another
recent BGI study, the authors sequenced 63 single cells
from a patient with colon cancer and used hierarchical
clustering to show that two groups of tumor cells were
present, from which they concluded that the tumor
evolved from a ‘biclonal’ origin [46]. A biclonal origin, in
the strictest sense of the definition, suggests that a
tumor evolved from two independent normal cells in the
colon tissue and therefore would not be expected to
share any common mutations in their genetic lineages.
However, a biclonal model is contradicted in these data
by the many single cells from each lineage that share
several prominent point mutations (for example, PABPC1
and CDC27) that are highly unlikely to have arisen inde-
pendently through convergent evolution. In summary,
constructing accurate cell lineages from single-cell exome
data still remains challenging owing to the high FP and
ADO error rates in these studies.
SCS has also shown great value in tracing cell lineage

in hematopoietic cancers, including acute myeloid leukemia
(AML). In contrast to the aforementioned studies, these
studies used targeted sequencing of gene panels in single
AML tumor cells, which allows more cells to be profiled
and at a lower cost. One study profiled single cells from
three patients diagnosed with MDS (myelodysplastic
syndrome)-derived secondary AML that were previously
analyzed by whole-genome sequencing [47]. The SCS data
agreed very well with the clonal-substructure predictions
from the deep-sequencing data and, furthermore, showed
which combination of mutations was present in each indi-
vidual cell. This allowed the authors to build phylogenetic
trees and reconstruct the order of mutations that occurred
as the clones evolved from progenitor subpopulations.
In another study using targeted SCS, the authors showed
that self-renewing hematopoietic stem cells (HSCs) under-
went clonal evolution, accumulating founder mutations in
FLT3-ITD (receptor-type tyrosine protein kinase internal
tandem duplications) followed by sequential mutations
in NPM1 (encoding nucleophosmin), TET2 (encoding
methylcytosine dioxygenase) and SMC1A (structural main-
tenance of chromosomes 1A) [48]. These data showed that
HSCs survived therapy and were present in the relapse
samples, suggesting that they should be targeted thera-
peutically to treat the disease. Thus, both studies show
that SCS methods can provide powerful tools for tracing
cell lineages to identify precursor subpopulations and
understand how cancer cell lineages relate to normal
hematopoietic lineages.
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Measuring mutation rates in single cells
Another major question in cancer biology is whether
cancer cells have an increased mutation rate relative to
normal cells. The mutator phenotype hypothesis [49]
has been posited to be a driving force in tumor progres-
sion. The first studies published several decades ago pro-
posed that an increased mutation rate occurred through
mutations in DNA polymerases [50], but more recently
this model has been extended to include mutations in
DNA repair pathways and other genes [49]. Although it
is clear from the pan-cancer and The Cancer Genome
Atlas (TCGA) studies [51,52] that most human cancers
have elevated mutation frequencies (total number of
mutations detected at the time of sequencing), it re-
mains unclear whether they have increased mutation
rates (more mutations generated after each cell division)
or simply more cell divisions at a low mutation rate. The
mutation rate of a normal cell has been estimated to be
approximately 10-10 errors per cell division [53-56], which
would generate about one nucleotide error per cell div-
ision. The main challenge to obtaining accurate estimates
of mutation rates in human tumors is that the number of
cell divisions is often difficult to measure. Most tumors do
not grow exponentially but reach a plateau phase, in
which the number of cell births is equivalent to the num-
ber of cell deaths. Human tumors can remain in this equi-
librium state for many years, expanding the total size of
the tumor at a very slow rate, or not at all.
Bulk-sequencing studies have estimated that the muta-

