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OPINION
Organizing knowledge to enable personalization
of medicine in cancer
Benjamin M Good1, Benjamin J Ainscough2,3, Josh F McMichael2, Andrew I Su1* and Obi L Griffith2,4*
Abstract

Interpretation of the clinical significance of genomic
alterations remains the most severe bottleneck
preventing the realization of personalized medicine in
cancer. We propose a knowledge commons to facilitate
collaborative contributions and open discussion of
clinical decision-making based on genomic events in
cancer.
decision-making in a rapidly changing landscape.
The bottleneck for realizing personalized
medicine is now interpretation
The landscape of the genomics of tumor progression
and heterogeneity has seen incredible advancements in
recent years with the maturation of The Cancer Genome
Atlas (TCGA) [1], International Cancer Genome Consor-
tium (ICGC) [2] and other large-scale tumor sequencing
efforts. Software and workflow systems for predicting and
annotating genomic changes have proliferated and con-
tinue to improve [3]. Caregivers in the healthcare system
will soon be faced with a large number of genomic alter-
ations that are potentially relevant to understanding can-
cer progression and improving clinical decision making
for each individual patient. However, there are few re-
sources to help with the prioritization and interpretation
of these alterations in a clinical context. Genomic events
and the genes or pathways that they affect must be placed
in the context of drug-gene or drug-variant interactions
and associations with diagnostic or prognostic endpoints.
The evidence for these associations must also be captured
and characterized to allow risk-benefit analysis for any
proposed clinical action. The bulk of this information
remains trapped in the masses of published data, clinical
trial records, and domain-specific databases. Sifting through
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this mountain of information is now the most critical bottle-
neck to making personalized medicine a reality in cancer.
In this Opinion article, we propose the creation of a com-
prehensive, current, and community-based knowledge
base to connect cancer genome events with the necessary
evidence to evaluate their biological and clinical signifi-
cance. Such a framework will allow the harnessing of
collaborative contributions and open discussion needed
to empower the most informed genomics-based clinical

Cancer genomics promises to revolutionize medicine
by identifying tumor-specific alterations that can guide
clinical decision-making. To list just two groundbreaking
examples, activating mutations in the epidermal growth
factor receptor gene EGFR were linked to gefitinib response
[4,5] and amplification or overexpression of the related
gene ERBB2 was shown to predict response to anti-ERBB2
therapies such as lapatinib [6]. Tests for these markers
that guide therapy decisions are now part of the standard
of care in non-small-cell lung cancer and breast cancer.
Since these and other early single-gene findings, large-
scale sequencing studies have systematically mapped the
landscape of the most common alterations for most com-
mon tumor types [1,2]. Increasingly, these alterations are
being linked to diagnostic, prognostic, and drug-response
outcomes. As the number of these associations increases
and sequencing costs decrease, targeted panels are being
replaced by genome- and transcriptome-wide approaches.
Several proof-of-principle studies have recently demon-
strated the potential for use of such data to identify clin-
ically actionable findings [7-9]. In a prototypical study,
Jones et al. [10] sequenced an oral adenocarcinoma by
whole-genome and whole-transcriptome sequencing, iden-
tified upregulation of the mitogen activating protein kinase
pathways through overexpression of receptor tyrosine kin-
ase (RET) RNA and deletion of the Phosphatase and ten-
sin homolog (PTEN) gene. They proposed a therapeutic
intervention by RET inhibition with sunitinib, a therapy
that might not otherwise be considered for this disease
type. Most recently, Van Allen et al. [11] described an
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exome sequencing approach that, when applied pro-
spectively, identified clinically relevant alterations in
15 of 16 cancer patients analyzed.
These anecdotal examples hint at the promise of per-

