PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Crenarchaeon sequence

ArticleInfo			
ArticleID	:	4379	
ArticleDOI	:	10.1186/gb-spotlight-20020117-01	
ArticleCitationID	:	spotlight-20020117-01	
ArticleSequenceNumber	\Box	45	
ArticleCategory	:	Research news	
ArticleFirstPage	\Box	1	
ArticleLastPage	\Box	2	
ArticleHistory	:	RegistrationDate : 2002–01–17 OnlineDate : 2002–01–17	
ArticleCopyright	:	BioMed Central Ltd2002	
ArticleGrants	:		
ArticleContext	:	130593311	

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Pyrobaculum aerophilum is a hyperthermophilic crenachaeon that cannot tolerate the presence of elemental sulfur. In the January 22 issue of Proceedings of the National Academy of Sciences, Fitz-Gibbon *et al.* report the complete genome sequence of the *P. aerophilum* IM2 strain that was isolated from a boiling marine water hole in Maronti Beach, Italy (*Proc Natl Acad Sci USA* 2002, **99:**984-989). The genome is 2.2 Mb long, has a 51% G+C content, and contains 2,587 predicted proteins. They found examples of instability of mononucleotide runs and failed to find evidence for a mismatch repair system, suggesting a 'mutator phenotype'. *P. aerophilum* lacks 5' untranslated regions suggesting an unusual mechanism for translation initiation. The genome contains enzymes for the glyoxylate cycle, 2-oxoacid dehydrogenase multienzyme complexes, and glycolysis. The *P. aerophilum* genome has inactivated adenylsulfate reductase genes, explaining its sulfur intolerance and offering a means for developing a genetic system based on selection for a sulfur-tolerance plasmid.

References

- 1. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]