PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

How Hydras get their heads

ArticleInfo		
ArticleID	:	3774
ArticleDOI	:	10.1186/gb-spotlight-20000921-04
ArticleCitationID	:	spotlight-20000921-04
ArticleSequenceNumber	:	211
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–09–21 OnlineDate : 2000–09–21
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

In the 14 September Nature Hobmayer *et al.* find that Wnt signaling proteins are expressed in the head organizer of *Hydra*, a freshwater polyp, suggesting that Wnt was central in the evolution of axial differentiation in early multicellular animals (*Nature* 2000, **407**:186-189). Hobmayer *et al.* isolate a number of Wnt pathway proteins from *Hydra* and find that their protein-interacting domains are well conserved when compared with Wnt pathway proteins from metazoans. Expression of *Hydra* β-catenin in frog embryos duplicates the embryos' head structures, and Wnt signaling proteins are turned on in newly budded or regenerating *Hydra* heads. The previous candidates for ancient anterior patterners were the Hox genes; determining how Hox function and Wnt function relate to each other will require further study.

References

- 1. Nature, [http://www.nature.com/nature/]
- 2. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning.