PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Cellular genomics

ArticleInfo		
ArticleID	\Box	4549
ArticleDOI		10.1186/gb-spotlight-20020807-01
ArticleCitationID		spotlight-20020807-01
ArticleSequenceNumber	$\begin{bmatrix} \vdots \end{bmatrix}$	215
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	$\begin{bmatrix} \vdots \end{bmatrix}$	2
ArticleHistory	:	RegistrationDate : 2002–8–7 OnlineDate : 2002–8–7
ArticleCopyright		BioMed Central Ltd2002
ArticleGrants		
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Studies of the transcriptome rarely take into account the structural context within a living cell. In the August 2 Science, Levsky *et al.* describe a sophisticated approach that monitors mRNA synthesis of multiple genes within single cells (*Science* 2002, **297**:836-840). They prepared oligomer DNA probes each tagged with a distinct fluorophore and combined them to create gene-specific spectral barcodes. They used these probes to follow the transcription of 11 genes in starved and serum-stimulated cells by FISH (fluorescence *in situ* hybridisation). They were able to measure expression in terms of signal intensity and the number of transcribed alleles. Some genes showed strong co-regulation, implying similar regulatory mechanisms. Comparison with microarray data ('FISH and Chips') highlighted the differences between single-cell recordings and global measurements of entire cell populations, and differences between the rate of transcription and the abundance of mRNA.

References

- 1. Science, [http://www.sciencemag.org]
- 2. The Singer lab, [http://www.singerlab.org]