Smith et al. Genome Biology 2014, 15:420
http://genomebiology.com/2014/15/8/420

Genome Biology

METHOD Open Access

Biased estimates of clonal evolution and
subclonal heterogeneity can arise from PCR
duplicates in deep sequencing experiments

Erin N Smith"?3, Kristen Jepsen'?*, Mahdieh Khosroheidari'*, Laura Z Rassenti', Matteo D'Antonio?,

Emanuela M Ghia', Dennis A Carson'”, Catriona HM Jamieson'>°, Thomas J Kipps'~ and Kelly A Frazer

1234*

Abstract

heterogeneity and clonal evolution.

Accurate allele frequencies are important for measuring subclonal heterogeneity and clonal evolution. Deep-targeted
sequencing data can contain PCR duplicates, inflating perceived read depth. Here we adapted the lllumina TruSeq
Custom Amplicon kit to include single molecule tagging (SMT) and show that SMT-identified duplicates arise from
PCR. We demonstrate that retention of PCR duplicate reads can imply clonal evolution when none exists, while their
removal effectively controls the false positive rate. Additionally, PCR duplicates alter estimates of subclonal heterogeneity
in tumor samples. Our method simplifies PCR duplicate identification and emphasizes their removal in studies of tumor

Background

Sequencing technologies have recently allowed for an
unprecedented window into the process of cancer evolution
[1]. Tumors are often heterogeneous with multiple
subclones, which has become an important consideration
in monitoring cancer evolution [2,3] and in choosing
appropriate treatment regimens [4]. Deep-targeted
sequencing [5] is frequently used in studying how
these clones change over time. This technology has
provided insights into subclonal phylogenetic structures in
cancer [6] and mutational patterns that occur and are
selected for during tumor progression [7-9] and in
response to treatment [10]. Patient treatment can be
informed by subclonal heterogeneity [11,12], and deep-
targeted sequencing can be used to track recurrence
and evolution by the sequencing of circulating tumor
DNA [13].

Deep-targeted sequencing is well-suited to provide
accurate frequency estimates because each read can
provide independent information. However, obtaining
accurate estimates of allele frequency can be complicated
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by the presence of PCR duplicates created during
sequencing library preparation, yielding multiple copies of
a single template that are each then sequenced. Duplicates
will inflate the perceived sample size, for example, at a
duplicate rate of 75%, for every 2,000 reads used to inform
an allele frequency estimate, only 500 provide unique
information. When comparing two samples, this inflated
sample size could make it appear that there are significant
differences when none exist. Biases in multi-template PCR
can come from a variety of sources [14], including GC
content [15,16]. Most frequently, PCR duplicates arise from
a lack of DNA complexity due to low levels or quality of
input DNA, or from biases in PCR. Exome sequencing
studies at moderate (approximately 100X) depth rely on
read position to identify potential PCR duplicates
[17], but amplicon-based (molecular inversion probes
[18], RainDrop Digital PCR (RainDance Technologies,
Billerica, MA, USA), TruSeq Custom Amplicon (Illumina,
San Diego, CA, USA)) methods commonly used for
targeted sequencing have reads with the same start
and stop positions. Hybridization-based methods, when
sequenced deeply, can result in reads that are not PCR
duplicates but have the same start stop locations by
chance [19]. PCR-free methods are also available, but
typically require higher amounts of DNA input (1 to 2 ug),
limiting their use in cancer studies.
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Single molecule tagging (SMT) is a method that has
been developed to identify PCR duplicates using a
DNA sequence tag [20-22] and has recently been
incorporated into RNA sequencing [23]. Random oligomers
are incorporated into a template prior to PCR amplification,
and duplicates are tracked by the SMT oligomer.
While this approach has been implemented in custom
multiplex molecular inversion probe libraries [22], it re-
quires computational expertise to implement and very large
sample sizes to be cost effective. The ability to utilize SMT
is not yet available in commercial kits for deep-targeted
sequencing that are easier to design and more flexible.