sonalized (‘N-of-one’) medicine to target therapies to the
specific genomic alterations of each cancer patient. A
typical cancer genomics workflow is depicted in Figure 1.
This process has been reviewed elsewhere extensively
[11-13] and is arguably converging on some level of
standardization and automation. The major bottleneck
in the process currently lies in the final steps of interpret-
ation and report generation. The challenge is to determine
the significance of tumor-specific genomic changes in
Figure 1 The interpretation bottleneck of personalized medicine. A ty
illustrated. The upstream, relatively automated steps (shown by their light c
reads from a tumor sample; (2) alignment to the reference genome and ap
and validation to identify high-quality events; and (4) annotation of events an
in (5) the production of dozens to thousands of potential tumor-driving even
report. Each event must be researched in the context of current literature (Pu
(ClinTrials) and known clinical actionability from sources such as My Cancer G
represents the most severe bottleneck of the process. The analyst must find t
off (6) a report for clinical evaluation and application by medical professionals
both a biological and clinical context. A large number
of algorithms have been developed to predict the biological
effects of single nucleotide variants (SNVs) and to a lesser
degree insertions and deletions (indels). The overall accur-
acy of these methods is generally low [14] and very little
has been done for other event types such as chimeric tran-
scripts and copy number variants (CNVs).
Because computational predictions are inadequate, this

challenge of biological and clinical interpretation of gen-
omic events is primarily a challenge in knowledge man-
agement. There is a finite collection of knowledge about
these events in the biomedical literature, and every cancer
genome analyst desires access to the entirety of that
pical cancer genomics workflow, from sequence to report, is
olor here) involve (1) the production of millions of short sequence
plication of event detection algorithms; (3) filtering, manual review
d application of functional prediction algorithms. These steps culminate
ts that must be interpreted by a skilled analyst and synthesized in a
bMed), drug-gene interaction databases (DGIdb), relevant clinical trials
enome (MCG). In our opinion, this attempt to infer clinical actionability
heir way through the dark by extensive manual curation before handing
.
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knowledge in a concise and consumable form. When ana-
lysts reach the interpretation step in Figure 1, each poten-
tial tumor-driving event is typically evaluated manually
against a disparate set of data sources. For example,
candidate fusions might be evaluated against the Mitel-
man database of chromosomal alterations [15], Cancer
Gene Census [16], the Gene Ontology [17], and drug-
gene databases such as DGIdb [18]. Similarly, a subset
of clinical associations for cancer have been catalogued
in databases such as My Cancer Genome (MCG) [19],
and variants associated with genetic diseases are re-
corded in resources such as ClinVar [20] and HGMD
[21]. Although resources such as these are valuable, the
fragmentation of this knowledge in uncoordinated and
overlapping efforts is highly inefficient. And given that
these efforts do not share a common set of standards
and many are proprietary, the products of each group
cannot be integrated easily.
We, as a community, need to create a collective resource

for this knowledge. Information linking cancer genomic
events to clinical interpretations and recommendations
needs to be stored, retrieved, edited, and discussed. Only
through such a shared knowledge structure will we realize
the opportunities for personalized care raised by genomic
technology. This knowledge base must be comprehensive.
It must incorporate information now distributed across
many different databases, scattered through the scientific
literature, clinical trials reports, abstracts from conference
proceedings, US Food and Drug Administration (FDA) re-
ports and more. At the same time it must be focused. We
need to capture detailed evidence for putative connections
between genomic events in cancer and their interpreta-
tions. This evidence should be captured in structured
forms and synthesized in detailed textual summaries that
provide biological and clinical interpretations associated
with particular genomic events. It must also be kept
current. Our collective understanding of clinically import-
ant genomic events grows on a daily basis, and the know-
ledge base should aim to incorporate these advances as
they arise.
How can we create and maintain a comprehensive,

well-structured knowledge base that captures the relevant
findings from hundreds of thousands of new sources each
year, as well as the potentially varying interpretations of
these findings by thousands of experts? We propose that
the only plausible way to achieve this vision is for the
community to become the primary contributors of con-
tent. Small professional teams can produce excellent
resources but they cannot scale with the exponential
growth in biomedical knowledge [22]. Of course, numerous
attempts have been made in this direction - the great ma-
jority of which have failed to attract the critical mass of user
contributors needed to thrive. However, there are successes
that can be followed, and in the case of N-of-one cancer
genomics we have a unique situation that is particularly
well suited to a community model.
Every team tasked with an N-of-one analysis now already

