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Abstract

Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it
becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the
areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to
spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome
sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic
sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data
with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating
contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.

Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most
elements of the analysis and interpretation process. However, even given this commonality of approach, only two
groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning
of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient
consenting process, demonstrating that these areas require additional exploration and standardization.

Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome
sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but
medical interpretation and reporting are areas that require further development by many groups.
Background
The transition of genomics from research into clinical
practice has begun, predicated on rapidly improving tech-
nology, data analysis methods, and more recently and im-
portantly, standardization [1,2]. Methods and tools for
genomic diagnostics have quickly evolved to encompass
all of the processes from consenting, through data gener-
ation and analysis, to interpretation, prioritization, and re-
visable reporting [3]. Nonetheless, there is not currently a
widely accepted set of published standards to enable the
consistent and widespread use of genomics in the practice
of medicine.
There have been a growing number of publicized suc-

cesses in the application of genomic sequencing and in-
terpretations for children with rare diseases of unknown
etiology and patients with refractory cancers [4-11]. This
has led to a growing expectation that clinical whole
exome sequencing (WES) or whole genome sequencing
(WGS) services will soon be standard practice for a much
larger population of patients. Unlike other data-intensive
diagnostic modalities, such as magnetic resonance imaging
(MRI), there are no standards for the use of computational
tools to analyze the outputs of different next-generation se-
quencing (NGS) technologies for patient care [12]. There
is a large methodological armamentarium for assembling
genomic reads into a sequence, detecting variation, inter-
preting the clinical significance of specific sequence vari-
ants, and compiling a clinically usable report. Yet just how
these methods are used in context, and in what combin-
ation, all critically impact the quality of genomically in-
formed diagnoses. For example, many studies have utilized
WES datasets essentially as large gene panels, interrogating
data for only a small set of candidate genes determined
based on clinical presentations [13], while others have uti-
lized the entire datasets to identify and qualify mutations
anywhere in the genome [9].
The present study was initially conceived at the 2010

Clinical Bioinformatics Summit hosted in Boston by
Harvard University, the Children’s Hospital Informatics
Program, and Harvard Medical School Center for Bio-
medical Informatics. The conference was attended by a
wide range of stakeholders who discussed what it would
take to attain a consistent and safe standard for clinical-
grade genome-wide data interpretation. One of the con-
sensus outcomes of this conference was the catalytic effect
that a full clinical-grade genomic diagnostic challenge con-
test would have upon the emergence of both de facto and
formal standards for genome-scale diagnostics.
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This contest – dubbed the CLARITY Challenge (Chil-
dren’s Leadership Award for the Reliable Interpretation
and Appropriate Transmission of Your Genomic Infor-
mation) – was hosted by the Manton Center for Orphan
Disease Research at Boston Children’s Hospital and the
Center for Biomedical Informatics at Harvard Medical
School [14]. Prizes totaling USD 25,000 were made avail-
able to the team or teams that could best analyze, inter-
pret and report, in a clinically meaningful format, the
results of parallel WES and WGS. The inspiration for
CLARITY arose from the marked success of contests
as a technique to focus a community on a particularly
interesting and high-impact problem (e.g., various X
Prizes). Successful competitions have accelerated pro-
gress in protein folding, including the MATLAB Protein
Folding Contest [15] and the International Protein Fold-
ing Competition (CASP) [16], gene identification, such
as EGASP [17], and in silico tools for predicting variant
pathogenicity such as the CAGI experiment [18]. Contests
have been used to evoke ‘co-opetition’ – a collaboration
centered on competition – in the hopes of crystallizing
best practices and, thereby, accelerating the field. Com-
parative analysis is not new to this field either, as projects
such as the 1000 Genomes Project [19] have provided
the opportunity to compare technological and analytic
methods across platforms and pipelines; its Exon Pilot
project compared technologies from 454 Life Sciences, a
Roche company (Branford, CT, USA), Applied Biosystems
(Carlsbad, CA, USA), and Illumina Inc (San Diego, CA,
USA), comparing capture biases, coverage fluctuations,
indel alignment issues, population biases, and sequencing
errors [20]. More recently, a prominent paper compared
the accuracy and sensitivity of results obtained using an
Illumina Hiseq 2000 instrument and Complete Genomics’
WGS service [21]. But there has not been a competition
that has focused on the entire front-to-back process of ap-
plying NGS to patient care in a manner suitable for large-
scale clinical adoption.
Admittedly, there are limitations to this method. To

keep the scope of the competition manageable, it was fo-
cused largely on assessing the processes of variant annota-
tion and subsequent medical interpretation and reporting,
and no attempt was made to represent a range of clinical
conditions and genetic models, or deal with the challenges
of assessing clinical similarities amongst different presen-
tations. Thus, the contest did not fully assess the real
world challenges of finding causal mutations, but instead
focused on comparative methods by which variants are
called and assessed bioinformatically. Also outside the
scope of the CLARITY Challenge are issues related to the
importance of direct experimental evaluation of the func-
tional consequence of mutation, which is a key part of the
interpretation of novel variants and where improvement is
also needed.
We present here a survey of the various methods used
in the Challenge and summarize the opinions and atti-
tudes of the contestants after the fact regarding the prac-
tice of clinical-grade genome-scale diagnostics for
clinical practice.

Results and discussion
Three families were identified by the Manton Center for
Orphan Disease Research to serve as test cases for the
CLARITY challenge on the basis of having a child with
clinical manifestations and/or pedigree structure suggest-
ive of a likely genetic disease (Table 1). The clinical study
reported here was performed under the auspices of the
Boston Children’s Hospital Institutional Review Board
(IRB) under Protocol IRB-P00000167. The organizing
team worked closely with the IRB to define a protocol that
protected the families’ interests, as well as the patients’
rights and prerogatives, yet allowed them to share their
de-identified medical histories and DNA sequences with
teams of qualified competitors around the world.
DNA samples and medical records from 12 individuals

in total were collected under informed consent. Pro-
bands and their parents (i.e., trios) were enrolled from
Families 1 and 3, and two affected first cousins and their
parents were enrolled for Family 2. WES for all 12 par-
ticipants was performed and donated by Life Technolo-
gies (Carlsbad, CA, USA), using standard protocols for
the LIFE Library Builder, and sequenced with Exact Call
Chemistry on SOLiD 5500xl machines. Both raw reads
(XSQ format) and aligned reads (BAM format, generated
with LifeScope [22]) were provided.
WGS for ten individuals (excluding an affected male

cousin of the Family 2 proband and the cousin’s un-
affected mother, for whom sufficient DNA was not
available) were donated by Complete Genomics Incor-
porated (Mountain View, CA, USA) utilizing their standard
proprietary protocols and generated using their Stand-
ard Pipeline v. 2.0. Variant call files along with aligned
reads in Complete’s proprietary format, ‘masterVarBeta’,
were provided.
Comprehensive clinical summaries providing clinical

and diagnostic data for the presenting complaints and
significant secondary findings were prepared by Manton
Center staff from the primary medical records and made
available on a secure server to the contestants, together
with the genomic data described above.
Contestants were solicited from around the world via

professional contacts, word of mouth, and an external
website [14]. Forty teams applied to participate in the
Challenge, 32 of the most experienced multidisciplinary
groups were invited to compete, and 30 accepted the offer.
Participants – working either independently or as teams –
were tasked with working toward an analysis, interpret-
ation, and report suitable for use in a clinical setting.