Here, we adapt a commercially available custom
amplicon-based deep sequencing kit to incorporate SMT
and show that the SMT oligomer tags PCR duplicates.
Using both experimentally derived and simulated
duplicates, we test how the presence of duplicates affects
estimates of clonal evolution and subclonal heterogeneity
in tumor samples and show that the presence of PCR
duplicates can inflate the false positive rate (FPR). Overall,
our study provides a simple approach for removing
PCR duplicates using an accessible deep-targeted sequen-
cing kit and suggests that duplicates must be accounted
for to obtain accurate frequency estimates important for
studying heterogeneous populations, such as in studies of
clonal evolution and cancer heterogeneity.

Results and discussion

Adapting lllumina TruSeq to use single molecule tagging
The Illumina TruSeq Custom Amplicon Kit is a multiplex
system for targeted sequencing that allows for approxi-
mately 1,500 amplicons to be sequenced at the same time.
Custom probes with sequence flanking the target region
are generated and, during sample preparation, the region
is extended from one probe and then ligated to the second
probe (Figure 1A). Next, during two rounds of synthesis,
two different index primers are incorporated, generating
individual double-stranded molecules that contain two
indexes and flanking amplification sequences. Subsequent
rounds of PCR amplify the molecules to create a library
for sequencing. We adapted this kit to accommodate
SMT by co-opting the second index sequence that is
normally used for additional sample multiplexing. We
incorporate a random 8- or 12-mer into the first round of
amplification using a custom primer (P5-SMT) consisting
of P5, an 8- or 12-mer SMT in place of the index, and a
linker sequence. While this limits the number of samples
that can be pooled together to 12, new i7 indexes or
multiple P5-SMT primers could be used, containing a
sample index followed by the N-mer. After two rounds, a
single single-stranded product that has both P7 and P5
primer sequences is created. We then remove the
remaining P5-SMT primer from the reaction and amplify
the product with iP7 and P5. Thus, the SMT is copied into
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each subsequent PCR duplicate. During sequencing on
either the MiSeq or HiSeq, the SMT oligomer is sequenced
as an index read.

Data generation

To test this method, we designed a custom amplicon
library of 1,225 150-base-pair (bp) targets focused on
heterozygous single nucleotide polymorphisms (SNPs)
and somatic variants that were identified in Chronic
Lymphocytic Leukemia (CLL) samples. We generated
SMT-tagged deep-targeted sequencing data using two
tumor samples sequenced at three different DNA inputs,
and 18 germline DNA samples. Next, we sequenced to an
average of 850X coverage using either an 8- or 12-mer
SMT on the MiSeq, generating 150 bp paired-end reads
(Additional file 1). We associated the resulting paired-end
reads with an expected target by matching the first 22 bp
of each read to the upstream and downstream targeting
sequences of the expected targets (Figure 1A), and
succeeded in finding a match for 96.6% of reads on average
(Additional file 1). Unique reads were identified as the first
read assigned to a target with an SMT that had not been
seen for that target. Duplicate reads were those with SMT
oligomers that had already been seen within a target. We
observed duplicate rates ranging from 3% to 26% in the
tumor samples and 5% to 63% (median 10%) in the
germline samples (Additional file 1). Across the 24
samples, we observed a total of 29,183,611 unique
reads and 4,050,234 duplicates (Figure 1B). Duplicate
reads were widely distributed across different SMT
oligomers and targeted sequences (Figure 1C). For
samples with low duplicate rates, the SMT duplicate
cluster sizes were small, with a single SMT not generally
seen more than 10 times (Figure 1C). Samples with higher
duplicate rates had concordant increases in duplicate
cluster sizes. The largest SMT duplicate cluster contained
23 reads and was observed in the sample with the highest
duplicate rate (Figure 1C). Within targets, SMT sequence
diversity was high, differing from each other by 5 bp on
average for 8 bp SMTs and 8 bp on average for 12 bp
SMTs. Less than 0.1% of SMT pairwise comparisons
differed by 1 bp, suggesting that the diversity is robust to
sequencing errors. This indicates that our method effect-
ively incorporates diverse SMT oligomers into the library
preparation process and suggests that the Illumina TruSeq
Custom Amplicon Kit generates a moderate number of
PCR duplicate reads that are evenly distributed across
targeted sequences.