tion rate across many human cancers is, on average,
210-fold higher than normal cells [57,58]. However, SCS
methods can provide far more accurate measures of mu-
tation rates by comparing changes in mutation frequen-
cies from cell to cell. In one study, MALBAC was used
to investigate the mutation rate of a human colon cancer
cell line [31]. In these experiments, a single cell was sub-
cloned and allowed to expand for 20 cell divisions, after
which single-cell whole-genome sequencing was per-
formed. From these data, a mutation rate of 2.5 nucleo-
tide errors per cell division was estimated. As mentioned
earlier, NUC-SEQ has been used to investigate the muta-
tion rates of an ER-positive breast cancer and a TNBC
from a patient by whole-genome and exome SCS, which
showed that the ER-positive breast tumor did not have
an increased mutation rate relative to that of normal
cells, whereas the TNBC showed a 13.3X increase (eight
mutations per cell division) [37]. These mutation rates
are substantially lower than previous estimates (210X)
made in bulk tissue samples [57,58] but still suggest the
existence of an increased mutation rate. However, one
caveat is that the SCS studies have only focused on a few
patients and single cell lines, and more work is needed
to understand the range and extent of mutation rates in
human cancers.
Tracing metastatic dissemination with single
circulating tumor cells
CTCs shed from the primary tumor and intravasate into
the blood, where they travel to distant organ sites to
seed metastatic tumors [59]. Important questions exist
regarding the timing of when CTCs disseminate (early
or late) [60] and whether they travel unidirectionally or
bidirectionally (back and forth, so called self-seeding)
between the primary and metastatic tumor sites [61,62].
Another question is whether the metastatic clones are
minor subpopulations in the primary tumor that acquire
specific genetic mutations that confer metastatic poten-
tial or, alternatively, are seeded by the major populations
through random shedding into the blood due to leaky
angiogenesis in tumors. These questions can be ad-
dressed by using single-cell sequencing methods to trace
metastatic lineages while utilizing mutations as stable
markers of evolution. One of the first pioneering studies
in breast cancer showed that CTCs can be enumerated
by the presence of the epithelial markers EpCAM and
absence of the CD45 immune surface receptors by using
the CellSearch system [12]. Data from this study showed
that counting five or more CTCs in 7.5 ml of blood has
prognostic value in predicting poor five-year survival in
patients with metastatic breast cancer. Following this
study, enumeration was shown to have prognostic value
in predicting survival in many other human cancers
[13,63]. However, CTCs are extremely difficult to isolate
from the blood as they occur at extremely low frequen-
cies (one in a million mononuclear cells). Consequently,
only a few (1 to 50) CTCs can typically be isolated from
a 7.5 ml blood draw, which has made the genomic analysis
of CTCs very challenging. Hence, the genetic relationships
of CTCs to primary and metastatic tumors, and their
genomic diversity, remain largely unknown.
The development of SCS methods has enabled re-

searchers to obtain the first genome-wide datasets on
CTCs, which is beginning to improve our understanding
of their genomic relationship to primary and metastatic
tumors. One of the first studies to focus on single-cell
transcriptomes used the MagSweeper (Illumina) to isolate
CTCs and a microfluidics platform (Fluidigm) to perform
multiplexed quantitative PCR (qPCR) on 87 cancer genes
in breast cancer cell lines and blood samples from patients
[18]. These data showed that single CTC transcriptional
profiles of breast cancer samples taken from patients had
different expression levels from the breast cancer cell
lines, questioning the overall value of using breast cancer
cell lines to evaluate the effectiveness of new therapies.
Another recent study used the CellSearch system to
isolate 37 single CTCs from six patients with metastatic
colon cancer for copy-number profiling and targeted NGS
using a panel of 68 cancer genes [64]. The data showed
that many of the CTC copy-number profiles were similar
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to those of the primary and metastatic tumor cells, and
that point mutations in APC (encoding adenomatous
polyposis coli protein), KRAS, PIK3CA (phosphatidylinositol
4,5-bisphosphate 3-kinase catalytic subunit alpha isoform)
and TP53 (cellular tumor antigen p53) in the primary
tumors were also present in the single CTCs, suggest-
ing that CTCs will have clinical utility for non-invasive
monitoring.
The initial CTC studies were restricted to gene panels