Table 1 Clinical findings in challenge families

Family Diagnosis Clinical history

1 Centronuclear myopathy and bilateral sensorineural hearing loss • 10-year-old male diagnosed with centronuclear myopathy at
13 months based on clinical exam and muscle biopsy findings

• Uses a G-tube for supplemental feeding

• Uses nighttime ventilation support

• Able to walk limited distances (up to four city blocks), to run
and to climb stairs with use of a railing

• Bilateral mild low to mid-frequency hearing loss

• No contributory family history

2 Right-sided structural heart defects and conduction defects • Multiple family members with a variety of right-sided cardiac
defects ranging in severity

• Proband is a 5-year-old female with history of a right ventricle
mass that resolved spontaneously, persistent right bundle
branch block (RBBB) and slightly dilated ascending aorta

• Mother has the same condition, not requiring intervention

• Maternal uncle has a pacemaker for Type II AV block and a
history of pulmonary stenosis

• Maternal aunt died in neonatal period due to cardiac defects

• Maternal first cousin died in neonatal period due to a complex
congenital cardiac defects involving hypertrophied right ventricle,
tricuspid valve atresia, and second degree heart block

3 Nemaline myopathy • 7-year-old male diagnosed with nemaline myopathy at 7 months
based on muscle biopsy findings and clinical exam

• Bilateral club feet, requiring casting

• Myopathic facies, decreased muscle bulk, diffuse hypotonia
(axial > appendicular), decreased range of motion and mild finger
contractures noted at 4.5 months

• G-tube placed at 23 months for supplemental feeding

• No ventilation support is needed

• Can sit unsupported, but uses a walker to aid in ambulation
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At the conclusion of the Challenge, 23 teams successfully
submitted entries that included descriptive reports of their
bioinformatic analytical strategies with rationale, examples
of data output and tables of variants, and clinical diagnostic
reports for each family. Some groups also provided exam-
ples of their patient education materials, informed consent
forms, preference setting documents, plans for revisable
reporting, and protocols for dealing with incidental find-
ings. Reasons given by four of the seven non-completing
teams for dropping out were: technical and management is-
sues, personnel changes within the team, inability to finish
on time, or difficulty re-aligning the WES datasets (N = 1
each). The other three teams gave no reason.
The 23 completed entries represented a diverse group of

approaches and treatments, with some groups focusing al-
most entirely on bioinformatic issues, others on clinical and
ethical considerations. The most compelling entries includ-
ing a detailed description of the bioinformatic pipelines
coupled with clear, concise, and understandable clinical re-
ports. Among the 23 entries, multiple genes were listed as
possibly causative for all families (25 for Family 1, 42 for
Family 2 and 29 for Family 3). Nevertheless, a consensus
was achieved regarding probable pathogenic variants in two
of the families. In Family 1, mutations of the titin gene,
TTN [Online Mendelian Inheritance in Man (OMIM)
188840/603689], recently reported to cause a form of cen-
tronuclear myopathy [23], were identified as possibly or
likely pathogenic by 8/23 groups, and 6/23 groups reported
GJB2 (OMIM 121011/220290) variants as the likely cause
of the hearing loss in the proband. Similarly, 13/23 groups
identified and reported a variant in TRPM4 (OMIM
606936/604559) [24] as likely responsible for the cardiac
conduction defects in Family 2. Although no convincing
pathogenic variants were identified for Family 3, there were
two plausible candidates requiring further study, OBSCN
and TTN, mentioned by six groups each (Table 2).
Following the independent review and discussion by

the panel of judges, one ‘winner’, the multi-institution
team led by Brigham and Woman’s Hospital, Division of
Genetics, et al. (Boston) was selected, largely on the
basis of having a solid pipeline that correctly identified
most of the genes judged to be likely pathogenic, as well



Table 2 Genetic variants

Family Phenotype Gene Genetic mutationa Protein changea Predicted effect Interpretive status

1 Centronuclear myopathy TTN c.[35635G > C] + [39893-1G > A] p.[V11879L] + [spl] Splice/splice Likely pathogenic
(research result)

Hearing loss GJB2 c.[101 T > C] + [35delG] p.[M34T] + [G12Vfsa2] Deleterious missense/
frameshift

Clinically confirmed

2 Cardiac conduction defects TRPM4 c.503 T > A p.V168E Deleterious missense Likely pathogenic

3 Nemaline myopathy OBSCN c.[2245G > T] + [3322 T > A] p.[G749C] + [Y1108N] Missense Uncertain

TTN c.[84130A > T] + [14492G > A] p.[K28044X] + [C4831Y] Missense/nonsense Uncertain
aReference sequences as follows: TTN – NM_001256850.1 and NC_000002.11, GJB2 – NM_004004.5 and NC_000013.10, TRPM4 – NM_017636.3 and NC_000019.9,
OBSCN – NM_001098623.1 and NC_000001.10.
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as for having clear and concise clinical reports that were
judged to be best at conveying the complex genetic in-
formation in a clinically meaningful and understandable
format. Two runners-up were also cited. The first was a
combined team from Genomatix (Munich, Germany),
CeGaT (Tübingen, Germany) and the University Hospital
of Bonn (Bonn, Germany), which had a robust pipeline
that correctly identified every relevant gene in clear clin-
ical reports. The second was a team from the Iowa Insti-
tute of Human Genetics at the University of Iowa, which
had an outstanding array of patient education materials,
procedures for patient preference setting and dealing with
incidental findings, and policies for transfer of results of
uncertain significance to an appropriate research set-
ting if so desired by the patients. The content of the three
winning entries is available as Additional files 1, 2 and 3.
Five additional teams were cited for ‘honorable mention’
for having pipelines that identified one or more of the
likely ‘correct’ genes and for providing clear clinical report-
ing (Table 3). These eight teams recognized by the judges
are defined as ‘finalists’ in the text and for purposes of
statistical analysis.

Criterion 1 (pipeline): what methods did each team use to
analyze and interpret the genome sequences?
Bioinformatic analysis
The particulars of the bioinformatic pipelines, variant
annotation and report generation approaches employed
by the contestants are summarized in Table 4.