Single molecule tag-identified duplicates are PCR
duplicates

While the expected complexity of a 12 bp random oligomer
is high (4'> combinations), the same oligomer could be
incorporated multiple times by chance if there are biases in
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Figure 1 Adaptation of lllumina TruSeq Custom Amplicon Kit to allow for single molecule tagging. (A) Schematic of method showing amplification
of target DNA using custom probes and flanking primers. The P5-SMT primer is the same as the standard P5 index primer, but contains a degenerate

12 N-mer sequence in place of the index. The incorporation of an Ampure Bead size selection step after two rounds of PCR removes unused P5-SMT, and
the P5 primer is added to facilitate downstream amplification. Figure schematic is adapted from lllumina promotional material. (B) Stacked barplot showing
number of paired-end reads, split into unique reads (dark grey) and SMT-identified duplicate reads (light-grey) in 24 samples (18 germline, 6 tumor). (C) For
each of 18 germline samples, we show the number of SMTs by duplicate cluster size (the number of times that an SMT was observed at a given target within
a sample). Higher overall duplicate rates within a sample were associated with larger duplicate clusters. Except for the sample with the highest duplicate rate,
duplicate cluster sizes were generally less than 10. The length of the SMT (8- versus 12-mer) did not affect the distribution. SMT, single molecule tag.
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how the oligomer was generated or incorporated. To
show that SMT-identified duplicates are PCR duplicates,
we first examine whether they are higher under conditions
expected to produce a greater number of PCR duplicates,
such as low DNA input, high GC sequence content, and
in targets with relatively higher read depth. We then
examine SMT sequence usage patterns and consistency
of allele calls to determine how often SMT-identified
duplicates are likely the result of PCR duplicates.

To test whether low DNA input was associated with
higher SMT-duplicates, we analyzed two tumor samples
at three different dilutions and then sequenced each to

approximately 1,500X depth. For both tumors, we observed
that lower input amounts of DNA were associated with
higher rates of SMT-identified duplicates (Figure 2A).
While the manufacturer recommended amount of input
was 250 ng, we observed lower duplicate rates (6% to 7%
point decrease) at 500 ng and used this amount for
the 18 germline samples. We then examined whether
the proportion of SMT duplicates in a given target was
associated with GC content or, as a general indicator of
PCR bias, depth of sequencing. We observed that target
duplicate rate was correlated across samples (average
pairwise r=0.53). After adjusting for sample-specific
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Figure 2 Single molecule tag-identified duplicates represent PCR duplicates. (A) Boxplot of target duplicate rate as a function of DNA
input. DNA samples from two tumors were diluted and single molecule tag (SMT)-libraries were prepared. Duplicate rate, as identified by SMT
sequence, was higher in the lower input DNA samples, consistent with lower starting complexity. (B) Smoothed scatterplot of the relationship
between target duplicate rate, adjusted for sample-specific effects and GC content of insert and primers, and depth of coverage (shown log
scale). (C) Barplot of the number of times that independent SMTs (one SMT per target per sample) were seen across targets and samples (black)
compared to expectations by Poisson sampling (grey). (D) Motif identified using the 54 SMT sequences observed 10 or more times across
all 14 12-mer germline samples and targets. (E) Agreement of allele calls within duplicate clusters for 12-mer and 8-mer SMT sequences.
Percent allele call agreement is the percentage of duplicate clusters where all allele calls at the SNP of interest were consistent.

Number of reads per duplicate cluster

effects in a multivariate model, we observed that duplicate
rate was associated with coverage (Figure 2B, 0.5%
increase in duplicate rate per 1,000X, P =2 x 107*"*); the
GC content of the insert (0.6% increase in duplicate
rate per 10% increase in GC content, P =7 x 107 '5%);
and GC content of the upstream targeting primer
(0.1% decrease in duplicate rate with 10% increase in
GC content, P=7 x 10"®) and of the downstream targeting
primer (0.06% decrease in duplicate rate with 10% increase
in GC content, P=6x10"%). These results show that

SMT-duplicates increase at low input DNA levels
and are associated with other factors that affect PCR
duplication rates.