goes through the process of aggregating content from
multiple databases, manually searching through large text-
ual resources such as PubMed and ClinicalTrials.org,
identifying relevant content, and translating that content
into structured assertions. Dienstmann et al. [23] describe
how their team gradually accumulates the information
they use to form clinical interpretations of cancer ge-
nomes in what they term their ‘knowledge database’. In
addition, they have taken the exemplary step of sharing
that knowledge with the public via the Sage Synapse biol-
ogy information commons [24] (in the form of a spread-
sheet [25]). Many groups in both academia and industry
are currently creating their own internal version of this
knowledge base. Nearly all of this work is redundant. If we
can convince the community to externalize even a few of
the knowledge bases they are already assembling, as
Dienstmann et al. [23] have done, we can as a community
begin taking real steps in the direction of a common
knowledge platform for cancer genomics. The first step is
simply to make the choice that knowledge of this nature
should remain free.

Principles for building a successful community
knowledge base
N-of-one teams need comprehensive access to data link-
ing genes and specific genomic events to diagnostic,
prognostic, and treatment information. Such links need
to be annotated with detailed chains of evidence leading
back to their original sources. Collated effectively, this
information could greatly improve the pace with which
high quality reports could be assembled. As much as pos-
sible, such annotation should aim for highly specific and
unambiguous descriptions of events and use appropriate
ontologies. For example, this might include the use of Hu-
man Genome Variation Society notation where possible
for variants [26], the Disease Ontology [27] to specify can-
cer type and subtype, and the Sequence Ontology [28] or
Variation Ontology [29] to describe event types. Tables 1,
2 and 3 summarize a proposed data model for the curation
of evidence for clinical actionability of genomic events
broken down into (1) evidence details, (2) event types,
and (3) evidence types and levels.
When considering community-generated knowledge

bases that have succeeded, Wikipedia stands at the top
of the list by far. Although there are undoubtedly a large
number of reasons for its success, one distinguishing
characteristic is its almost complete lack of gatekeepers.
Anyone can edit a Wikipedia article. One powerful re-
sult of this openness is that many different types of
people with different experience and inclinations can
participate [30]. Some produce new text, some fix typos,



Table 1 A draft proposal for the minimal data needed for curation of evidence of a clinically actionable genomic
event: evidence details

Data type Description Example

Gene Gene implicated (Entrez gene id) ESR1 (2099)

Event (gene-level or variant-level) Genomic event such as SNV, indel, CNV, chimeric
transcript, structural variation, epigenetic alteration,
expression change, etc. See Table 2 for more details

chr6:g.152419922 T > A (Y537S)

Disease Specific disease or disease subtype that is associated
with this event and its clinical implication (Disease
Ontology Identifier)

Estrogen-receptor positive breast cancer
(DOID:0060075)

Evidence type Category of clinical action implicated by event. See
Table 3 for more details

Predictive

Evidence level Levels of evidence for clinical actionability. See
Table 3 for more details

Level B - clinical evidence

Evidence direction A positive or negative value indicating whether the
evidence statement supports or refutes a clinical
association with the event

Positive - the evidence supports the association

Treatment (FDA status) For predictive evidence, indicates the therapy for
which sensitivity or resistance is indicated

Hormone therapy resistance

Actionability direction Positive or negative association with treatment or
diagnostic/prognostic end point

Negative - mutation is associated with resistance to
therapy

Text summary (wiki-like) Human readable interpretation. Free-form text
summary of this event’s effect on cancer and
potential clinical interpretations. This interpretation is
the synthesis of all other information about an event
and its relevance to clinical action and should be
the living product of active discussion

Studies suggest ligand-binding-domain ESR1 mutants
mediate clinical resistance to hormonal therapy and
suggest that more potent estrogen receptor antagonists
may be of substantial therapeutic benefit

Source Literature where the event is described/explored
(PubMed id)

PMID: 24185512

Note: Example data were drawn from a single study describing evidence for the clinical relevance of ESR1 Y537S mutations.
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some add images, some fix references, some write train-
ing material, some focus on single articles they care
about, while others make minor improvements to thou-
sands of articles. Systems with gatekeepers (for example,
any database that says “please email the curators if you
have something you would like to add”) make such a di-
versity of contributors unlikely.
Table 2 A draft proposal for the minimal data needed for cur
event: types of events

Event type Description

Single nucleotide variant (SNV) Single nucleotide alterations

Small insertion or deletion (Indel) Small numbers of nucleotides dele

Copy number variation (CNV) Large-scale (for example, chromos
copy-number status such as ampli

