PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Mammalian RNAi

ArticleInfo		
ArticleID	:	4098
ArticleDOI	:	10.1186/gb-spotlight-20010525-01
ArticleCitationID	:	spotlight-20010525-01
ArticleSequenceNumber	:	169
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate : 2001–05–25 OnlineDate : 2001–05–25
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The RNA interference (RNAi) technique has been used to disrupt gene function in a range of model organisms, but its use in mammalian cells has been problematic. RNAi involves the ribonuclease-III-catalysed digestion of specific double-stranded RNA into 21-22 nucleotide small interfering RNA (siRNA) species. In the May 24 Nature, Elbashir *et al.* report the application of RNAi in cultured mammalian cells (*Nature* 2001, **411**:494-498). They designed 21-nucleotide siRNA duplexes, with symmetric two-nucleotide 3' overhangs, directed against luciferase reporter transgenes. They tested RNAi in a range of mammalian cell lines (COS, NIH3T3, HeLa and 293). The siRNA duplexes could reduce gene expression (although not completely) in a cell-type-specific manner. Elbashir *et al.* also demonstrated effective silencing of endogenous genes. RNAi techniques are significantly more efficient than current methods, such as antisense RNA. This study paves the way for wide-scale application of RNAi-driven silencing in a range of functional genomics approaches in mammalian systems.

References

- 1. RNA-triggered gene silencing.
- 2. *Nature*, [http://www.nature.com]

This PDF file was created after publication.