To estimate the proportion of reads within a target that
are likely to be duplicate because of random incorporation
of the same sequence, we examined the distribution of
SMT-sequence usage. While SMT usage within a target
may be due to PCR duplicates, SMT usage across targets
and across samples will not be. We therefore analyzed
SMT usage across all unique SMTs using one instance of
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each 12 bp SMT per target per sample, for a total of
14,485,830 unique SMTs from the 14 germline samples
that used a 12 bp SMT. The theoretical maximum
number of times we could observe a single SMT sequence
was 17,150 (14 samples x 1,225 amplicons). We calculated
the number of times we would expect to see SMT
sequences using the Poisson distribution assuming
4'? (16,777,216) possible SMTs, an equal probability
of choosing each one, and 14,485,830 observations, and
compared this to our observed distribution (Figure 2C).
We observed a general similarity in distribution, with a
bias towards seeing some SMTs more than expected. In
total, we observed 9,438,051 SMT sequences, slightly
lower than expected by Poisson sampling (9,701,993).
Each was observed on average 1.53 times, and 54 were
observed 10 or more times (range 10 to 915). We would
not have expected to see more than one SMT sequence
more than nine times if there was no sequence bias. Motif
detection suggested overrepresented SMT sequences were
enriched for a stretch of Ts (Figure 2D). To estimate the
proportion of SMT that would be expected to be the same
sequence by chance given this distribution of sequence
bias, we sampled SMTs from the observed distribution of
SMT to the read depth of unique reads of a typical sample
(Sample Germ05, average unique target coverage 1,074),
and counted the number of times that the same SMT was
sampled within each target. We observed that 0.006% of
reads were the same due to SMT usage, indicating that
the observed bias is not relevant for deep sequencing at
this depth. In this same sample, if we restrict analysis to
the first 8 bp of the observed SMTs, we see 1.7% of the
reads within a given target shared the same SMT by
chance, suggesting that 8 bp does not have enough
complexity to avoid sampling the same SMT multiple
times at high read depth. These results indicate that while
there is some preferential SMT usage associated with
higher usage of thymidine bases, in general SMT
usage is diverse and observed duplicate SMT sequences
for a given target within a sample are unlikely to be due to
preferential use of specific SMT sequences when the SMT
length is 12 bp.

We then examined allele calls at SMT-duplicates to
determine if they carry the same allele at heterozygous
SNP loci. For each sample, we identified reads that
overlapped an SNP and asked whether all the alleles
at the SNP agreed within each SMT-duplicate cluster.
For samples using a 12-mer SMT, we observed high
agreement when the duplicate cluster consisted of
two reads (227,941 out of 229,849 (99.2%)), as well as
for larger clusters (Figure 2E). For those with an 8-mer
SMT, the agreement was poorer (36,902 out of 39,415
(93.6%)), with agreement decreasing at higher duplicate
cluster sizes. For both 8- and 12-mer SMTs, the discord-
ance was not due to sequencing error as we observed very
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high concordance between both reads of paired-end
reads (473,625 out of 473,633 (99.998%) for 8-mer
and 2,425,721 out of 2,425,763 (99.998%) for 12-mer).
This suggests that while 8-mers are not informative
enough to fully discriminate PCR duplicates from random
incorporation of the same SMT, 12-mers effectively
identify PCR duplicates and thus we recommend the
use of a 12-mer SMT for sequencing studies at depths of
approximately 1,000X.

The effect of duplicates on estimates of clonal evolution
To determine how duplicates affect estimates of clonal
evolution, we have devised an approach where we do not
expect any real differences between two samples, allowing
us to study how the addition of duplicates - simulated or
experimentally derived - affect the number of sites that
look different between the two samples (FPR). From a
single parent sample, we randomly sample reads to
produce a pair of samples that arise from the same
distribution. We add in either simulated or experimentally
derived duplicates and test for differences between hetero-
zygous SNPs between the samples. Under an alpha of
0.05, we expect that 5% of the tests would be significantly
different, and can examine if the FPR increases relative to
alpha as a function of duplicate rate.

