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COMMENT
Deeper, longer phenotyping to accelerate the
discovery of the genetic architectures of diseases
Isaac S Kohane
A recent National Academy of Sciences report entitled
‘Precision Medicine’ [1] made the point that, in this era of
commodity-priced genome-scale measurements, we can
now envisage a systematic reclassification of human patho-
biology on a population scale. These high-throughput
measurement modalities promise greater precision and ac-
curacy to provide patients with individualized diagnoses
and therapies. Indeed, we have already seen remarkable
success in this regard in improved prognostics and thera-
peutics for breast cancer [2], non-small-cell lung carcin-
omas [3] and the leukemias [4] through molecular-based
subtype profiling. By contrast, many have written about
the artificiality of current organ-based phenotypes and
often clinical-department-based diagnoses [5,6] that do
not correspond to the underlying pathotypes that cross
conventional clinical categorizations. This inadequacy of
the current and often-arbitrary clinical classifications,
coupled with encouraging results from molecular medi-
cine, has led to a swing of the pendulum to the opposite
extreme of where it was in the pre-genomic era. Genotypic
variation is often but a small slice of relevant pathotypic
variation [7], and the recent call for a sequencing-first ap-
proach [8] for molecular-driven classification could result
in expensive and frustrating delays in discovering the true
genetic architecture of much of human disease. In many
cases, taking a more detailed data-driven look at the clin-
ical characterization of individual patients, particularly as
revealed by their distinct trajectories over time, might res-
cue a large number of otherwise-misdirected genomic
investigations.
Premature categorization of a clinical phenotype in a

genomic case–control study, particularly in complex dis-
ease, can lead to an injudicious investment of limited re-
sources for a restricted scientific payoff. First, for
example, consider a reasonably common disease, such as
autism, affecting over 1% of individuals. Suppose that,
like many common diseases, it is suspected that its
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months following its publication. After this tim
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inherited component is caused by a large set of genetic
sequence variants in different genes and even different
pathways [9-13]. If each of the disease-causing variants
is even modestly rare, then a simple case-controlled
study will require numbers of patients orders of magni-
tude higher than the investigators might be able to re-
cruit. For example, if the disease prevalence is as high as
1%, variant frequency of 1%, relative risk of 2.0, then,
with 80% power, discovering each of these variants
would require 23,000 subjects [14], which will typically
take many years and cost millions of dollars. This im-
poses a delay to the time when we can better understand
the genetic architecture of the disease. Second, it pre-
sents a significant economic burden in times of difficult
funding for science. This problem is accentuated by the
inevitable contributions of noise and bias of environ-
mental exposures to the phenotypic variance as well as
the gene-environment interactions [15].
However, with a phenotypic-driven longitudinal ap-

proach, researchers will observe individuals who develop
clinical findings that are not the primary disease pheno-
type but are instrumental in understanding the pathobiol-
ogy of the patient. If the additional clinical findings (for
example, co-morbidities) are themselves uncommon (for
example, found in 2% or less of the individuals with the
primary disease phenotype), even the clinicians caring for
the patients might not recognize that there exist groups of
patients with archetypal clusters of these co-morbidities.
There will therefore be subpopulations of clustered clinical
pathologies that would be completely opaque to the ori-
ginal classic approach for a genomic association study. A
new and potentially more powerful paradigm for genomic
association would include identification of the genetic ar-
chitectures behind each phenotypic cluster. If there are,
for example, 10 such (similarly sized) phenotypic clusters,
the frequency of variants that contribute to phenotypes of
individual clusters can increase and be as large as 10%.
Similarly, they can drop to 0% for those clusters that they
do not contribute to. In that case, with a relative risk of
2.0, only 2,300 subjects would have to be studied rather
The licensee has exclusive rights to distribute this article, in any medium, for 12
e, the article is available under the terms of the Creative Commons Attribution
by/4.0), which permits unrestricted use, distribution, and reproduction in any
ly credited. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

mailto:isaac_kohane@harvard.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Kohane Genome Biology 2014, 15:115 Page 2 of 3
http://genomebiology.com/2014/15/5/115
than 23,000 - a change that might make the difference be-
tween a successful or a disappointing study. Of course,
there are several limiting assumptions implicit in this sce-
nario, including first that the individual genetic variants
are contributing to the frequency of co-morbidities in each
cluster and, second, that the contributions of the individ-
ual variants are identical for each of these co-morbidities.
Despite the aforementioned caveats, we have many ex-

amples where better phenotyping enables better under-
standing of the genetics of disease. For example, whereas
100 years ago heart failure was viewed as a monolithic
disease, careful current phenotyping and population
studies have revealed heart failure in middle-aged indi-
viduals who are highly enriched for the cardiomyopathy
gene variants. Similarly, older individuals suffering heart
failure due to atherosclerosis have a different set of vari-
ants that contribute to the disease. After the fact, it
would seem ludicrous to perform a case–control study
across all heart failure patients - but, in effect, that is
how many of our current and planned studies are struc-
tured, although there are notable exceptions (for ex-
ample, in diabetes [16] and asthma [17]).
As a research community, we can now break free from

our definitions of disease and allow the full biological im-
pact of the genetic variants to be expressed across time
and across multiple symptom complexes. An important
and previously definitive objection to this approach was
simply one of cost. Whereas the cost of a whole-genome
variant scan is $100 or less and a whole-genome sequence
is $1,000, characterizing a patient fully and repeatedly over
their lifetime can and will cost many tens of thousands of
dollars. Fortunately, as a by-product of the automation of
healthcare, there are increasingly large volumes of data
that are available across years and decades of a patient’s
lifetime over which thousands of different clinical variables
are measured [18,19]. Clinical narrative notes from the
electronic health record can also be turned into codified
variables through the process of natural language process-
ing [20,21]. This now allows the identification of clusters
of patients arising over time at a marginal cost of cents per
patient and at very high speed. For example, in a recent
study of children with autism, it was possible to identify
clusters of children with autism and 80% prevalence of sei-
zures, another subgroup with a high prevalence of viral
and bacterial infections, and autoimmune diseases, and a
third group with a variety of neuropsychiatric diseases
such as schizophrenia, attention deficit hyperactivity dis-
order and anxiety disorders [22]. Therefore, rather than a
monolithic disease, autism begins to look more like a set
of clinical syndromes that each merits its own independent
genetic study, just like the distinct causes of heart failure.
It will become clearer over time that, in this instance,

we can have our cake and eat it too. A deeper and longer
phenotyping of human populations is more possible
than ever before with emerging big-data sets, such as ac-
cess to biorepositories and longitudinal troves of real-
time health information on patients. Just as predicted in
the precision-medicine report [1], we can create at min-
imal incremental cost an ‘information commons’ of a
large, even national, population that resolves to the sin-
gle individual the full array of molecular, genome-scale
characterizations. Furthermore, this will permit a deep
characterization of the clinical evolution of each of these
patients over time so that, in a genuinely data-driven
fashion, we can determine what are the true or natural
biologically coherent subclasses, whether driven by gen-
etic or environmental influences.
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