PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Seven up

ArticleInfo		
ArticleID	:	4749
ArticleDOI	:	10.1186/gb-spotlight-20030414-01
ArticleCitationID	:	spotlight-20030414-01
ArticleSequenceNumber	:	101
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003-4-14OnlineDate: 2003-4-14
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

In the April 10 Sciencexpress Scherer *et al.* report completion of the sequencing and annotation of human chromosome 7 (*Sciencexpress*, DOI:10.1126/science.1083423, April 10, 2003). The sequence is 158 megabases long, most of which comes from the Celera whole-genome scaffolds, combined with the publicly funded clone-based sequence. The authors integrated the chromosome 7 sequence with data from a number of database resources, particularly those related to human disease. Comparative analysis revealed a relatively small number of discrepancies with the NCBI chromosome 7 assembly. Comparison with the Celera mouse genome sequence led to the identification of around 22,000 syntenic anchor points. Scherer *et al.* identified 1,917 gene structures, almost half of which correspond to known genes; the average gene size is around 70 kb, and there are 99 overlapping genes and 38 sense-antisense gene pairs. There is evidence for extensive intra-chromosomal duplications, some of which coincide with mouse synteny breaks or with human diseases. Scherer *et al.* report that several human disorders, including susceptibility to autism and Williams-Beuren syndrome, may map to inversion breakpoints.

References

- 1. Sciencexpress, [http://www.sciencexpress.org]
- 2. Celera, [http://www.celera.com]
- 3. The Chromosome 7 Annotation Project, [http://www.chr7.org]

This PDF file was created after publication.