PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Transforming mosquitoes

ArticleInfo		
ArticleID	:	3715
ArticleDOI	:	10.1186/gb-spotlight-20000629-03
ArticleCitationID	\Box	spotlight-20000629-03
ArticleSequenceNumber	\Box	152
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–06–29 OnlineDate : 2000–06–29
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Catteruccia *et al.* announce in the June 22 Nature that they have succeeded in introducing DNA into the germline of *Anopheles stephensi*, the mosquito that is one of the major carriers of malaria in urban areas of the Indian subcontinent (*Nature* 2000, **405**:959-962). They injected two plasmids (one with a gene for green fluorescent protein (GFP) and the other with a transposase gene) into mosquito eggs. The eggs were treated with an inhibitor of melanization to slow hardening. Five of 69 surviving adults (7%) incorporated the GFP-encoding DNA into their genomes and fluoresced. Transformation should allow the introduction of genes that prevent reproduction of the malaria parasite within its obligatory insect vector.

References

- 1. Nature magazine, [http://www.nature.com/nature/]
- 2. Building the better bug.