Structural variation (SV) Large-scale (for example, chromos
as translocations or inversions

Chimeric transcript Aberrant expression of messenger
inter-chromosomal gene pairs

Epigenetic modification Alterations at the epigenetic level
histone modifications

Expression biomarker Significantly increased or decrease

Note: Certain types of events are by their nature non-specific in the genomic sense
thereby destroy function of a protein, such as the retinoblastoma protein. Many spe
generic event for ‘RB1 loss’ with a consistent interpretation. Therefore, hierarchical r
developed specifically for this domain space.
The first principle that we suggest for the collective
cancer genomic knowledge base is complete openness.
Anyone should be able to add and edit content. This
principle not only removes the inevitable slowdown
caused by mandatory, top-down curatorial review of all
changes, it also facilitates a diversity of ways that people
with different kinds of skills can contribute. As an example,
ation of evidence of a clinically actionable genomic

Example

BRAF c.1799 T > A (V600E)

ted or inserted PTEN c.800delA (K267fs*9)

omal) or focal changes in
fications and deletions

ERBB2 amplification

omal) rearrangements such FLT3 internal tandem duplication

RNA involving distant intra- or BCR-ABL fusion

such as DNA methylation or TERT promoter hypermethylation

d expression of RNA or protein High SPARC expression

. For example, there can be an almost infinite number of ways to truncate and
cific deletions in the RB1 gene might be grouped together under a common
elationships must be supported and ontologies may need to be modified or



Table 3 A draft proposal for the minimal data needed for curation of evidence of a clinically actionable genomic
event: evidence types and levels

Evidence
property

Evidence
sub-property

Description Example

Type of
evidence

Predictive Genomic alteration is predictive of
response to therapy

Breast cancer cell lines with H1047R mutation showed increased
sensitivity to CH5132799 compared to cells with wild-type PIK3CA gene

Diagnostic Genomic alteration is diagnostic for
disease or subtype

DNAJB1:PRKACA fusions are very strongly associated with the fibrolamellar
variant of liver cancer

Prognostic Genomic alteration is prognostic for
disease outcome

The presence of KRAS mutations in acute myelogenous leukemia is
associated with shorter survival time

Level of
evidence

A - validated
association

Proven/consensus association in human
medicine

A meta-analysis of clinical studies showed that harboring a BRAF V600E
mutation predicts worse prognosis in patients with colorectal cancer

B - clinical
evidence

Clinical trial or other primary patient data
supports association

In non-small-cell lung cancer patients with EGFR T790M and other
activating mutations, their progression-free survival is shorter than those
who do not have T790M mutations

C - preclinical
evidence

In vivo or in vitro models support
association

Experiments showed that AG1296 is effective in triggering apoptosis in
cells with the FLT3 internal tandem repeat

D - inferential
association

Indirect evidence Glioma cells harboring IDH1 mutation may be more susceptible to
chemotherapy or radiotherapy due to their reduced ability to respond
to oxidative stress

Note: The schema for evidence types and levels was inspired by Van Allen et al. [11].
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one team of clinical researchers might share a spreadsheet
of claims linking genomic events to clinical interpreta-
tions. A bioinformatician might improve that contribution
by exporting it as a comma-separated values (csv) file and
replacing the gene and variant names with standard iden-
tifiers. Another person with understanding of the shared
knowledge-based system might then be able to import
that content. Yet another person might notice that there
was an error in a particular interpretation and then make
a change to the knowledge base. The key thing to note is
that these roles can be decoupled across multiple people
and even multiple teams. Rather than placing the entire
burden on a single individual, this system facilitates it-
erative and sequential improvement of any contributed
content.
Given a gatekeeper-less model, substantial attention

must be paid to tracking the provenance of the claims
that make their way into the knowledge base. Again,
Wikipedia and its underlying MediaWiki software pro-
vide a model example. Every edit in Wikipedia is
tracked, linked to a user or an IP address, and can be
easily reverted. The edit history of an article and of an
editor tell a story that can be used to reliably assign trust
to either [31]. This information should be made access-
ible to applications that build on the knowledge base
(for example, to generate reports) such that analysts can
make their own decisions about whom to trust and for
what reasons. In addition to allowing manual and compu-
tational decisions about trustworthiness of content, track-
ing contributions opens up the possibility of using earned
reputation as a way of incentivizing contributions.
A final example from Wikipedia, already reflected in

