PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Targeted destruction

ArticleInfo		
ArticleID	:	4157
ArticleDOI	:	10.1186/gb-spotlight-20010724-01
ArticleCitationID	:	spotlight-20010724-01
ArticleSequenceNumber	:	228
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–07–24 OnlineDate : 2001–07–24
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Ubiquitination targets proteins for degradation by the sequential attachment of ubiquitin to lysine residues within the substrate molecule. Target specificity is determined by the E3 ubiquitin-protein ligases. One class of E3s consists of the heterotetrameric Skp1-Cullin-F box (SCF) complexes. The mammalian F-box protein β -TRCP directs the degradation of IkBa by binding to a phosphorylated decapeptide site within the IkBa molecule.

In the July 17 Proceedings of the National Academy of Sciences, Sakamoto *et al.* describe a method for artificially controlling protein degradation by exploiting characteristics of the SCFβ-TRCP ubiquitin ligase (*Proc Natl Acad Sci USA* 2001, **98:**8554-8559). To test the system they chose to target the methionine aminopeptidase (MetAP-2) protein which is bound by the angiogenesis inhibitor ovalicin (OVA). They synthesized an artificial compound called Protac-1 (proteolysis-targeting chimeric protein 1) which contained the IκBα phosphopeptide fused to ovalicin. They showed that Protac-1 can bind to MetAP-2 via the OVA moiety, and recruit it to the SCFβ-TRCP complex, leading to its ubiquitination and subsequent degradation by the proteosome. The authors suggest that synthetic Protacs will serve as useful research tools and therapeutic agents to target ubiquitin-dependent degradation of a chosen target protein.

References

- 1. Ubiquitin-mediated proteolysis: biological regulation via destruction.
- 2. SCF and Cullin/Ring H2-based ubiquitin ligases
- 3. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 4. Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2.