Alignment The majority of contestants chose to use the
supplied alignments of the data. This is not surprising since
the read data from Complete Genomics and SOLiD require
special handling due to the nature of sequencing, split reads
in the former, and potential for color-space reads in the lat-
ter. However, three teams were unable to read the data for-
mats provided and did not submit complete entries.
Alignments were recomputed for the Complete Genomics

data by 5 out of 21 teams, with only one team reporting
use of the aligner DNAnexus (Palo Alto, CA, USA),
while 8 out of 21 teams recomputed alignments for the
SOLiD data. For the SOLiD data, five teams recomputed
alignments with software aware of color-space, and two
teams indicated that they compared their color-space re-
sults against a base-space aligner. Reported aligners used
for SOLiD data included the LifeScope aligner, BFAST
[25], BWA [26-28], Novocraft’s novoalignCS (Selangor,
Malaysia) and the Genomatix aligner (Munich, Germany),
with some teams utilizing multiple tools for comparison.
One team performed error correction prior to alignment
for the SOLiD data using LifeScope’s SAET (SOLiD
Accuracy Enhancement Tool, Carlsbad, CA, USA).
Prior to variant calling, many teams removed read du-

plicates using Picard [29] or SAMtools [30], while some
teams omitted this step due to the danger of removing
non-duplicate reads from single-end data. Using WGS
and WES data together gave an additional way to account
for PCR duplication. Limited quality control (QC) was
performed prior to variant calling, with a single team
using BEDTools [31] to analyze coverage QC metrics, and
one other team reporting custom mapping QC filters.

Variant calling O’Rawe et al. suggested that the choice
of pipeline might be a significant source of variability in
the outcome of NGS analyses [32]. Of the teams, 40%
used both the Gene Analysis Toolkit (GATK) [33,34]
and SAMtools [30] for variant calling, with the majority
using at least one or the other. This indicates that while
there is not complete consensus, using GATK, SAM-
tools or both resulted in acceptable results for the chal-
lenge. While GATK and SAMtools are the most popular
variant callers used today and reported in this survey,
their relative performance has been shown to vary with
the sequencing depth [35,36], and direct comparison of
variant calls resulting from a parallel analysis of the
same raw data by different variant-calling pipelines has
revealed remarkably low concordance [32], leading to
words of caution in interpreting individual genomes for
genomic medicine.
SAMtools was used by some teams to jointly call SNPs

and indels while recalibrating quality scores, while other
teams used GATK to call SNPs and indels separately.
Teams using GATK typically followed the Broad Institute’s
best practice guidelines, performing indel realignment



Table 3 Challenge participants

Contest result Contestant

Winner The Brigham and Women's Hospital,
Multi-Institutional Consortium (Boston, MA, USA)

Runners-up Genomatix (Munich, Germany), CeGaT (Tübingen,
Germany), Institute of Pathology,
University Hospital of Bonn (Bonn, Germany)

Iowa Institute of Human Genetics, University
of Iowa (Iowa City, IA, USA)

Finalists Clinical institute of Medical Genetics, University
Medical Centre Ljubljana (Ljubljana, Slovenia)

Scripps Translational Science Institute (San Diego,
CA, USA)

Science For Life Laboratory (SciLifeLab), Karolinska
Institute (Stockholm, Sweden)

SimulConsult/Geisinger (Chestnut Hill, MA, USA
and Danville, PA, USA)

The Research Institute at Nationwide Children's
Hospital (Columbus, OH, USA)

Completed the contest Tel Aviv University (Tel Aviv, Israel)

Genome Institute of Singapore, A*STAR
(Singapore)

National Institutes of Health, Regeneron
Pharmaceuticals and Stanford University
(Bethesda, MD, USA; Tarrytown, NY, USA; Palo
Alto, CA, USA)

Yale School of Public Health, Division of
Biostatistics (New Haven, CT, USA)

River Road Bio/SNPedia (Potomac, MD, USA)

Pearlgen (Durham, NC, USA)

Institute for Systems Biology (Seattle, WA, USA)

Strand Life Sciences (Bangalore, India)

Sanofi (Cambridge, MA, USA)

Universidad de Cantabria (Santander, Spain)

Radboud University Nijmegen Medical Center
(Nijmegen, Netherlands)

Seven Bridges Genomics (Cambridge, MA, USA)

Omicia Inc/University of Utah (supported by
LocusDev Inc (now InVitae)) (Emeryville, CA, USA)

The University of Texas Health Science Center
at Houston, The Brown Foundation Institute
of Molecular Medicine (Houston, TX, USA)

FORGE Canada Consortium (Ottawa, ON, Canada)

Did not complete
the contest

BGI (Shenzhen, China)

British Columbia Cancer Agency (Vancouver,
BC, Canada)

Genedata AG (Basel, Switzerland)

HudsonAlpha Institute for Biotechnology
(Huntsville, AL, USA)

IRCCS Casa Sollievo della Sofferenza
(San Giovanni Rotondo, Foggia, Italy)

NextBio (Santa Clara, CA, USA)

The Medical College of Wisconsin (Milwaukee,
WI, USA)
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prior to indel calling, base quality score recalibration prior
to SNP calling, and variant-calling score recalibration after
variant calling. Some teams ignored GATK’s base quality
score recalibration, mentioning that at the time GATK did
not support SOLiD error profiles. LifeScope software con-
taining DiBayes was also used on SOLiD data to call SNPs,
and with local realignment to call small indels. In some
cases, multiple variant-calling methods were used and
compared, with all but one using GATK, SAMtools or
some combination thereof. Other tools used with one
mention each include: the DNAnexus variant caller, Free-
Bayes [37] and Avadis NGS (v1.3.1). A number of teams
utilized the WGS results from Complete Genomics to
look for potentially pathogenic de novo copy number vari-
ants, but none were found.
A significant source of variation among the different

entries was the number of de novo mutations reported.
Less than five de novo mutations per exome, and only
about 75 de novo mutations per genome, are expected
for each trio [38,39], yet some groups reported much
higher numbers, recognizing that many of these changes
fell within areas with low or poor coverage. Groups that
used a family-aware zygosity calling approach, such as
the GATK module ‘Phase by Transmission’, developed
much more refined lists of only a few potential de novo
variants per proband, demonstrating the importance of
this approach. However, several teams reported prob-
lems using the SOLiD data for this analysis as the BAM
format provided by SOLiD was different from that ex-
pected by GATK, limiting the analysis to Complete Gen-
omics data in those cases.
Variant filtering or recalibration after initial variant

calls was performed by 16 out of 20 teams. Six teams
used GATK variant quality score recalibration, with
other teams reporting use of custom tools. Some teams
used BEDTools for coverage QC metrics, but there was
no consensus on tools to report sequencing and analysis
QC metrics for post-alignment and variant calling.
Teams were asked if they employed any reference data-

sets in calling variants or comparing datasets to known
variants (e.g., batched variant calls, known variant lists,
etc.). The most common reference data reported included
variants from the 1000 Genomes Project, dbSNP [40],
HapMap Project [41], NHLBI Grand Opportunity Exome
Sequencing Project (Bethesda, MD, USA), and the GATK
Resource Bundle (distributed with GATK). Other refer-
ence datasets mentioned were the Mills Indel Gold Stand-
ard [42], NCBI ClinVar (Bethesda, MD, USA) as well as
public sequencing data produced from the technologies
used in this challenge.