and specific transcripts, whereas two recent studies in
prostate cancer [65] and lung adenocarcinoma [66]
have applied whole-exome sequencing of single CTCs.
In the lung cancer study, the exomes of 24 single CTCs,
as well as cells from the matched primary and meta-
static tumors, were sequenced from four patients using
MALBAC [66]. The copy-number profiles of the single
CTCs were highly similar and shared most of the same
CNAs as the primary and metastatic tumor cells. By
contrast, the exome data on point mutations showed
extensive variation from cell to cell. This variation
might be due to technical errors or real biological het-
erogeneity; the authors were not able to distinguish be-
tween these two possibilities owing to the high FP and
ADO error rate of MALBAC. Interestingly, the authors
identified a number of CTC-specific mutations that
showed no evidence of existing in the primary or meta-
static tumors. These mutations are intriguing if they
are real biological variants as they would suggest that
CTCs continue to evolve new mutations in the circula-
tory system.
In the prostate cancer study, the authors used a pool-

ing strategy to detect mutations in CTCs to overcome
the poor coverage and high ADO rate of single-cell ex-
ome sequencing data [65]. Nineteen single CTCs and
multiple spatial regions of the primary prostate tumor
and the bone metastases were sequenced from a pa-
tient with metastatic prostate cancer. To compensate
for the low physical coverage and random FP errors
that occur in individual CTCs, the authors pooled the
single-CTC data together and detected mutations that
occur in multiple cells. They found that 51% of the
mutations that occurred in the primary and metastatic
sites could be detected in the CTCs, and there were
also a large number of CTC-specific mutations. Similar
to the lung cancer study described above, the CTC-
specific mutations were not validated, and thus it
remains unclear whether they are technical errors. In
summary, these initial studies are very encouraging as
they show that a large number of mutations in the
primary and metastatic tumors can be detected in
CTCs, suggesting that they will have important
clinical applications for non-invasive monitoring. This
will be discussed further below in the section on
clinical applications.
Transcriptional diversity of single cancer cells
Single-cell transcriptome profiling has begun to unravel
the complex admixture of transcriptional profiles that
are present in solid tumors and hematopoietic cancers.
Initial studies used multiplexed single-cell RT-qPCR to
measure the expression levels of hundreds of transcripts
in single tumor cells in parallel. In colon cancer, these
methods showed that single colon tumor cells have
distinct subpopulations of transcriptional profiles that
match different cell types in normal epithelial colon tis-
sues [67]. These data identified several transcripts with
prognostic value in predicting patient survival. More re-
cently, the field has moved from highly multiplexed
qPCR platforms to single-cell RNA-seq, which can pro-
file the entire transcriptome of each individual cancer
cell. In a technical study using colon cancer cell lines, it
was shown that single-cell multiplexed RT-qPCR could
quantify similar expression levels to single-cell RNA-seq,
paving the way for future studies [68]. Recently, single-
cell RNA-seq was used to study transcriptional diversity
in glioblastomas by sequencing 430 cells from five pa-
tients [69]. In seminal work leading up to this study, it
was shown that glioblastoma patients could be classified
into four expression subtypes: classical, neural, proneural
and mesenchymal [70]. Single-cell sequencing further
showed that, while patients could be classified into these
subtypes, many individual tumor cells expressed differ-
ent subtypes (within the same patient). In contrast to
the prevailing paradigm, these data also showed that single
cells expressed a broad range of intermediate transcrip-
tional states - from stem cell-like to differentiated - rather
than belonging to one distinct group. Future applications
of single cell RNA-seq in other cancer types are likely to
reveal the importance of stem-like cells and cancer stem
cells in tumor progression, and might also provide insight
into the cell-of-origin in human cancers.

