PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Old flies

ArticleInfo		
ArticleID	\Box	4650
ArticleDOI		10.1186/gb-spotlight-20021204-01
ArticleCitationID		spotlight-20021204-01
ArticleSequenceNumber	$\begin{bmatrix} \vdots \end{bmatrix}$	316
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	$\begin{bmatrix} \vdots \end{bmatrix}$	2
ArticleHistory	:	RegistrationDate : 2002–12–4 OnlineDate : 2002–12–4
ArticleCopyright		BioMed Central Ltd2002
ArticleGrants	\Box	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Studies of aging in a number of model organisms have provided insights into the mysteries of longevity. In the November 29 Science Rogina *et al.* add another piece to the aging puzzle, by investigating the relationship between histone deacetylases, caloric restriction, and longevity in *Drosophila* (*Science* 2002, **298:**1745). Flies that are heterozygous for a null or hypomorphic mutation in the gene encoding the Rpd3 deacetylase live longer than wild-type controls. The increased lifespan is equivalent to that seen in flies on a low-calorie diet. But the two effects are not additive, suggesting that they are on the same pathway. Both life-expanding treatments (diet or *Rpd3* mutation) are associated with an increase in the levels of the Sir2 deacetylase, a protein linked to life-span in yeast.

References

- 1. Model organisms as a guide to mammalian aging.
- 2. Science, [http://www.sciencemag.org]