To examine the full range of effects across duplicate
rates, we initially simulated duplicates. We randomly
sampled unique reads from a single germline sample to
create a pair of samples. Within each of these samples
we then sampled from the unique reads to simulate
varying proportions of duplicate reads under a constant
read depth, and tested for differences in allele frequencies
at heterozygous SNPs between the paired samples using a
Fisher’s exact test. We observed that as the percentage of
duplicates increased, the proportion of SNPs that
were called significant at an alpha of 0.05 also increased
(Figure 3A). This is consistent with an increase in variance
of the alternate allele frequency estimate at higher dupli-
cate rates, even though the total number of reads is the
same (Figure 3B).

We applied this approach to experimentally identified
duplicate reads in the 18 germline DNA samples, and
compared the FPR when only unique reads were used to
that observed when duplicates were included. At the
heterozygous SNPs identified in each sample, SMT
duplicate rates varied by 4% to 53%, with most showing
rates between 5% and 25%. For each sample, unique
reads were identified by SMT sequence, and randomly
split into two paired samples. Duplicate reads were
linked to unique reads by SMT sequence and allocated
to the appropriate sample. We then tested for allele
frequency differences between the paired samples at
heterozygous SNPs using a Fisher’s exact test. We ob-
served a strong correlation between overall duplicate
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Figure 3 PCR duplicates inflate the false positive rate of differences between samples and alter measures of clonal heterogeneity.

(A) False positive rate (FPR) for tests at heterozygous single nucleotide polymorphisms (SNPs) between groups of reads randomly allocated from
the same sample with a varying percentage of simulated duplicates. Dotted line indicates FPR = 0.05. (B) Boxplot indicating higher variability in
alternate allele frequency at heterozygous SNPs as duplication rate increases. (C) Increase in FPR for tests at heterozygous SNPs when single
molecule tag-duplicates are present (black) or removed (grey). Dotted line indicates FPR = 0.05. (D) Estimates of the number of genetic clusters in
two tumor samples (in red and blue respectively) becomes variable as duplicate rate increases. The number of clusters was calculated using PyClone.
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rate and the FPR when duplicates were included, with the
highest duplicate rate showing over 25% SNPs different
between the samples (Figure 3C). When duplicates were
removed, however, the FPR dropped to approximately 5%
across all paired sample comparisons, effectively control-
ling the FPR to the alpha level. In all samples, inclusion of
duplicate reads increased the FPR. Thus, even at low
levels, inclusion of PCR duplicates inflates the FPR, and
identification and removal of PCR duplicates by SMT
appropriately controls the FPR. These results indicate that
when using read depth to test for changes in allele
frequency during clonal evolution, removal of PCR
duplicates is required to avoid false positives.

To show that the duplicate rate was not affected by
the SMT labeling process, we analyzed an unrelated
dataset that was generated using an unmodified Illumina
Truseq Custom Amplicon kit. This dataset containing
87 germline and cancer DNA samples [24] from breast

cancer patients had been run on the same target set
twice. At sites with at least 50X coverage, we tested
whether heterozygous SNPs were different between the
two replicate samples, using a Fisher’s exact test. Overall,
we observed that 11.8% (865/7338) of SNPs showed a
difference (P < 0.05) between duplicates, with 93% of sam-
ples showing a FPR > 5% (range 0 — 30%, Additional file 2).
These rates are similar to those observed in the
SMT-labeled samples and suggest that unaccounted
duplicates are present using the unmodified TruSeq
protocol.

To assess how quantification of clonal heterogeneity is
affected by the presence of duplicates, we examined two
chronic lymphocytic leukemia samples from the same
patient collected after diagnosis or prior to treatment
that respectively had 9% and 3% duplicate rates. We
analyzed our deep sequencing data at 16 somatic loci
identified through exome sequencing as mutated in
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this tumor. We compared the number of genetic clusters
estimated using PyClone [25] before and after removing
SMT-identified duplicates and observed no difference,
suggesting that this approach may be robust to low
numbers of duplicates. To investigate how estimation of
clonal heterogeneity is affected by high duplicate rates, we
modeled duplicates across a range of proportions by first
removing SMT-identified duplicates and then randomly
sampling from the unique reads to create defined
proportions of duplicates (0% to 90%). We estimated
the number of genetic clusters as a function of duplicate
rate and show that the number of genetic clusters
becomes much more variable at increased duplicate rates
for both samples (Figure 3D), especially at high (>50%)
duplicate rates. These results indicate that the presence of
high levels of duplicates can artificially inflate or deflate
separation of genetic clusters, resulting in altered estimates
of clonal heterogeneity.

