PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Duplicate and die

ArticleInfo		
ArticleID	:	3829
ArticleDOI	:	10.1186/gb-spotlight-20001113-03
ArticleCitationID	:	spotlight-20001113-03
ArticleSequenceNumber	:	266
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2000–11–13OnlineDate: 2000–11–13
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

Growing databases of sequence information have allowed Lynch and Conery, in the 10 November Science, to calculate the frequency and fate of gene duplications (*Science* 2000, **290**:1151-1155). Genes are duplicated at a high rate of, on average, 0.01 per gene per million years. The vast majority of these duplicates are silenced within a few million years by deleterious mutations. Polyploidization may result in a greater number of surviving duplicates, as in this case the necessary stoichiometry between gene products is conserved. Selective pressure on the surviving genes increases approximately ten-fold as the duplicates evolve new functions. Although the silenced duplicate genes are no longer functional, they may still be important in speciation. If gene duplicate in each of the two populations, then mating of the previously separated populations, some of the resulting offspring will be double-nulls. The occurrence of such duplication and inactivation events in multiple genes would result in inviable, multiply null offspring, and thus may constitute a post-mating reproductive barrier encouraging speciation.

References

- 1. Science, [http://www.sciencemag.org/]
- 2. Gen(om)e duplications in the evolution of early vertebrates.

This PDF file was created after publication.