PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

SNPs pair up in asthma pharmacogenetics

ArticleInfo		
ArticleID	:	3778
ArticleDOI	:	10.1186/gb-spotlight-20000925-02
ArticleCitationID	\Box	spotlight-20000925-02
ArticleSequenceNumber	\Box	215
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–09–25 OnlineDate : 2000–09–25
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

Jonathan B Weitzman

Email: JWeitzman@elabseurope.com

Many believe that single nucleotide polymorphisms (SNPs) will prove to be powerful tools as predictive pharmacogenetic loci. In the September 12 Proceedings of the National Academy of Sciences, Drysdale *et al.* examined the functional significance of SNPs in the 5' upstream and ORF regions of the β 2-adrenergic receptor (β 2-AR) gene (Proc Natl Acad Sci USA 2000, 97:10483-10488) The β 2-ARs are G-protein coupled receptors that can cause muscle relaxation and bronchodilation. Beta-blocker agonists are used as drugs to treat bronchospasms in asthma patients. Drysdale *et al.* characterized 13 SNPs in the β 2-AR gene that were grouped into 12 distinct combinations (haplotypes). They analyzed a group of 121 asthmatics and their response to the beta-blocker albuterol. Pairs of haplotypes were significantly related to drug responsiveness, whereas single SNP haplotypes were not. Furthermore, *in vitro* transfection experiments showed that SNP haplotypes affect β 2-AR expression and receptor density. These results caution against the predictive utility of randomly chosen individual SNP loci, and emphasize the advantage of analyzing multiple SNP combinations simultaneously.

References

- 1. The SNP Consortium Ltd., [http://snp.cshl.org]
- 2. A database of single nucleotide polymorphisms, [http://www.ncbi.nlm.nih.gov/SNP/index.html]
- 3. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 4. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness.

This PDF file was created after publication.