Conclusions
PCR duplicates can be unacknowledged in targeted
sequencing studies because the tools to identify duplicates
in accessible commercial kits are poor. Our study
demonstrates the importance of identifying and removing
PCR duplicates in studies of clonal evolution and cancer
heterogeneity and provides a simple modification to a
commercially available kit that allows for effective
identification of PCR duplicates in deep-targeted
sequencing. We show that the presence of duplicates
can inflate the FPR when testing for changes in allele
frequency between two samples and that estimates of
clonal heterogeneity can be much more variable in
the presence of duplicate reads. When there is strong
evidence for clonal evolution by the presence of new
variants at high frequency or large changes in allele
frequency (>20%), the presence of moderate levels of PCR
duplicates (<25%) is not likely to be an issue. However,
duplicates may cause false interpretations in the cases of
unknown high duplicate rates or no clonal evolution.

While we focus on a single kit, PCR duplicates are
present in many sequencing applications. Targeted
microdroplet methods, such as RainDance, will have a
limited number of original fragments based on the
number of microdroplets and the number of targets,
creating a ceiling for complexity. Methods that fragment
prior to hybridization can be filtered using start and stop
positions, but can also contain unidentified duplicates
due to slight differences in alignment. The issues that
we discuss are relevant to these approaches as well, and
suggest that they would benefit from the incorporation of
SMT tagging.

Removal of PCR duplicates will be relevant for a
number of applications that use targeted sequencing.
Metastatic cancer can now be monitored through deep
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sequencing of circulating tumor DNA [13], and the
potential for poor DNA quality combined with deep
sequencing requirements make PCR duplicates an import-
ant concern, especially if the results impact clinical deci-
sions. Further, methods to study highly diverse mixtures
like the immune repertoire [26—28] or viral heterogeneity
[29] rely on accurate read depths to infer population
dynamics. Our approach can also be applied to applica-
tions that require high accuracy of rare variant calls, such
as in pooled populations or cancer, where SMTs have been
used to group duplicate reads together in order to cancel
out sequencing errors and obtain highly accurate variant
calls [22]. Thus, while we focus on a clonal evolution and
heterogeneity using a single commercial kit, our results
have general implications for a wide variety of study
designs and sequencing methods.

Materials and methods

Sample collection

Samples were chosen from participants of the CLL
Research Consortium. The University of California
San Diego Institutional Review Board approved the
study and all participants gave informed consent. DNA
was isolated from tumor samples using the AllPrep
DNA/RNA Mini kit (Qiagen®, Valencia, CA, USA) according
to the manufacturer’s instructions. Concentrations were
determined by fluorometry (Qubit’, Life Technologies). Saliva
DNA was isolated using an Oragene kit (DNA Genotek,
Kanata, Ontario, Canada). Sixty-two of the breast cancer
and germline samples have been previously described [24].
The other 25 samples were retrieved from the University
of California, San Diego Biorepository at Moores Cancer
Center, and processed as previously described [24].