Extensive biological diversity or extensive
technical errors?
A pervasive problem in SCS studies is that there is often
no orthogonal validation performed on the variable
mutations or transcriptional changes that are detected in
single cells. Validation of SCS results is crucially important
owing to the high number of technical errors (FP, FN and
ADO) that emerge during WGA or WTA. Alarmingly,
these errors are often interpreted as real biological
variations at the DNA or RNA level. Some studies have
attempted to ‘validate’ single-cell mutations by sequencing
the same DNA that has already been WGA amplified.
This is by no means an adequate approach for validating
mutations as it only eliminates sequencing artifacts and
not the most prevalent type of technical errors that arise
during the initial rounds of WGA. To perform orthogonal
validation, it is necessary to first identify the specific
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transcripts or mutations that show heterogeneity in a
population of cells and validate their variability using an
alternative approach.
For RNA experiments, orthogonal validation can be

achieved by performing single-cell qPCR on a set of tar-
geted probes or in tissue sections using RNA-FISH. To
validate CNAs, FISH probes designed to target specific
amplifications or deletions can be used. By hybridizing
these probes to tissue sections, it is possible to detect
CNAs in thousands of single cells in situ with knowledge
of their spatial information. For mutations in DNA de-
tected by single-cell exome or genome sequencing, a tar-
geted custom-capture platform can be used to perform
ultra-deep sequencing of the cellular DNA from the bulk
tumor. However, sequencing technologies have high
error rates (approximately 0.1 to 1% for Illumina), which
severely limit the accurate detection of mutations that
occur at a frequency below 10% in the population. To
overcome this limitation, it is necessary to use single-
molecule barcoding methods such as duplex sequencing
[42] or Safe-Seq [71], which reduce the sequencing error
rate from 10-2 to 10-10. Briefly, these methods add 12 to
24 bp random tags to each molecule in a pool of frag-
mented DNA and are expanded by PCR to generate 10
to 20 duplicates of each tag. Sequencing errors accumu-
late randomly in the DNA sequences of the duplicate
molecules, and, after sequencing, read groups with com-
mon tags are identified. From each group of reads with a
common tag, a consensus sequence is calculated that
eliminates random errors that accumulated during se-
quencing, resulting in single-molecule information. Re-
cently, this approach has been used to validate subclonal
mutations detected by single-cell exome sequencing in
breast tumors [37]. The major advantage of duplex se-
quencing is that it not only validates subclonal mutations
but also provides accurate measures of the mutation fre-
quencies in the bulk tumor cell population by profiling
the genotypes of thousands of cells. In summary, owing to
the high technical error rates that are inherent in SCS
methods, orthogonal validation is of paramount import-
ance. Without validation, many SCS studies are likely to
falsely report extensive ‘biological variation’, when in fact
they are merely observing extensive ‘technical errors’.

Clinical applications of single-cell sequencing
SCS methods are expected to have important clinical
applications in cancer management within the next five
years. These applications include non-invasive monitoring,
measuring intratumor heterogeneity, analyzing scarce clin-
ical samples, early detection and guiding targeted therapy
towards the malignant tumor cells.
Non-invasive monitoring of CTCs in the blood holds

great promise for eliminating the inherent risks that are
associated with taking invasive core biopsy samples
directly from organ sites (such as infection, internal
bleeding and even death). Some of the first SCS studies
of CTCs have already shown that a large fraction of the
mutations (>50%) detected at the primary and metastatic
tumor site can be identified in the CTCs [65,66]. Using
CTCs, it is possible to collect and analyze blood samples
at multiple time-points during the course of the disease
and during treatment. This will enable the oncologist to
make rapid changes in therapeutic strategies in response
to new mutations emerging during clonal evolution. In
addition to monitoring CTCs, short (100 to 200 bp)
DNA fragments in the blood plasma called circulating-
tumor DNA (ctDNA) can be analyzed by NGS methods
[72,73]. To date, however, there have not been direct
comparisons of CTCs and ctDNA to determine their
detection efficiencies and coverage performance for
non-invasive monitoring in patients.
SCS can also be used to measure the extent of intratu-

