PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Cytokine gene regulation by NFAT

ArticleInfo		
ArticleID	:	3766
ArticleDOI	:	10.1186/gb-spotlight-20000915-01
ArticleCitationID	:	spotlight-20000915-01
ArticleSequenceNumber	:	203
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–09–15 OnlineDate : 2000–09–15
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

Jonathan B Weitzman

Email: JWeitzman@elabseurope.com

Cooperation between nuclear factor of activated T cells (NFAT) and the Fos/Jun transcription factors is central to integrating converging signals upon lymphocyte activation. In the 1 September EMBO Journal Macian *et al.* (EMBO Journal 2000, 19:4783-4795) engineered mutants of NFAT1 that no longer interact with Fos/Jun dimers, but still bind DNA and activate transcription. These proved to be powerful tools for defining the need for NFAT-Fos-Jun cooperation in regulating cytokine gene expression. The target genes for NFAT can be divided into those that absolutely require cooperation for activation (e.g. the genes for interleukin (IL)-2, GM-CSF, IL-3, IL-4 and FasL), and those that are induced by NFAT alone (e.g. TNFalpha and IL-13). Cooperation is also functionally important for activation-induced cell death of lymphocytes. These results have therapeutic implications for the development of more specific immunosuppressive drugs.

References

- 1. Transcription factors of the NFAT family: regulation and function.
- 2. Embo journal, [http://www.emboj.org]
- 3. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun.