PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Improved purification for proteomics

ArticleInfo		
ArticleID	:	4664
ArticleDOI	:	10.1186/gb-spotlight-20021223-01
ArticleCitationID	:	spotlight-20021223-01
ArticleSequenceNumber	:	330
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–12–23OnlineDate: 2002–12–23
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The TAP-tag (tandem affinity purification) methodology has been effectively used for genome-wide proteomic analysis in yeast. Applications in higher eukaryotes have been hindered by the technical difficulties resulting from expression of endogenous untagged proteins. In an Advanced Online Publication in Nature Biotechnology Daniel Forler and colleagues at the European Molecular Biology Laboratory in Germany, describe the 'iTAP strategy' that incorporates double-stranded RNAi technology to suppress endogenous protein expression (*Nature Biotechnology*, 16 December 2002, DOI:10.1038/ nbt773). This approach was validated by isolating components of the exosome, a multienzyme complex of exoribonucleases, from *Drosophila* Schneider S2 cells using a tagged human Rrp4 protein. The iTAP strategy improved the yield and specificity of purification of *Drosophila* exosome components. Improved purification was also demonstrated for the heterodimeric nuclear export receptor NXF1-p15 and the Mago nashi protein complex. The iTAP approach is thus likely to facilitate functional proteomic projects in higher eukaryotes.

References

1. A generic protein purification method for protein complex characterization and proteome exploration.

- 2. Nature Biotechnology, [http://www.nature.com/naturebiotechnology]
- 3. European Molecular Biology Laboratory , [http://www.embl-heidelberg.de]