PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

RNAi in adult mice

ArticleInfo		
ArticleID	:	4524
ArticleDOI		10.1186/gb-spotlight-20020709-01
ArticleCitationID		spotlight-20020709-01
ArticleSequenceNumber	\Box	190
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news
ArticleFirstPage	:	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–7–9 OnlineDate : 2002–7–9
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	\Box	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Small interfering RNAs (siRNAs) have shown great potential as gene silencing reagents in a wide range of experimental systems. In the July 4 Nature, Anton McCaffrey and colleagues at the Stanford University School of Medicine report the use of siRNAs to inhibit transgene expression in adult mice and to target hepatitis C virus sequences *in vivo* (*Nature* 2002, **418**:38-39). They used a modified hydrodynamic transfection method to deliver naked siRNAs to the liver of adult mice. They then monitored expression of a firefly luciferase reporter transgene using whole-body imaging techniques. McCaffrey *et al.* report specific siRNA-mediated inhibition (around 80%) of luciferase expression. They also found that small-hairpin RNAs, transcribed *in vivo* from DNA templates, could induce gene silencing in mice. When siRNA was directed against the NS5B (non-structural protein 5B, viral polymerase-encoding region) it was also effective, suggesting that RNAi-based strategies may be used therapeutically to target human pathogens.

References

- 1. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.
- 2. *Nature*, [http://www.nature.com]
- 3. Stanford University School of Medicine, [http://www.med.stanford.edu/]