PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Heart failure mutation

ArticleInfo		
ArticleID	\Box	4713
ArticleDOI		10.1186/gb-spotlight-20030305-01
ArticleCitationID		spotlight-20030305-01
ArticleSequenceNumber	$\begin{bmatrix} \vdots \end{bmatrix}$	65
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage		2
ArticleHistory	:	RegistrationDate : 2003–3–5 OnlineDate : 2003–3–5
ArticleCopyright		BioMed Central Ltd2003
ArticleGrants	\Box	
ArticleContext		130594411

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Heart failure is a major cause of death in the developed world and a growing health-care concern. In the February 28 Science Schmitt *et al.* report the discovery of a mutation in patients suffering from inherited dilated cardiomyopathy with refractory congestive heart disease (*Science* 2003, 299:1410-1413). A dominant missense mutation (Arg→Cys) was found at residue 9 in phospholamban (PLN). Phospholamban is a 52 amino-acid transmembrane phosphoprotein that regulates the Ca²⁺ ATPase pump (SERCA2a). Schmitt *et al.* generated transgenic mice expressing the mutant PLN^{R9C} in the heart and observed biventral cardiac dilation and progressive cardiomyopathy resembling the human symptoms. Tissue culture experiments demonstrated that the PLN^{R9C} mutant form trapped protein kinase A (PKA), which led to inhibition of the phosphorylation of wild-type PLN^{WT} protein and delayed decay of Ca²⁺ transients. Manipulating Ca²⁺ handling and/or PLN activity may provide a therapeutic opportunity for treating human heart disease.

References

- 1. Recent advances in understanding the genetic etiology of congenital heart disease.
- 2. Science, [http://www.sciencemag.org]
- 3. Phospholamban and cardiac contractility.