PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Proteomic early detection of ovarian cancer

ArticleInfo		
ArticleID	:	4399
ArticleDOI		10.1186/gb-spotlight-20020213-01
ArticleCitationID		spotlight-20020213-01
ArticleSequenceNumber	\Box	65
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–2–13 OnlineDate : 2002–2–13
ArticleCopyright	\vdots	BioMed Central Ltd2002
ArticleGrants	\Box	
ArticleContext	\Box	130593311

Tudor Toma

Email: t.toma@ic.ac.uk

Over 80% of ovarian cancers are diagnosed when the disease is at a late stage, with a consequent five-year survival rate of only around 35%. New technologies for the detection of early-stage ovarian cancer would therefore be of great benefit. In February 8 online edition of The Lancet, Emanuel Petricoin III and colleagues from the US Food and Drug Administration, Bethesda, show that computer-assisted detection of proteomic patterns could help in screening for ovarian cancer.

Petricoin *et al.* analysed blood proteins of women with ovarian cancer using mass spectroscopy and a novel computer-searching algorithm. They found a discriminatory proteomic pattern that correctly identified all 50 ovarian cancer cases and 63 of the 66 non-cancer cases from a set of 116 masked serum samples (sensitivity 100%; specificity 95%; positive predictive value 94%; *Lancet* 2002, **359**:572-577).

"These findings justify a prospective population-based assessment of proteomic pattern technology, as a screening tool for all stages of ovarian cancer in high-risk and general populations," commented Emanuel Petricoin III.

References

- 1. Petricoin III EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Simone GS, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to identify ovarian cancer. *Lancet* 2002, 359:572-577. , [http://www.thelancet.com]
- 2. Food and Drug Administration, [http://www.fda.gov]