PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Destruction before salvation

ArticleInfo		
ArticleID	:	3743
ArticleDOI	:	10.1186/gb-spotlight-20000814-02
ArticleCitationID	:	spotlight-20000814-02
ArticleSequenceNumber	:	180
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–08–14 OnlineDate : 2000–08–14
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Mouse models of cancer are primarily soft tissue sarcomas and lymphomas, whereas 90% of human cancers are epithelial in origin. In the August 10 Nature, Artandi *et al.* suggest that the difference arises from higher levels of telomerase (the enzyme that adds a protective cap on the end of chromosomes) in mice (*Nature* 2000, **406**:641-645). When the researchers combine a mouse telomerase knockout with a mutation in the tumor suppressor p53, non-reciprocal translocations appear, followed by epithelial cancers. Artandi *et al.* believe that low levels of telomerase lead to genome rearrangements that initiate tumorigenesis, before subsequent telomerase reactivation saves the cells from excessive rearrangements that would cause self-destruction.

References

- 1. The role of p53 in tumour suppression: lessons from mouse models.
- 2. Nature magazine, [http://www.nature.com/nature/]