mor genomic heterogeneity in patients by randomly sam-
pling and sequencing multiple single cells and comparing
their mutational profiles to calculate a diversity index.
These diversity indexes might correlate with clinical pa-
rameters and have prognostic value in predicting response
to chemotherapy and survival in patients [74,75]. A
tumor with a high diversity index is expected to become
resistant to chemotherapy, because it is more likely than
a homogenous tumor mass to harbor pre-existing resist-
ance mutations.
Obtaining genomic information from scarce clinical

samples using NGS analysis is another important clinical
application of SCS. In clinical samples, such as fine-needle
aspirates, core biopsy samples, urine, prostate fluid, sperm,
feces, lymphatic fluids and blood, the number of tumor
cells is often severely limited, but still sufficient for SCS
methods. Early detection of cancer could also be improved
by using SCS and could be applied to any of the afore-
mentioned clinical samples. In the not-too-distant future,
we can imagine a world in which a healthy individual will
visit a general practitioner once a year to have their blood
drawn. The blood would be processed to identify any
CTCs, and the DNA would be sequenced to identify po-
tential driver mutations. The spectrum and combination
of mutations in the CTCs or transcriptional profiles could
indicate the original organ site from which the CTC had
disseminated. The doctors could then follow up with im-
aging and other biomarkers to identify the tumor at the
earliest stages of growth for surgical removal or thera-
peutic intervention.
A final application of SCS in the clinic is to recon-

struct phylogenetic trees and cell lineages to help guide
therapeutic targeting. Ideally, oncologists would target
mutations that are present in all of the single tumor cells
in order to fully eradicate the tumor mass. This would
involve targeting the ‘trunk’ or founder mutations in the
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phylogenetic trees, which are inherited by all subsequent
tumor cells. Alternatively, different therapeutic strategies
could be devised to target each of the major tumor
subpopulations individually.

Conclusions and future directions
The initial studies on SCS in cancer have shown great
promise in improving our understanding of this complex
disease and have begun to answer the fundamental ques-
tions posed in this review. Although most of these stud-
ies have focused on delineating clonal evolution and
diversity in primary tumors [30,34,36,37,45,46], the field
has begun to shift towards studying CTCs and their role
in metastatic dissemination [64-66]. These experiments
are likely to provide new insight into understanding
the general models of metastasis that have been pro-
posed in human cancers, including early dissemination,
late dissemination/parallel evolution and self-seeding
or bidirectional trafficking [60,61]. SCS tools are highly
advantageous for lineage-tracing studies as mutations in
single cells provide stable markers of evolution. One ques-
tion that has become addressed by the initial single-cell
sequencing studies in primary tumors [30,34,36,37,45,46]
concerns whether most human tumors originate from a
single somatic cell in the normal tissue (not multiple
cells). This is supported by a common set of founder mu-
tations that are shared between all single cells in each pa-
tient, suggesting an origin from a common ancestor. The
initial data comparing CTCs with primary and metastatic
tumors [64-66] have already indicated that a large number
of similar mutations can be detected (>50%), suggesting a
direct genetic lineage. These data hold great promise for
clinical applications for non-invasive monitoring.
In the near future, we expect that SCS will be applied

to study other areas of cancer research, including the
development of early-stage cancers and the evolution
of chemoresistance. SCS can be used to study the ini-
tial transformation events and the process of invasion,
whereby single tumor cells escape the in situ regions
and invade the surrounding regions. SCS methods also
hold great promise for elucidating the role of clonal
diversity in response to chemotherapy [75-77], where it
is expected that more clonally diverse tumors will be
more likely to harbor resistant clones and thus be more
likely to evolve resistance. However, major questions
exist regarding whether chemoresistant clones pre-exist as
rare cells in tumor populations, or whether resistance mu-
tations are acquired spontaneously in response to being
challenged by chemotherapeutic agents. While this ques-
tion has been studied for decades in bacterial cell popula-
tions [78], it remains poorly addressed in most human
cancers. Furthermore, while no SCS studies have yet
investigated cancer stem cells, SCS methods are likely to
provide great insights into our understanding of these rare
tumor cells, by revealing their genetic and transcriptomic
relationship to the major populations of differentiated
tumor cells [11,79,80].
Another growing area of cancer research is trying to