the model proposed in Table 1 and a requirement of a
gatekeeper-less system, is the requirement for evidence.
One of the tenets of the Wikipedia community is that
every putatively factual statement should be supported
by one or more external sources [32]. This is one of the
key factors in making it the reliable resource that it gen-
erally is [33]. Readers can always look up the citations
associated with a claim and make up their own mind.
Any reader who disagrees with the stated claim can edit
the article, provided that they too can offer external evi-
dence. This evidence for claims is, of course, much more
important in clinical situations. Once an analyst has used
the knowledge base to hone in on a small set of events on
which to base their interpretations, the next step is for
them to examine the list of references produced (such as a
list of PubMed identifiers and clinical trials records) and
make their own judgment.

Incentives for contributions to community
resources in science
A common criticism of any proposal for a community-
driven scientific resource is that scientists will not con-
tribute. Reasons include firstly that there is no direct
career incentive to do so, secondly that they are too busy
already with work that does have career rewards, and
thirdly that by sharing their work openly they could lose
valuable competitive advantages. However, this issue of
the need for career-based incentives to motivate scientific
effort is not universal and, in fact, research has shown that
it is largely false. Mazumder et al. [34] found that a lack of
time (and not a lack of incentives) is the chief factor limit-
ing researchers from contributing to open resources. This
contention is further supported by the success of efforts to
streamline the processes involved in contributing to open
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resources. As an example, Flybase increased their rate of
community contributions sevenfold by introducing a pro-
active model in which database curators directly emailed
authors of relevant papers [35], and a similar effort and re-
sult was observed with WormBase [36]. In addition to
these community-based extensions to curated databases,
there are multiple successful community knowledge plat-
forms in the life sciences. Examples of these include the
Encyclopedia of Life [37], the SEQanswers forum [38], the
Gene Wiki [31,39], the integration of RFAM with Wikipe-
dia [40], and the BioStar question and answer system for
bioinformatics [41]. Each of these efforts has attracted and
sustained large communities of active contributors. These
results demonstrate that scientists will contribute to ef-
fectively designed community content curation efforts
without any need for dramatic sociological shifts in the
scientific incentive structure.
A community knowledgebase will also tap directly into

career advancement incentives for cancer genome ana-
lysts. If implemented well, the proposed knowledge man-
agement system should allow analysts to add content
directly to the centralized resource faster than they can as-
semble and maintain their own internal repositories. Inte-
gration of external databases could be accomplished by a
few researchers rather than redundantly by everyone. An-
alysts could record clinically actionable genomic events
through interfaces that specifically facilitate this kind of
curation (for example, by supporting autocomplete fields
that use shared identifiers and vocabularies). Analysts
could in turn integrate this community content into their
own genome interpretation pipelines. This system could
be seeded with enough content to attract the attention of
External users
(Bioinformaticians, oncologists)

For-profit corporation

Knowledge
silo

Application Application Application Application

Bioinformaticians Oncologists

(a) (b)

Knowledge
silo

Application

Knowledge
silo

Figure 2 An open, shared knowledge commons for N-of-one cancer r
all corporations and even most academic and non-profit groups tend by d
little incentive or mechanism to feed information back into a community r
enables the development of a diverse community of applications targeted at
back to the commons and apps can provide mechanisms to do so.
a cancer genomics community clearly starved for such re-
sources. Ideally, this would be the start of a powerful posi-
tive feedback loop in which content was curated into the
resource, thereby increasing the value of the resource and
attracting more users, who in turn add more high quality
content. Embedding community contribution seamlessly
into the process of completing personal tasks directly ad-
dresses the issue of time constraints and directly incentiv-
izes high quality contributions.
We also suggest that a system that is dedicated to

remaining an open free public resource will attract a
large amount of interest and contributors, particularly
those outside of the traditional research enterprise. For
example, as patients increasingly become better in-
formed they have the desire, and in many cases also have
the ability, to make contributions towards finding cures.
This community may be particularly motivated in an area
with as much direct clinical relevance as cancer genomics
and thus could provide an extremely ‘long tail’ of curators
for this initiative.
The proposed data model in Table 1 and the desired

open participatory architecture described above are a
rough requirements list for the knowledge base that we
propose. The implementation of this system should en-
able the inclusion of both structured data and unstruc-
tured text, should track the provenance of all statements
automatically, and should support read/write access by
an application programming interface (API) as well as
full data exports. Many of these features might be imple-
mented through a combination of existing technologies
and standards. Semantic MediaWiki provides one poten-
tial framework for collaborative management of both
Academic institution