Coverage analysis One limitation of exome and gen-
ome sequencing is that the low/no coverage regions can
lead to false positive or false negative results (sometimes



Table 4 Pipeline elements and characteristics of successful CLARITY entries

Consensus (if any) Finalists Other tools used (% overall)

Mapping

Read alignment Used supplied alignments (52%) Used supplied alignments (63%) Recomputed alignment data (48%)

Variant detection GATK and/or SAMtools (75%) GATK and/or SAMtools (75%) DNAnexus (5%), FreeBayes (5%), CGI
variant table (5%), Avadis NGS (5%),
LifeScope (5%)

Quality control metrics

Annotation Annovar (52%) Annovar (63%) Online Mendelian Inheritance in Man
(19%), Uniprot (5%), in-house software
(5%), SeattleSeq (5%), Variant Tools
(10%), KggSeq (5%), SNPedia (5%),
ClinVar (5%), PharmGKB (5%), Ingenuity
(10%), SG-ADVISER (5%), Human Gene
Mutation Database (10%), Genome Trax
(5%), dbNSFP (5%), VEP, in-house
MapSNPs tool (5%), snpEFF (5%),
Genomatix GeneGrid and CeGaT
annotation pipeline (5%)

Clinical extraction Sift and/or Polyphen (90%) Sift and/or Polyphen (100%) MutationTaster (10%), LRT Omega,
GERP, PhyloP, and FreeBayes (5%)

Validation

Report generation Filter by relevance to phenotype
(71%). Consult with clinician in relevant
area (63%). Clinical summary geared
towards: non-geneticist clinician (47%),
clinical geneticist (29%).

Filter by relevance to phenotype
(100%). Consult with clinician in relevant
area (100%). Clinical summary geared
towards: non-geneticist clinician (38%),
clinical geneticist (38%).
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7% to 10% of the exons of the genes of interest have in-
sufficient sequence reads to make a variant call [43]).
Only 42% of teams quantified and reported on regions
with insufficient coverage or data quality, though 50% of
the finalists and two of the top three teams did.

Variant validation Many clinical diagnostic protocols
still require independent confirmation of NGS results,
often by Sanger-based resequencing studies, to validate
clinically relevant findings. Although this was not possible
in the context of a competition where the contestants did
not have access to DNA from the participants, 11 groups
took advantage of the independently derived WES and
WGS datasets to cross-check and validate their findings.
In every instance except two, the teams reported concord-
ance between the variant calls for the TTN, GJB2, and
TRPM4 mutations that were considered likely pathogenic.
The exceptions were both related to calls that were con-
sidered false positives in the SOLiD data due to poor qual-
ity or coverage at the GJB2 and TRPM4 loci, respectively.
The GJB2 findings had previously been clinically con-
firmed and the contest organizers subsequently arranged
for independent research and clinical testing, which con-
firmed the TTN and TRPM4 variants as well.

Medical interpretation of variant lists
The most frequent methods used to annotate variants
reported were Annovar [44] (52%), in-house developed
software (17%), and Ingenuity (Redwood City, CA, USA)
(12%). Other tools reported were Variant Tools [45],
KggSeq [46], SG-ADVISER (Scripps Genome Annotation
and Distributed Variant Interpretation Server, La Jolla, CA,
USA), Genome Trax (Wolfenbüttel, Germany), VAAST
(Variant Annotation and Search Tool) [47], Omicia Opal
[48], MapSNPs [49], in-house pipelines, and combinations
thereof. There were a large variety of annotation sources
(see Table 4), including but not limited to: OMIM [50],
Uniprot [51], SeattleSeq [52], SNPedia [53], NCBI Clin-
Var, PharmGKB [54], Human Gene Mutation Database [55],
dbNSFP [56], and in-house annotations. More importantly,
most teams (14/20, 70%) performed their own curation of
annotations, for example, by performing a medical litera-
ture review or by checking for errors in externally accessed
databases. Thus, a manual review of annotations was
deemed necessary by most contestants. Many teams con-
sidered the family pedigree structure as an important input
for evaluating variants, as this allowed identification of po-
tential de novomutations, filtering for dominant inheritance
in Family 2, ensuring Mendelian segregation and carrier sta-
tus in parents for recessive mutations, etc. The function
was largely performed manually, but use of automated tools
such as the GATK module ‘Phase by Transmission’ was
considered by some groups although the underlying struc-
ture of the SOLiD data led to problems with the analysis.
Reasons given for why teams did not report each of

the likely pathogenic variants in Families 1 and 2 varied
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by gene and by team, but in many instances, were due to
decisions made during the medical interpretation phase
of analysis. Of the 15 teams that did not report the TTN
variants for whom survey data were available, the variant
calls generated by three failed to identify them. Twelve
groups reported that their variant callers identified the
two variants, but in six of these, automatic filters elimi-
nated the gene from further consideration because the
frequency of potentially pathogenic variants in this enor-
mous gene was considered too high to be credible as a
likely disease gene. Of the six instances where the auto-
mated pipelines reported the variants as potentially
pathogenic, five were subsequently manually eliminated
from further consideration because medical consultants
lacked the clinical expertise or did not believe the pub-
lished association with cardio- or skeletal-myopathy be-
cause of the high frequency of missense changes in the
normal population. Notably, in none of the exclusions
based on the high degree of heterogeneity of the gene
was a distinction made between predicted truncating
mutations, which are much rarer, versus more common
missense changes. In one instance, a simple program-
ming error prevented TTN from rising to the top of the
candidate gene list in an automated expert system, and
subsequent correction of this mistake resulted in a cor-
rect call of likely pathogenicity for the TTN variants in
Family 1.
Seventeen teams reported not flagging the GJB2 muta-

