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Abstract

Background: Cell lineage-specific DNA methylation patterns distinguish normal human leukocyte subsets and can
be used to detect and quantify these subsets in peripheral blood. We have developed an approach that uses DNA
methylation to simultaneously quantify multiple leukocyte subsets, enabling investigation of immune modulations
in virtually any blood sample including archived samples previously precluded from such analysis. Here we assess
the performance characteristics and validity of this approach.

Results: Using Illumina Infinium HumanMethylation27 and VeraCode GoldenGate Methylation Assay microarrays, we
measure DNA methylation in leukocyte subsets purified from human whole blood and identify cell lineage-specific
DNA methylation signatures that distinguish human T cells, B cells, NK cells, monocytes, eosinophils, basophils and
neutrophils. We employ a bioinformatics-based approach to quantify these cell types in complex mixtures, including
whole blood, using DNA methylation at as few as 20 CpG loci. A reconstruction experiment confirms that the approach
could accurately measure the composition of mixtures of human blood leukocyte subsets. Applying the DNA methylation-
based approach to quantify the cellular components of human whole blood, we verify its accuracy by direct comparison to
gold standard immune quantification methods that utilize physical, optical and proteomic characteristics of the cells. We also
demonstrate that the approach is not affected by storage of blood samples, even under conditions prohibiting the use of
gold standard methods.

Conclusions: Cell mixture distributions within peripheral blood can be assessed accurately and reliably using DNA
methylation. Thus, precise immune cell differential estimates can be reconstructed using only DNA rather than whole cells.
Background
Different human cell types, defined by function and
morphology, are enumerated in complex mixtures using
a variety of physical, optical and proteomic characte-
ristics [1]. Recent work shows that lineage-specific
DNA methylation can also be used to distinguish different
types of cells [2-7]. Patterns of DNA methylation, occur-
ring at cytosine residues in the context of cytosine-
guanine (CpG) dinucleotides, are tightly associated with
chromatin conformation, which coordinates gene expres-
sion and reflects transcriptional programming of genes
[8,9]. During differentiation, somatic cell lineages undergo
de novo DNA methylation followed by maintenance
methylation [10], thereby establishing mitotically heritable,
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cell lineage-specific methylation signatures [11-14]. As a
result, patterns of DNA methylation serve as reliable indi-
cators of cell lineage and can be used as sensitive and spe-
cific biomarkers for diverse cell types [2-6,13,15,16]. This
suggests that DNA methylation can be used to simultan-
eously quantify multiple cell types in complex mixtures,
but more extensive validation is required before this ap-
proach can be considered a viable alternative to estab-
lished methods.
The immune system is a powerful model for investigat-

ing, developing and implementing new approaches to hu-
man cell detection and quantification. Blood is a complex
mixture of many different specialized cell types and the
composition of white blood cell (WBC, or leukocyte), pop-
ulations is well known to reflect disease states and toxicant
exposures [17-23]. Thus, the ability to detect an improper
balance of immune cells is valuable in both a clinical and
research setting. However, research aimed at further un-
derstanding immune cell level alterations is restricted by
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the limitations of immunodiagnostic methods. Routine
blood leukocyte identification is achieved using physical
cell isolation and the electrical impedance or optical light
scattering properties of the cells [24]. Fluorescently labeled
antibodies and flow cytometry are used to identify special-
ized cell subtypes, detecting proteins expressed at the
cell membrane (for example, CD4+ T cells [25]). These
methods rely upon intact cells, and therefore require fresh
samples and cannot be applied to older, archived blood
samples. Of course, it is now recognized that the expres-
sion of these cellular surface protein markers is controlled
epigenetically. In fact, normal leukocyte lineage-specific
differentiation is directed by differences in gene expression
associated with distinct patterns of DNA methylation, with
differentially methylated regions (DMRs) delineating dis-
tinct leukocyte subtypes [3-6,11,12,26].
We previously developed mathematical principles allow-

ing for simultaneous quantification of multiple different
immune cell subtypes in human blood using a reference
dataset consisting of DMRs for purified WBC subsets
[27]. That work quantified WBC subsets in simple mix-
tures, and used publicly available DNA methylation data
to illustrate the feasibility of the approach. Here, we identi-
fied additional reference DMRs used to assess expanded
numbers of leukocyte subsets, validated the approach with
multiple platforms, quantified WBC subsets in complex
mixtures emulating human blood, and compared the
method with the current gold standards for immune pro-
filing using human whole blood samples.
Table 1 Demographic characteristics of blood donors for
purified cells