Targeted resequencing of somatic variants

We performed deep-targeted sequencing using the
[umina TruSeq Custom Amplicon kit. Using DesignStudio
software, probes were successfully designed to cover
approximately 1,000 somatic variants identified in an
exome sequencing project of 18 CLL patients to study
clonal evolution (in preparation) and about 200 common
SNPs, resulting in 1,225 targets of around 150 bp in
length. To account for PCR duplicates, we incorporated a
novel modification of the kit that introduced an SMT into
each read by modifying the i5 index to encode a random
N-mer of 12 bases. Sequencing libraries were pre-
pared following the TruSeq Custom Amplicon Library
Preparation Guide with the following modifications.
For most samples, 500 ng of DNA was used, except for
when dilution experiments where performed and 125, 250,
or 500 ng was used. Attempts to create libraries using less
DNA (62 ng or 16 ng) did not succeed. Extension-ligation
was performed according to manufacturer’s protocol. A
two-step modified PCR amplification was performed. In
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the first round, we used the i7 primer supplied with
from the TruSeq Custom Amplicon Index Kit and a
custom primer, P5-SMT (5"AATGATACGGCGACCA
CCGAGATCTACACNNNNNNNNNNNNACACTCTT
TCCCTACACGACGCTCTTCCGATCTS'), in place of the
i5 primer and at the same concentration as the i5 primer.
Two PCR cycles were performed as follows: 95°C 3 mi-
nutes, followed by 2 cycles of 95°C for 30 seconds, 66°C for
30 seconds, and 72°C for 60 seconds. Following two cycles
of PCR, Ampure Bead cleanup was carried out according
to standard protocol and eluted in 25 uL. Following
cleanup, 20 uL of PCR product, 22 uL of PMM2/TDP1, 4
uL of the same i7 primer supplied with the TruSeq Custom
Amplicon Index Kit, and 4 uL of a 6.25 uM custom primer,
TruSeqP5 (5° AATGATACGGCGACCACCGAGATCTA
CAC 3’) were added to PCR tubes, and PCR was carried
out using the following conditions: 95°C for 30 seconds; 22
cycles of 95°C for 30 seconds, 66°C for 30 seconds, and
72°C for 60 seconds; and finally 72°C for 5 minutes (note
that number of cycles is specific to TruSeq Custom Ampli-
con Design). Ampure bead cleanup was performed, library
quality was assessed on an Agilent Bioanalzyer (Agilent
Santa Clara, CA, USA) using a DNA 1000 chip, and
concentration determined by Qubit and quantitative PCR
using the KAPA Library Quantification Kit (Kapa Biosys-
tems, Woburn, MA, USA). Samples were pooled based on
Qubit determined concentrations and 12 samples per run
sequenced at 12 pM using Illumina MiSeq V2 sequencing
reagents and the following run set up: Read 1: 151 cycles;
Read 2: 8 cycles; Read 3: 12 cycles (or 8 cycles); Read 4:
151 cycles. Note that library normalization using library
normalization beads cannot be used with this modified
protocol.

The samples from patients with breast cancer were proc-
essed following the same pipeline. They were sequenced
using Illumina MiSeq V2 sequencing reagents with a
different set up: Read 1: 301 cycles; Read 2: 8 cycles;
Read 3: 8 cycles; Read 4: 301 cycles.

Read processing and filtering

To obtain reads with SMT information in the read
names, FASTQ files were generated using CASAVA
(v1.8.2). A random index was listed as the second index
read in the sample sheet and bcl files were converted to
FASTQ files using configureBclToFastq.pl. Reads were
retrieved from the unaligned folder. To clean the reads
of poor quality data and to link each read to its target,
read pairs were assigned to their respective targets by
matching the first 22 bp of Read 1 to the reverse
complement of the downstream locus-specific oligo
custom primer sequence and the first 22 bp of the Read 2
to the upstream locus-specific oligo custom primer se-
quence, allowing for two differences (Levenstein distance).
Read pairs were kept when both Read 1 and Read 2
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matched the same target (approximately 95% of reads).
Read pairs for each target were grouped and trimmed of
their appropriate primer sequences using cutadapt
(settings) [30], resulting in read lengths of 122 to 130 bp.
Within a given target, unique reads corresponded to the
first time an SMT was used within that target and all
subsequent uses of the SMT were duplicate reads.
The resulting reads (>35 bp long) were aligned to the
genome using the BWA-MEM [31] algorithm with
default settings. FASTQ files from the 87 breast cancer
and germline samples were processed using the same
pipeline, except for the SMT sequence.