tions as likely causative for hearing loss in the proband of
Family 1. Remarkably, the variant callers employed by ten
teams failed to identify these changes despite the fact that
seven of these teams used either GATK and/or SAMtools.
Among the remaining seven teams, two ignored the
findings because they were considered irrelevant to the
‘primary phenotype’ of skeletal myopathy and two re-
ported a lack of clinical expertise necessary to recognize
that hearing loss was a distinct phenotype. The remaining
three teams reported that one of the previously pub-
lished known pathogenic variants was automatically fil-
tered out due to its high minor allele frequency in
normal populations.
The TRPM4 variant in Family 2 was clinically

reported by 13 of the 23 teams. Only two teams cited
failure of their variant callers to identify this muta-
tion, but five more reported that the variant was
discarded due to poor quality data (low depth and
noisy location with multiple non-reference alleles at
that location in the SOLiD data) in one of more of
the individuals, which led to inconsistent calls among
the different affected family members. Two groups
failed to recognize the likely pathogenicity of this
variant; one reported it as a variant of unknown sig-
nificance while the last one’s computational genetic
predictive scoring simply failed to weight this gene
highly enough to pass the cutoff given their entered
phenotypic parameters. The remaining group identi-
fied the TRPM4 variant, but strongly favored another
variant in the NOS3 gene as a better explanation for
the structural heart defects.
Pathogenicity prediction of missense variants The
most common tools to tackle the problem of determin-
ing the effect of amino acid substitutions on protein
function for missense mutations were SIFT [57] and
Polyphen [49]. While 80% of teams used both SIFT and
Polyphen to predict pathogenicity, there was no signifi-
cant difference in the success of the teams using both
SIFT and Polyphen and those who used one or the other
or some other tool entirely. Other tools listed by teams
were PhyloP [58], likelihood ratio test scores (LRT) [59],
MutationTaster [60], GERP [61], and in-house developed
tools. Also of note: 45% of teams attempted to assess the
statistical confidence of assignment of pathogenicity (63%
of finalists). Methods named included custom in-house
methods (N = 3), considering gene size (N = 2), utilizing
known predictions of pathogenicity (N = 3) and allele fre-
quencies (N = 2), assessing commonly mutated segments
(N = 2), and using true positive and neutral datasets within
a Bayesian framework (N = 1).
Use of splice prediction tools is particularly import-

ant, as approximately 14% to 15% of all hereditary
disease alleles are annotated as splicing mutations
[55]. Groups that utilized a suite of splice prediction
tools, such as the maximum entropy model MAXENT
[62], ExonScan [63] or positional distribution analysis
[64,65], were more likely to have identified potentially
pathogenic mutations, particularly in the TTN gene in
Family 1.
It was well recognized by all groups that allele fre-

quency is an important consideration in assessing patho-
genicity (though specific cutoffs were not mentioned).
All groups also agreed that conservation of amino acid
sequence across species is useful for interpretation of
missense variants. Half of the teams (63% of finalists)
took advantage of the whole genomic sequences to
analyze non-coding variants, but none of the teams re-
ported potential pathogenic changes in deep intronic or
intergenic regions, even for Family 3, likely largely due
to the undefined and uncertain status of such variants.
Of teams that reported methods for predicting patho-
genicity of non-coding variants, the most frequently
used methods were splicing prediction algorithms (85%)
and transcription factor binding site prediction (46%),
with 23% also considering changes in known promoter/
enhancer elements, and one team each assessing evolu-
tionary conservation, DNase hypersensitivity sites and
microRNA-binding sites.
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Medical interpretation and correlation of pathogenic
variants with the clinical presentations Almost all en-
trants performed a clinical correlation at the level of a
single general diagnosis such as ‘myopathy’, ‘centronuc-
lear myopathy’ or ‘nemaline myopathy’ with a list of pre-
determined candidate genes. From a clinical perspective,
this reduces clinical diagnostic decision support to a list
or panel and counts on that subset being complete for
maximum sensitivity. However, in the case of Family 1, for
example, the likely pathogenic gene was not generally rec-
ognized as causative for centronuclear myopathy at the
time of the contest. In contrast, one entrant used clinically
driven diagnostic decision support [66] in which the clinical
analysis was carried out based on a description of the pa-
tient’s various pertinent positive and pertinent negative
findings, including their age of onset. This was then paired
to the genome analysis in a way that used a novel pertin-
ence calculation to find the one or more genes among
those with described phenotypes that best explains the set
of pertinent positive and negative findings [66]. As they be-
come refined and validated, such automated approaches
will become a critical aid in the future for reducing the ana-
lysis times to a manageable level necessary to support the
higher throughputs required in a clinical diagnostic setting.
Indeed, the reported range of person-hours per case re-
quired for medical interpretation of each case was 1 to
50 hours, with the automated approach requiring less than
4 hours on average to complete.

Attitudes and remarks
Three teams were unable to read the data formats pro-
vided and did not submit complete applications. This
likely reflects the unique nature and format of SOLiD
and Complete Genomics data and suggests that greater
adoption of standard formats (FASTQ, SAM/BAM and
VCF) for bioinformatics tools is required.
We observed that finalists were significantly more likely

to express a preference for generating their own sequen-
cing data instead of having it generated by an external se-
quencing provider (75% versus 27%, P = 0.041). The main
reason expressed for in-house data generation was control
over the sequencing process to ensure production and as-
sessment of high quality data. Other reasons expressed in-
cluded cost, turnaround time, and ability for reanalysis.
This preference may also reflect a tendency for the most
experienced groups to have a legacy capacity to generate
sequence data, and thus a bias towards using their own
capacity. However, it also raises the reasonable possibility
that integrated control of the process from sequence gen-
eration through variant calling is important for producing
the highest quality variant calls.
Overall, the teams when asked for reasons for their

preference in their preferred sequencing technology
mentioned accuracy and standardized software tools,
highlighting the need for standard methods and tools for
primary bioinformatics analysis. Furthermore, the major-
ity of teams (13/18) felt that NGS should be combined
with classical techniques (e.g. Sanger sequencing and
PCR methods) for confirmatory testing in clinical situa-
tions. However, a few recognized that with increasing
depth of coverage and accuracy of alignment, NGS, par-
ticularly of less complex libraries such as gene panels
and possibly exomes, had potential to be utilized as a
stand-alone test once QC studies demonstrate sufficient
concordance with traditional methods.
Interestingly, all four of the finalists that did not report

low-coverage or uncallable regions reported that they
were going to begin doing so, whereas one of the non-
finalists mentioned that they were going to add coverage
quality to their reports. Regions in which sequencing
technology or reference-genome-specific difficulties exist
are important considerations for accurate variant detec-
tion. Moreover, it is critical to provide locations in which
variant calling is not possible due to lapses in coverage.
Teams had different opinions on the level of coverage

they felt was necessary for accurate variant calling from
NGS of whole genomes. The finalists reported that they
felt a higher level of coverage was necessary (59× average)
than the rest of the teams (38× average). Similarly, the fi-
nalists differed on the coverage required for whole exomes
(74× versus 49×) or gene panels (121× versus 69×).
A large majority of the teams used SIFT and Polyphen

to predict the pathogenicity of a variant, which is a
sound strategy given the programs do not always agree
in protein predictions, and in both, specificity is reported
to be high but sensitivity low [67].
When asked about their process used to validate patho-

genicity predictions, 58% of teams reported that they did
not use any validation method, or did not have any data-
sets to compare estimates against. The finalists were more
likely to have had in-house datasets to work against, which
may be due to differences in analytical resources that
could be devoted to this problem. Overall, this process
was reported as manual for the majority of the teams.
The diversity of approaches to preparing the contest

entries made direct comparisons of methods difficult, so
the post-contest survey was designed to elicit a more
homogeneous dataset. Nevertheless, several contestants
neglected to respond to some of the questions, and the
responses to others was variable, indicating some confu-
sion on the part of respondents regarding the intent of
the query.

Criterion 2: were the methods used efficient, scalable and
replicable?
There are still some manual elements to many pipelines
that inhibit scalability. For an average case, teams re-
ported that the interpretation process ranges from 1 to
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50 hours (mean 15 ± 16 hours). For the CLARITY chal-
lenge, the time spent was much greater: each case took
from 1 to 200 hours (mean 63 ± 59 hours). The average
CPU time required for the analyses was difficult to esti-
mate as contestants utilized different approaches, and
not every entry was normalized for the number of paral-
lel processors, but contestants reported utilizing 306 ±
965 CPU hours per case (range 6 to 8,700 hours). Re-
ported costs to run the pipeline also varied considerably
ranging from USD 100 to USD 16,000 (average USD
3,754 ± 4,589), but some contestants were unable to cal-
culate salary costs leading to some lower estimates. Al-
though costs have fallen dramatically, and computational
resources are becoming increasingly available, the re-
quirement for manual curation and interpretation of
variant lists remains a considerable barrier to scalability,
which could inhibit widespread use of NGS exome and
genome diagnostics in the clinic if well-validated and
substantially automated annotation tools do not emerge.

Criterion 3: was the interpretive report produced from
genomic sequencing understandable and clinically useful?
Consent and return of results
When asked about their approach to consenting and re-
turn of results in the survey, teams’ responses varied
considerably. The question was irrelevant for a number
of contestants (9/21) whose activities were restricted to
research or contract sequencing without direct patient
contact. Finalists were more likely to ask patients under-
going WES/WGS to sign a specific consent form or pro-
vide specific explanatory materials for the methodology
(P = 0.057). Finalists were much more likely to detail
how they were going to handle incidental (i.e., unantici-
pated) results (P = 0.002). However, only 35% of teams
reported that their consent materials include an option
for patients to express their preferences around the return
of incidental results. Most teams (76%) reported that they
did not provide examples of consent and/or explanatory
materials for patients with their CLARITY submissions,
and since patient interaction was not allowed for the chal-
lenge, a number of contestants simply considered the
issue moot. However, upon reflection, many teams agreed
that including consent and explanatory materials would
have strengthened their entries.
Overall, it is notable that most teams’ submissions did

not include specific consent and explanatory materials,
did not detail a predetermined approach for handling
incidental results, and did not describe any options for
patient preferences. In some cases, survey responses in-
dicated that such materials and plans are used in prac-
tice but were not included in the CLARITY Challenge
submission because it was not clear that such content
was in the scope of the challenge. In other cases, teams
reported that they have not developed these materials
and plans or they do not routinely focus on this aspect
of the process. These findings highlight the fact that these
components, though they are essential for the patient-
facing implementation of clinical sequencing, are not con-
sistently prioritized or highlighted by many groups in-
volved in the clinical use of NGS.

Reporting methods
Reporting methods were not uniform amongst teams.
Reporting the accession number for cDNA reference se-
quences was significantly more frequent in finalists than
in non-finalists (87% versus 22%, P = 0.009). However,
teams did converge on some items: reporting zygosity
was standard, with 88% of responding teams doing so.
Reporting the genome build was also specified by 72%.
That said, the genome build reporting was problematic
even among the winning teams; two of the finalists sub-
mitted elegant reports, clearly stating the variants found,
summarizing the location, the classification and the par-
ental inheritance, with a short interpretation (Figure 1).
However, the accession numbers reported were different:
a different build was used in each report and not speci-
fied, so it would take considerable effort to discern
whether the two reports were truly referring to the same
variants.

Clinical reports
Finalists were more likely to present a clinical summary
report with their entry, with the trend approaching sig-
nificance (100% versus 69%, P = 0.089). Perhaps in re-
sponse to recently published guidelines [68], there was
striking concordance in interpretation and reporting
philosophy, with all finalist and most non-finalist teams
gearing their reports towards a clinical geneticist, genetic
counselor or non-geneticist clinician. Almost all teams
agreed that a non-geneticist clinician should be the tar-
get audience of clinical summary reports (75% of final-
ists and 89% of non-finalists). Finalists were more likely
to feel that their clinical summary report could be used
in clinical care (100% versus 67%, P = 0.08), though there
was overall agreement that it was important that NGS
studies produce a clinical summary report that can be
implemented in the clinic (95% ranked this as ‘import-
ant’ or ‘extremely important’). Most of the teams (80%)
filtered their variant list by relevance to phenotype, with
more successful teams more likely to do so (P = 0.074).
All teams but one finalist (95%) agreed that filtering the
variant list by relevance to phenotype is an appropriate
method for communicating information to clinicians.
It is still not commonplace to consult with an expert

physician during report preparation, but doing so clearly
correlated with success. Only 61% of teams routinely con-
sult with a medical doctor in a relevant disease area. Final-
ists were significantly more likely to involve clinicians on a



Figure 1 Representative clinical report from two of the finalist teams (A and B). Desirable elements include subject demographics,
indication for testing, use of HUGO-approved gene symbols, specification of the relevant variants at the genomic DNA, cDNA and protein levels
including reference sequences and dbSNP identifiers, description of zygosity, estimation of insufficient coverage for candidate genes, and succinct
clinical interpretation and interpretative summary. Note the use of different reference sequences, and the lack of specification in (B) makes direct
correlation between reports difficult.
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regular basis (100% versus 36%, P = 0.001). Perhaps re-
lated, in their reports prior to the survey, all but one of
the finalists considered the hearing loss to be a separate
phenotype from the myopathy in Family 1, while only 36%
of the less successful teams did (P = 0.059). Of those who
considered the separate phenotype, 75% of finalists and
63% of non-finalists considered its genetic basis.