Total, number 79

Age, mean (SD) 30 (9)

Weight (lbs), mean (SD) 181 (38)

Height (inches), mean (SD) 69 (3.7)

Gender

Male, number (%) 62 (78%)

Female, number (%) 15 (19%)

Unknown, number (%) 2 (3%)

Race

White, number (%) 32 (41%)

Hispanic, number (%) 12 (15%)

Black, number (%) 13 (16%)

Asian, number (%) 13 (16%)

Native American, number (%) 3 (4%)

Unknown/other, number (%) 6 (8%)

Tobacco smoking

Yes, number (%) 13 (16%)

No, number (%) 33 (42%)

Unknown, number (%) 33 (42%)
Results and discussion
Cell differential quantification using DNA methylation
Our goal was to use DNA methylation in order to detect
and quantify the proportions of human T cells, B cells,
natural killer (NK) cells, monocytes, basophils, eosino-
phils and neutrophils in any single blood sample. The
first step in achieving this goal was to establish a refer-
ence library of DNA methylation signatures that will
serve as biomarkers for those cell types. This was ac-
complished by using a microarray to assess DNA methy-
lation in WBC subsets that were purified from normal
(disease-free) human blood, thereby generating a refer-
ence dataset. To generate a target dataset, DNA methy-
lation at the same CpG loci as the reference data set
must be assessed in the target samples using the same
platform that was used to establish the reference library.
Then, the aforementioned cell types of interest are quan-
tified in the target samples by projecting their DNA
methylation profiles onto the mean methylation profiles
for the purified WBC types of interest from the refer-
ence dataset using quadratic programming, as previously
described [27]. Sample workflows are illustrated in
Figure S1 in Additional file 1.
DNA methylation distinguishes white blood cell subsets
We collected venous whole blood from 79 disease-free
human donors (Table 1) and isolated homogenous popu-
lations of the WBC types of interest using magnetic acti-
vated cell separation (MACS) with the purity confirmed
by fluorescence activated cell sorting (FACS; Figure S2
in Additional file 1). To minimize the impact of inter-
individual variation in the selection of loci, at least four
samples of each cell type were purified from different
donors with varied demographics, including age, gender
and ethnicity (Figure S3 in Additional file 1; Table 1). To
identify patterns of WBC lineage-specific DNA methyla-
tion, a subset of these purified cell samples were run on a
high-density methylation microarray (HDMA), the Infi-
nium HumanMethylation27 (Illumina Inc., San Diego, CA,
USA), which assessed DNA methylation at 27,578 CpG
loci in 14,495 genes throughout the human genome. Ap-
plying a linear mixed effects model to these data (with cell
type as the fixed effect and beadchip as the random effect)
revealed hundreds of CpG loci exhibiting lineage-specific
DNA methylation patterns that distinguish the WBC types
of interest (Additional file 2).
We wanted to select a panel of 96 CpG loci that work

well in concert for DNA methylation-based immune
profiling, so that we could place these loci on a custom
low-density DNA methylation microarray (LDMA), the
VeraCode GoldenGate Methylation Assay microarray
(Illumina Inc.), which would allow independent confirm-
ation of the HDMA results, and would lead to more
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efficient use of resources for the quantification of WBC
subsets in target samples. Therefore, we applied a bio-
informatic search algorithm that works in a stochastic
manner, substituting CpG loci and assessing the predictive
ability of the selected loci by analyzing the variance in
methylation across WBC types as designated in a contrast
matrix. A panel of 96 CpG loci were selected where DNA
methylation clearly distinguishes all of the WBC types of
interest, including B cells, T cells, NK cells, monocytes,
neutrophils, basophils and eosinophils, as indicated by un-
supervised hierarchical clustering of HDMA data for the
purified WBC subsets (Figure 1; Additional file 2). These
96 CpG loci were placed on the LDMA, which uses differ-
ent chemistry than the HDMA and therefore represents
an independent platform. Unsupervised hierarchical clus-
tering of LDMA data for the purified WBC subsets con-
firmed that DNA methylation at these loci clearly and
reliably distinguishes all of the WBC types of interest
(Figure 2).

