PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

RAF, RAS and mismatch repair

ArticleInfo		
ArticleID	:	4566
ArticleDOI	\Box	10.1186/gb-spotlight-20020830-01
ArticleCitationID		spotlight-20020830-01
ArticleSequenceNumber		232
ArticleCategory		Research news
ArticleFirstPage		1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–8–30 OnlineDate : 2002–8–30
ArticleCopyright	\vdots	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Researchers recently reported mutations in the BRAF gene in melanomas. In a Brief Communication in the August 29 Nature, Rajagopalan *et al.* report their analysis of *RAF* and *RAS* mutations in 330 colorectal tumour samples (*Nature* 2002, 418:934). They found 32 mutations in *BRAF* and 169 mutations in *KRAS* (often in larger adenomas), but never both at the same time. They also found that colorectal tumors unable to repair DNA mismatches had a high incidence of *BRAF* mutations and a lower incidence of *KRAS* mutations, highlighting that the mutation spectrum depends on the nature of the tumor genetic instability. Thus *BRAF* and *KRAS* mutations appear to be equivalent in their tumorigenic effect, both playing a role after initiation and before malignant conversion.

References

- 1. Melanoma susceptibility gene, [http://www.the-scientist.com/news/20020611/03]
- 2. *Nature*, [http://www.nature.com]