PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Monkey map

ArticleInfo		
ArticleID	:	4369
ArticleDOI	:	10.1186/gb-spotlight-20020104-01
ArticleCitationID	\Box	spotlight-20020104-01
ArticleSequenceNumber	\Box	35
ArticleCategory	\Box	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2002–01–04 OnlineDate : 2002–01–04
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Following the completed draft of the human genome sequence, there is renewed interest in the genetic differences between species and, particularly, in what makes us human. In the January 4 Science, Asao Fujiyama and colleagues at the RIKEN Genomic Sciences Center in Japan present a first-generation human-chimpanzee comparative genome map (*Science* 2002, **295**:131-134). They used over 77,000 chimp bacterial artificial chromosomes (BAC) and aligned end-sequences with the human genomic sequence. The BAC clones covered almost half of the human genome. They calculated that the degree of identity with human sequences is about 98.77%. Closer analysis of chromosome 21 provided evidence for several human-specific loci. This map represents a step towards discovering what makes us different from our closest relatives, the apes.

References

- 1. Science, [http://www.sciencemag.org]
- 2. RIKEN Genomic Sciences Center, [http://www.gsc.riken.go.jp]