PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Could selfish DNA create new proteins?

ArticleInfo		
ArticleID	:	3799
ArticleDOI	:	10.1186/gb-spotlight-20001017-01
ArticleCitationID	:	spotlight-20001017-01
ArticleSequenceNumber	÷	236
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	÷	2
ArticleHistory	·	RegistrationDate: 2000–10–17OnlineDate: 2000–10–17
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

Selfish DNA has been defined as DNA "with no phenotypic expression whose only 'function' is survival within genomes." In the 13 October Science, [http://www.sciencemag.org/] Ogata *et al.* find what appears to be selfish DNA lodged in the middle of 19 genes of Rickettsia conorii [http://www.genomebiology.com/resolver.asp?PubMedID=9336669], an intracellular bacterium of ticks (*Science* 2000, **290**:347-350). The repeats are palindromes that encode a mildly hydrophobic α helix surrounded by two extended or coil regions. This appears to be a non-functional module that has been inserted at the surface of a collection of unrelated proteins. Although the inserts probably do not provide a specific function, genetic drift from the original sequence could allow the evolution of new protein sequences, domains and functions.

References

- 1. Selfish genes, the phenotype paradigm and genome evolution.
- 2. Science, [http://www.sciencemag.org/]
- 3. Rickettsioses as paradigms of new or emerging infectious diseases.