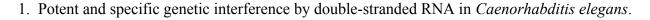
PublisherInfo					
PublisherName		BioMed Central			
PublisherLocation		London			
PublisherImprintName		BioMed Central			

dsRNA can turn off genes


ArticleInfo					
ArticleID	:	3806			
ArticleDOI	:	10.1186/gb-spotlight-20001023-01			
ArticleCitationID	\Box	spotlight-20001023-01			
ArticleSequenceNumber	\Box	243			
ArticleCategory	\Box	Research news			
ArticleFirstPage	:	1			
ArticleLastPage	:	2			
ArticleHistory	:	RegistrationDate : 2000–10–23 OnlineDate : 2000–10–23			
ArticleCopyright	:	BioMed Central Ltd2000			
ArticleGrants	:				
ArticleContext	:	130591111			

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

RNA interference (RNAi) is an elegant technique in which double-stranded RNA (dsRNA) can direct the degradation of homologous RNA species leading to post-transcriptional gene silencing. In the October 2 EMBO Journal Mette *et al.* extend dsRNA applications by showing that dsRNA corresponding to sequences from the nopaline synthase promoter (NOSpro) could disrupt transcriptional activation (*EMBO Journal* 2000, **19:**5194-5201). The dsRNA *trans*-silencing was accompanied by induced methylation of the target NOSpro locus. The formation of a NOSpro RNA hairpin was essential for transcriptional silencing. Analysis revealed that the NOSpro dsRNA is degraded into small RNAs 23-25 nucleotides long, as has been observed for RNAi in animal systems. They show that this dsRNA *trans*-silencing technique functions in transgenic tobacco plants, as well as *Arabidopsis* lines, suggesting that it could be widely applied as a strategy to turn off plant genes.

References

2	EMDO	Larran al	[http://www.eml	ani ara	/-
۷.	EMBU.	Journai.	mub://www.emi	201.012	4

This PDF file was created after publication.