Conclusions
Overall convergence and agreement across the finalists
Overall concordance among the teams in the development
of variant lists was remarkable given the dozens of available
measurement and analytical components of NGS pipelines
and the hundreds of thousands of variants harbored by the
genomes of the families. Despite the many paths that could
be taken, the finalists utilized much the same philosophy
and tools in processing the data and generating variant
calls, and there were often minimal differences between fi-
nalist and non-finalist teams in the large lists of potentially
pathogenic variants. A caveat of our study design was the
choice of sequencing technologies, as Illumina platforms
now account for a greater proportion of clinical studies
than either SOLiD or Complete Genomics-based studies.
Eight groups analyzed only the SOLiD WES data and four
restricted their analysis to the Complete Genomics WGS
data, often because of real or perceived difficulties with
converting the extensible sequence format from the SOLiD
runs into generic FASTQ files that would run on BWA, or
unfamiliarity with the proprietary Complete Genomics
data formats. However, as many aspects of the analytical
pipelines, including variant calling and annotation, patho-
genicity prediction, medical interpretation and reporting
methods, are platform independent, most results discussed
here should be generally applicable even as sequencing
technology continues to evolve.
A number of teams preferred to recompute alignments,

even though vendor alignment data was supplied, showing
a preference for control over the analysis process and
methods, and to ensure high quality results. Furthermore,
a subset of teams for the same reasons expressed a prefer-
ence for generating sequencing data in-house with higher
coverage.
The selection of bioinformatic tools used by the teams

did not appear to differ greatly. Tools for variant calling
centered on GATK and/or SAMtools. Of the teams, 80%
performed variant filtering or recalibration after initial
calls were made. It is difficult to evaluate the need for
recomputing alignment, performing indel realignment,
variant filtering, or recalibration, given the small number
of samples in this exercise. Fewer teams reported regions
with insufficient coverage or data quality, only 42% over-
all. Without this information, it is impossible to evaluate
the sensitivity of any NGS-based testing, making this an
area requiring further development throughout the field.
Use of reference datasets (1000 Genomes, dbSNP, Hap-
Map, NHLBI Go ESP and OMNI), and annotation data-
bases (OMIM, Uniprot, SeattleSeq, SNPedia, ClinVar,
PharmGKB, Human Gene Mutation Database, dbNSFP
and in-house annotations) revealed considerable consen-
sus and uniformity across entries. This shows the prefer-
ence for a wide variety of rich data sources to maximize
power to understand how to prioritize and contextualize
variants in the presence of known information. Annovar
was the most common annotation tool, with Ingenuity
also used frequently. SIFT and Polyphen were overwhelm-
ingly used to predict pathogenicity of missense changes.
Supplementary analyses that were more likely to be

employed by successful teams included consideration of
allele frequency, conservation of amino acid sequence
across species (for coding variants), use of splicing predic-
tion algorithms, and assessment of transcription factor
binding sites (non-coding variants). Finalists were more
likely to have in-house datasets to validate pathogenicity
estimates. The use of in-house datasets to serve as valid-
ation sets for estimates of pathogenicity shows the need
for a large, publicly available database for this purpose.
Methods and results diverged more widely in the med-

ical interpretation of the variant lists and correlation of
variants with the clinical presentations and the medical
literature. Nearly half of the teams rated their process to
determine pathogenicity as ‘manual’, while the mean
time per case was over 10 hours, underscoring the need
for standardized automated processes. Some teams have
made progress towards automating this process – e.g.,
Genomatix’s automated literature search tool; LitInspec-
tor [69] was noted by judges and other teams alike as
being best in class. Some teams mentioned a desire to
utilize such methods in their own pipelines. SimulCon-
sult was able to determine most variants with minimal
manual effort and less hours per case than average, pro-
viding a tremendous potential advantage in high through-
put clinical environments. The ability to automate the
genome–phenome correlations is a key capability that can
make the difference between an analysis that can become
part of clinical care and an analysis that is only practical in
a research setting of gene discovery.

Patient choice
Questions of patient preference and the responsibilities
of laboratories to return incidental findings are a contro-
versial and rapidly evolving area [70]. The team from
Iowa highlighted the importance of patient preferences
in defining the style of their reports. This represents an
open challenge to the medical community to decide
whether future reports should take into account patient
preferences or defer to a more paternalistic model of
clinically indicated disclosure. In terms of clinical reports
and return of results, finalists were more likely to have
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consent or explanatory materials, and have a plan for in-
cidental result return. Regardless, upon being surveyed,
there was general agreement amongst all teams that
clinical reports should be geared towards a clinical gen-
eticist, genetic counselor, or non-geneticist clinician.

Variability of detection power
The fact that only two teams identified all the likely causa-
tive mutations, despite using generally similar approaches,
demonstrates the need for consistency and rigor in ap-
proaches to variant interpretation. There is room for tun-
ing the tradeoffs in sensitivity, specificity and number of
etiologic hypotheses being tested that would benefit many
teams performing NGS interpretation. Currently, there is
little consensus on the thresholds used by various teams
to determine pathogenicity of potential disease-causing
variants. In some cases contestants explicitly excluded var-
iants as potentially causative due to the belief that they
were likely sequencing or variant-calling false positives or
benign variants that, although occurring naturally, are not
disease causing or not solely disease causing. Several
groups, for example, noted that in Family 3 the proband
carries multiple variants in the OBSCN gene, and that any
diagnosis based upon variants in this gene must therefore
be viewed cautiously.
The titin gene, TTN, presented a similar dilemma as

multiple potentially pathogenic variants were detected in
both Families 1 and 3. Nevertheless, successful teams rec-
ognized the probable causative nature of the TTN variants
in Family 1 based on the fact that one was a published
pathogenic change previously reported to cause dilated
cardiomyopathy [71] and the second mutation was pre-
dicted to alter splicing. The winning team also cited a con-
ference abstract, then available on the web [72] and now
published [23], describing a parallel study of a cohort of
patients with centronuclear myopathy with validated mu-
tations in the TTN gene. Thus, the ability to correlate gen-
omic results with emerging literature, almost in real time,
provided the determining factor between making the cor-
rect call or not, and highlights the potential power of
retrospectively revising reports as new research results be-
come available: i.e., the concept of ‘revisibility’.
The two GJB2 gene variants identified as causative for

sensorineural hearing loss for the proband in Family 1
had been clinically confirmed prior to the contest, but
were not disclosed to the participants, and therefore
served as a validated disease-causing variant set. Six
groups identified and reported these mutations as likely
responsible for the sensorineural hearing loss. The way
teams dealt with the reported hearing loss in Family 1 is
illustrative of variation in their understanding of the
clinical phenotypes, as well as their views on reporting
incidental findings. Two groups considered that the de-
fect was likely part of the myopathic phenotype, while
seven others considered the GJB2 mutations to be inci-
dental, and hence did not look for or report them, be-
cause, even though the audiometry results were detailed
in the clinical records, the hearing deficit was not listed
as part of the primary diagnosis.