understand why clonal diversity exists in human cancers.
Most studies on clonal diversity to date have been obser-
vational, reporting simply that genetic diversity exists in
many tumors. Darwinian evolution, in a growth environ-
ment with limited resources, would predict that a dom-
inant clone with driver mutations would outcompete the
other subpopulations, resulting in a monoclonal popula-
tion of tumor cells. However, this is not the case in many
human cancers, suggesting that clones might cooperate
to drive tumor growth through symbiotic relationships
[43,44]. One of the first studies examining clonal cooper-
ation was recently published in which Wnt signaling in a
mouse model of breast cancer was shown to be required
for tumor clones to cooperate and drive tumor growth
[81]. In future studies of clonal interactions, it will be
important to confirm these data back in human tumor
samples by using SCS methods to show that the data are
physiologically relevant.
Over the next few years, we also expect to see many

technological innovations in SCS. While high-coverage
(>90%) performance has largely been achieved [30,31,37],
current technologies should now focus on mitigating the
ADO and FP error rates. In the near future, it might be
possible to perform both genome and transcriptome
sequencing on the same single cancer cell. This will be
highly advantageous as point mutations detected at both
the RNA and DNA level can be distinguished from ran-
dom technical errors with high confidence when they
match in both datasets. Furthermore, these data would
provide great insight into molecular mechanisms, such
as RNA editing and monoallelic expression in human
cancer cells.
While much progress has been made in single-cell

genome and transcriptome sequencing methods, epige-
nomic profiling methods have lagged far behind. This is
partly due to the fact that most epigenomic sequencing
methods (bisulfide sequencing, methylation-specific
enzymes) require that a pool of DNA is split into two
separate fractions for treatment, which cannot easily be
accomplished in a single cell. Another challenge is that
epigenetic modifications (for example, cytosine methyla-
tion) cannot be amplified as polymerases do not retain
these DNA modifications after synthesizing new strands.
Finally, the use of SCS remains out of reach for many

research and clinical laboratories because of the high
cost and lack of analytical expertise. The cost of SCS is
prohibitive for many laboratories as the current price of
sequencing the genome or exome of a single cell is equiva-
lent to sequencing a whole human genome (approximately
$5000) or exome (approximately $500). However, these
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costs are directly related to the cost of NGS technologies
and should continue to plummet thanks to the fierce in-
dustrial competition that fuels technological innovation.
In addition, most studies to date use analytical tools such
as in-house scripts and processing pipelines that are not
easy to reproduce without the necessary infrastructure
and bioinformatics expertise. SCS data still suffer from a
large number of technical errors and therefore require
more extensive post-processing to identify high-confidence
mutations. To date, only two methods have been published
for analyzing SCS data, including a method to calculate
copy-number profiles by density sampling integer estima-
tion [11] and a method to calculate copy-number infor-
mation from non-uniform MDA sequencing data [82],
and these are great resources for the community. More
work is still needed to develop computational methods
and statistical tools for detecting point mutations, indels
and structural variants in single-cell data.
In summary, SCS methods provide a powerful new ap-

proach to study the diversity and evolution of single can-
cer cells. While further technical improvements are still
required, the initial application of these tools to study
cancer is highly encouraging and has already provided
great insight into this complex disease. In the near fu-
ture, SCS will begin to be applied to the clinic in early
detection, prognostics, diagnostics and therapeutic tar-
geting and thereby will have a direct impact on reducing
morbidity in many human cancer patients.
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