PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Metabolite profiling

ArticleInfo			
ArticleID	:	3824	
ArticleDOI	:	10.1186/gb-spotlight-20001108-03	
ArticleCitationID	÷	spotlight-20001108-03	
ArticleSequenceNumber	:	261	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	÷	2	
ArticleHistory	:	RegistrationDate: 2000–11–08OnlineDate: 2000–11–08	
ArticleCopyright	:	BioMed Central Ltd2000	
ArticleGrants	÷		
ArticleContext	:	130591111	

William Wells Email: wells@biotext.com

In the November Nature Biotechnology Fiehn *et al.* offer an alternative to the profiling of messenger RNA and protein levels. They use gas chromatography coupled to mass spectrometry (GC/MS) to assay the relative levels of 326 small compounds from a plant leaf extract (*Nat Biotech* 2000, **18**:1157-1161). A simple methanol extraction is followed by derivitization to increase metabolite stability and volatility. Approximately half of the chromatographed compounds can be identified based on retention times and mass spectra; these results can be viewed on the accompanying website. Biological variability (of approximately 40%) is in clear excess of variability inherent to the method (about 8%). Principal component analysis allows metabolite profiles from plants of a particular genetic background or with a particular mutation to be clustered. Mutation of a single gene causes many changes, most of them unexplained. Metabolite profiles may be useful to address public concerns about the safety of genetically modified food.

References

- 1. Nature Biotechnology, [http://www.nature.com/nbt/]
- 2. Metabolic profiling: a Rosetta Stone for genomics?
- 3. Metabolite Mass Spectra Library, [http://www.mpimp-golm.mpg.de/mms-library/index-e.html]