Pre-test differential diagnosis is needed
Fourteen of 19 teams reported having a medical geneti-
cist on board and another included a physician partner,
but four teams among the non-finalists did not have a
medical expert. The fact that many teams did not appre-
ciate the significance of GJB2 mutations for Patient 1
suggests that additional detailed input from medical ex-
perts reviewing the clinical data would have been benefi-
cial, highlighting the need to have a clinician with
genetics expertise involved in preparing a carefully con-
sidered pre-test differential diagnosis.

Emergence of standard of care
Implied by the convergent methods across the leading
contestants is that there is a de facto consensus of experts
for interpretation of NGS. This represents a signal oppor-
tunity to codify and make this consensus explicit to ensure
the greater safety and accelerated commoditization of
NGS. Aspects that still need attention and further devel-
opment before becoming part of the standard of care in-
clude robust family-aware zygosity calling, coverage
estimation and reporting, splice site prediction and ana-
lysis, and automation of genome–phenome interpretation.
While there has been rapid progress in the develop-

ment and characterization of each of the individual com-
ponents of the analysis, interpretation, and reporting
pipeline, there is not yet a set of best practices that can
be applied to the entire ‘end-to-end’ process of genomic
measurement and interpretation. Genomic medicine will
require such consensus and standardization to achieve
widespread, routine, and reliable clinical use. While,
eventually, organizations such as the American College
of Medical Genetics and the College of American Pa-
thologists will promulgate standards to be used in the
management and accreditation of laboratories, it was the
intention of the CLARITY challenge to help identify the
emerging forerunners of such standards, and accelerate
their development. The general feedback among contes-
tants has been very positive and the stimulus for these
groups and the entire industry to generate more and bet-
ter tools and reports for molecular diagnosis has truly
been achieved, also clearly documented by the number
of participants.
In summary, the contest highlighted: a) the relative

uniformity of methods employed for alignment, variant
calling, and pathogenicity prediction; b) the need to con-
tinue developing publicly available reference genome da-
tabases; c) the need for more attention to coverage
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analysis and estimation of false negative rates for candi-
date genes; d) the need for greater attention to the de-
velopment of clear, concise clinical reports, with
common elements such as use of reference accession
numbers and genome builds, consistent criteria for def-
inition of pathogenicity (or degree of uncertainty); e) the
value of input from medical experts who could correlate
the reported phenotypic elements with the expanding lit-
erature on genes and gene function; and f) the importance
of clinical genetics expertise in identifying candidate fam-
ilies for testing. Given the labor-intensive nature of variant
analysis and clinical report generation, attention to auto-
mated genome–phenome analysis based on methods for
literature mining and curation, as well as variant assess-
ment, is a pressing need that will improve reproducibility
and scalability of genomic-level analyses in the future.

Materials and methods
Subject recruitment and informed consent
Probands with rare medical conditions of apparent, but
unknown, genetic etiology were identified through the
Manton Center for Orphan Disease Research and their
families were approached about participation in the con-
test. Every subject who provided clinical information and
DNA specimens for analysis first provided informed
consent through Protocol IRB-P00000167 under the
supervision of the Boston Children’s Hospital IRB. Under
the terms of this protocol, the distribution of the complete
genome and exome sequences was restricted to contest
organizers and qualified contestants, who all signed legal
agreements to protect the privacy of the participants and
pledges to return or destroy the sequences at the conclu-
sion of the contest. Because of the risk of detection of
incidental findings not related to the specific medical con-
ditions identified in the clinical descriptions, and the
fact that some participants might be publicly identified
through publicity related to the Challenge, the IRB pre-
cluded any possibility of public dissemination of the raw
genomic sequences. All clinical and molecular datasets
were de-identified prior to distribution to the contestants,
and any identifiers included in the contest entries and
additional files are pseudonyms or codes with no relation-
ships to the participants’ actual protected health informa-
tion as defined by the HIPAA Privacy Rule of the US
Department of Health and Human Services [73].

Contest judging
Contest entries were evaluated by an independent group
of six judges not affiliated with the contest organizers
(ISK, AHB and DMM). Judges represented a diverse
array of disciplines, including computer science and bio-
informatics (PN, DM Jr and PS), medical/human genet-
ics (J Majzoub and HFW), and clinical diagnostics (EL).
Judges were asked to evaluate all aspects of the entries,
but to pay particular attention to their areas of expertise.
Final selection of winners was achieved by consensus
among the six independent judges and was largely based
on evaluation of three main criteria:

1. What methods did each team use to analyze and
interpret the genome sequences?

2. Were the methods used efficient, scalable and replicable?
3. Was the interpretive report produced from genomic

sequencing understandable and clinically useful?

Although identification of the ‘correct’ likely causative
mutations for each family was considered, this was not an
overriding factor, especially in light of the fact that the
mutations for each family were not previously known and
in some cases the results remain uncertain and fall into
the realm of ongoing research. As it was, multiple genes
were listed as possibly causative for all families (25 for
Family 1, 42 for Family 2 and 29 for Family 3).

Post-contest data collection and analysis
After the finalists and winners were declared, all teams
were sent a packet including a structured survey of con-
testants’ methods and practices and copies of the win-
ning three teams’ entries. The purpose of the survey was
to provide uniformity in data for summarization and
allow for self-assessment of each team’s entries relative
to the winning entries. Of 23 groups that submitted con-
test entries, 21 (91%) returned the survey. A follow-up
survey in response to reviewers’ suggestions resulted in a
100% response rate for the 23 contestants. The complete
set of survey questions and aggregate responses are pro-
vided as Additional file 4. Statistical analyses were per-
formed using the computing environment R [74] and all
reported P values are from unpaired t-tests.

Additional files

Additional file 1: The complete entry from the Brigham and Woman’s
Team containing seven PDF files, six PNG image files, and one XLS table.

Additional file 2: The entry from the Genomatix/CeGaT/University
Hospital of Bonn team containing five PDF files and six XLS tables.

Additional file 3: The entry from the University of Iowa.

Additional file 4: Individual and aggregated results from questions
in the structured surveys of contestants’ practices. Responses are
broken down into separate sheets according to category as follows: PART
A: Consenting and explanatory materials for whole exome/genome
sequencing technology. PART B: About your summary clinical report.
PART C: Interpretive reports. PART D: Revisible reporting. PART E: Variant
identification. PART F: Data analysis. PART G: Validation of analytical tools.
PART H: Methods predicting variant pathogenicity. PART I: From variants
to phenotype. PART J: Overall impressions and team composition. PART
K: Follow-up questions, costs and sensitivity.
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