PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

How plants cope with the damaging effects of UV radiation

ArticleInfo		
ArticleID		4017
ArticleDOI		10.1186/gb-spotlight-20010316-03
ArticleCitationID		spotlight-20010316-03
ArticleSequenceNumber	:	88
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–03–16 OnlineDate : 2001–03–16
ArticleCopyright		BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext		130592211

Kenneth Lee

Email: kenlee fr@yahoo.fr

Because of their dependence on sunlight for photosynthesis, plants are also exposed to the DNA-damaging effects of ultraviolet (UV) radiation. In the 15 March *Genes and Development*, Roman Ulm of the Friedrich Miescher Institute in Basel and co-workers report on how plants cope with genotoxic stresses, such as UV radiation (Genes Dev 2001, **15:**699-709).

Ulm *et al.* identified a mutation in *Arabidopsis thaliana*, *mkp1*, that results in hypersensitivity to the DNA-damaging agent MMS (methyl methanesulphonate) and to UV-C radiation. MMS at 120 parts per million was lethal to *Arabidopsis* mutants, whereas wild-type plants could tolerate higher concentrations of the drug; UV-C radiation (55 J/m2) arrested the growth of mutant roots but had no effect on wild-type roots. In the absence of genotoxic stresses, the mutants were indistinguishable from their wild-type counterparts, suggesting that the *MKP1* gene has a specific role in the stress response.

The gene that is disrupted in the *mkp1* mutant is normally transcribed into a 3 kb mRNA that encodes a MAP (mitogen-activated protein) kinase phosphatase. These enzymes have been linked to stress responses in mammalian cells.

References

- 1. Friedrich Miescher Institute, [http://www.fmi.ch/]
- 2. Ulm R, Revenkova E, di Sansebastiano G-P, *et al*: Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in *Arabidopsis*. *Genes Dev* 2001, 15:699-709., [http://www.genesdev.org/]

This PDF file was created after publication.