Variant calling

Variants were called in each sample using GATK
UnifiedGenotyper [32]. Somatic variants were identi-
fied by genotyping tumor and germline samples from
the same patient together, and testing for differences
in allele frequencies across samples using a 2 x 3 Fisher’s
exact test. Allele counts were calculated from the Allele
Count variable (AC) in GATK, divided by two to account
for the SNP being sequenced twice within a paired read.
Sites that reached an average coverage of 50X in all
samples from a given patient and a variant quality
(QUAL) score of 50 were used to identify somatic
variants. Sites were considered somatic if the germline
alternate frequency was <10% and a 2 x 3 Fisher’s exact
test of allele counts was significant (Benjamini-Hochberg
false discovery rate <0.05). Heterozygous SNPs were
identified in each germline sample separately, using
unique reads only. SNPs that were previously identified
in the short genetic variation database (dbSNP build
135) and that reached a QUAL score of at least 100 were
used. The 87 breast cancer and germline samples were
processed in the same manner, except only the first read
of the paired-end read was used in variant calling.

Single molecule tag sequence usage

The number of times that we would expect to see
each SMT sequence was calculated using the Poisson
distribution (dpois in R). The probability was calculated
for a given number of observations using a lamba of
the probability of observing each sequence (1/4'%)
times the number of samples (14,485,830), multiplied by
the number of possible SMTs (4'). Motif enrichment was
characterized using WebLogo v.3 [33,34].

Concordance at single molecule tag duplicates

To determine if duplicate reads carried the same allele,
for each sample, heterozygous SNPs were identified
using GATK and all unique reads. Then, targets were
identified that overlapped each SNP and the corresponding
reads were analyzed for the SNP alleles. Only Read 1 was
used. SMTs that occurred twice were identified for each
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target and the allele at the expected SNP position was
identified by the location in the sequence. If the pair of
reads with the same SMT showed the same allele, it was
considered concordant, whereas if they showed a different
allele, they were considered discordant. SNPs that reported
an allele other than the alternate or reference allele more
than 10% of the time were excluded from the analysis. To
calculate paired read concordance, Read 1 and Read 2 of
the paired-end read were compared.

Simulation of duplicate reads within a sample

A single sample (Germ10) was split into two groups of
reads (approximately 145,000 paired reads each) using
sample in R. For each duplicate rate (0% to 90%), unique
reads were sampled from each group of reads (that is,
72,500 reads for 50%) and then duplicates were generated
from this group of reads by random sampling and replace-
ment. Reads were simulated similarly for tumor samples
that were collected from the same patient after diagnosis
or prior to treatment, but the reads were not split
into two groups. Within a single sample, unique reads
were identified and a subset (1 - duplicate rate) was
randomly chosen. Duplicate reads were then sampled
with replacement from the chosen unique reads.

Testing for differences at heterozygous loci

Heterozygous loci were identified using all unique reads
for each sample using GATK. Each pair of samples
(either with simulated duplicates or with/without
experimental duplicates) was genotyped at these loci
using GATK UnifiedGenotyper (--genotyping_mode
GENOTYPE_GIVEN_ALLELES). Allele counts were
calculated from the Allele Count variable (AC) in
GATK, divided by two. Differences between the pools
were identified at each locus using a 2 x 2 Fisher’s exact
test (fisher.test in R) of allele counts and associations
at P <0.05 were called significant.

PyClone

PyClone (v.0.12.3) was downloaded [35] and used to esti-
mate the number of clones in tumor samples from each
patient. Copy number estimates were made from Illumina
HumanOmni2.5 BeadChip data using CNVPartition, but
none were identified overlapping the somatic loci for this
patient. For duplication rates of 0% to 90%, a single BAM
file containing a subset of the unique reads and duplicate
reads to make up the remainder read depth was generated
for each tumor sample. Genotypes were called using
GATK and allele counts were calculated from AC, divided
by two. Each pair of samples was run separately in
PyClone using default or suggested settings. The number
of genetic clusters identified for each tumor sample at
various duplication rates was reported.
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Data access
Sequence data is available through dbGaP study ID
phs000767 [36].

Additional files

Additional file 1: Table listing sequencing statistics.

Additional file 2: Barplot showing the percentage of SNPs different
between replicate samples.
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