Application Application

Bioinformaticians Clinical scientists

Non-profit corporation

Application Application

Patients Clinical scientists

Knowledge commons

esearchers. (a) The closed model of knowledge management. Nearly
efault to set up closed systems in which users of the information have
esource. (b) The open knowledge model. A knowledge commons
different user groups. All users have the incentive to feed information
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structured and unstructured knowledge [42]. Such a sys-
tem should be directly integrated with standards for
representing scientific claims and evidence [43], tracking
information provenance [44], and for uniquely identify-
ing core data elements such as genomic events [26] and
disease types [27]. This technology stack should not only
enable direct human interaction, but should also provide
an effective API to stimulate a diverse array of applications
that both consume the content and enable users to feed
value back into the knowledge base directly (Figure 2).

Complementary efforts: moving towards a
universal ‘network of biothings’
Nascent large-scale initiatives, such as the global alliance
for genomics and health [45] (GA4GH) and ClinGen
[46], have been announced to help address a variety of
information management problems related here. In par-
ticular, they emphasize the development of standards for
structuring clinical genetic information for representation
in electronic medical records and for deposition in the
NCBI’s curated clinical genetic database ClinVar [20]. The
visions behind these proposals represent substantial im-
provements over the current landscape of public informa-
tion sources for medical genetics.
As these longer-term initiatives unfold, we expect that

the bottom-up, community model proposed here will
provide an immediately useful resource and will con-
tribute to achieving the shared vision of effective know-
ledge management for personalized medicine. As GA4GH
and ClinGen work to define standards and protocols in
a top-down manner, the community can work from the
bottom up to share information through the proposed
knowledge base. The two initiatives should reinforce
each other. The community knowledge base should accept
and work towards implementing standards that will be de-
cided on by the expert working groups of ClinGen and
GA4GH while at the same time contributing evidence to
their discussions and solving real, pressing problems in
the interim.
Many other groups are already putting enormous effort

into synthesizing the crucial knowledge needed to make
effective clinical recommendations and, as Dienstmann
et al. [23] exemplify, they are often willing to share this
work with the rest of the community. Unfortunately, no
existing system provides an effective way to capture and
redistribute the ongoing efforts of these teams in a com-
putationally useful way. We have proposed the creation of
an open-access, open-source knowledge base to address
the challenges of personalized medicine in cancer. This
proposal arises, in part, from a recent initiative with the
aim of assembling a more general ‘Network of Biothings’
(NoB) that spans many related problems in biology and
medicine [47]. Here we have specifically focused on con-
structing a NoB for the N-of-one cancer challenge. This
NoB should capture the evidence for clinically actionable
genomic events as described in Tables 1, 2 and 3. To suc-
ceed, it must also meet certain criteria. First, it must be
committed to remain an open resource. Numerous closed
solutions are being developed in industry to tackle this
problem. We need the open alternative. Second, it must
stay current. This is a critical and perhaps the most ser-
ious challenge. New relevant data, reports, clinical trials
and so on join the landscape every day and must be incor-
porated into the resource in a timely manner. Finally, it
must be computable. The NoB should follow the princi-
ples of the Semantic Web [48] in terms of standard data
formats, the application of ontologies and the distribution
of data via public web APIs.
The N-of-one cancer genomics challenge stands as the

tip of the spear in the march towards personalized medi-
cine. Given the complexity of the disease(s), the gravity
of the situation for patients, and the limited time avail-
able to make decisions, this challenge will continue to
test the boundaries of what is possible. The tools created
for this case, such as the community knowledge base
proposed here, will stand as powerful examples for the
many other clinical applications of genomic technology
on the horizon.
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