Accurate prediction of purified WBC subset identities
using DNA methylation
To optimize the performance of the method using a mini-
mum number of CpG loci, we treated each (HDMA and
LDMA) dataset consisting of purified WBC DNA methyla-
tion profiles as a target dataset containing unknown
samples. Projection was performed using quadratic pro-
gramming to estimate the proportions of seven different
leukocyte subtypes, as continuous values ranging from 0%
to 100%, in each of the purified WBC subset samples using
methylation signatures from the corresponding HDMA
or LDMA reference library. This 'crosscheck' procedure
allowed us to optimize the method and improve efficiency
by identifying any problematic purified WBC subset sam-
ples in the reference set, and determining the minimum
number of CpG loci required for accurate leukocyte sub-
type detection and quantification. We found that only 34
CpG loci on the HDMA and 20 CpG loci on the LDMA
were required to accurately predict the identity of purified
WBC subset samples, as indicated by estimated propor-
tions of the correct cell types very close to 100%, and esti-
mated proportions of the incorrect cell types very close to
0% (Figures S4 and S5 in Additional file 1). For compari-
son, estimated WBC subtype proportions are also shown
in Figures S4 and S5 in Additional file 1 for mixtures of
WBC DNA in proportions found in human blood, and for
human whole blood samples. Permutation tests (10,000
permutations) indicated that the observed success rates in
prediction of purified WBC identities were significantly un-
likely to occur by chance (P < 0.0001 for both platforms).
The minimum sets of gene regions employed on each plat-
form are indicated in Additional file 2.
The disparity in the minimum number of loci required

on the two platforms is explained by the fact that fewer
purified WBC subset samples were run on the HDMA
(due to higher costs associated with that platform) and
more CpG loci were therefore needed to compensate. In
addition, this procedure revealed that CD16-CD56bright

'regulatory' NK cells should be eliminated from subse-
quent reference data sets, since this cell type was fre-
quently misclassified. These cells are not present in
significant numbers in the peripheral blood; they are pri-
marily found in lymphatic tissue. The purities of the
regulatory NK cell samples obtained from peripheral
blood were low according to FACS analysis (Figure S2I
in Additional file 1), providing one plausible explanation
for their consistent misclassification.

Accurate quantitative reconstruction of WBC subsets
using DNA methylation
We next sought to determine the efficacy of our method
for determining the range of peripheral blood leukocyte
populations in commonly encountered human health
conditions. In order to accomplish this, genomic DNA
extracted from five of the purified WBC subset samples
was combined in precise quantities that mimicked hu-
man blood found in patients exhibiting specific clinical
conditions, as well as in quantities emulating 'normal'
human blood in a typical individual (Table 2). We then
assessed DNA methylation in these DNA mixtures using
both the HDMA and LDMA platforms, and quantified
the five different WBC types in each mixture by per-
forming our projection via quadratic programming using
the appropriate reference data set, utilizing only the
minimum numbers of CpG loci established by the cross-
check procedure described above (34 or 20 loci). In all
of these samples on both platforms, the five WBC quan-
tities measured using DNA methylation were very close
to the expected values (Figure S6A in Additional file 1;
Figure 3A), providing strong evidence that this approach
is capable of determining the composition of leukocytes
in human peripheral blood.
Next, we directly compared our approach to gold stand-

ard methods of WBC quantification that are routinely ap-
plied to human peripheral blood. Venous whole blood was
collected from six different, disease-free, human donors
(Additional file 3) and was immediately subjected to three
different, well established immune profiling methods:
manual 5-part differential, complete blood count (CBC)
with automated 5-part differential, and FACS. Genomic
DNA was extracted from these six blood samples, and
DNA methylation was assessed using both the HDMA
and LDMA platforms. The appropriate WBC types were
quantified in each sample using DNA methylation by pro-
jection via quadratic programming using the correspond-
ing reference data set, utilizing only the minimum
numbers of CpG loci established by the crosscheck pro-
cedure described above (34 or 20 loci). For all samples on



Figure 1 DNA methylation signatures distinguishing normal human leukocyte subtypes on a high-density DNA methylation microarray.
Purified WBC subset samples are displayed in columns with cell type indicated at the bottom on the x-axis. Individual CpG loci are displayed in rows
with the gene containing each locus indicated to the right on the y-axis. Methylation values range from completely unmethylated (yellow) to completely
methylated (blue) as indicated in the key at the bottom left. Samples and loci are organized according to unsupervised, hierarchical clustering.
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both platforms, the quantities of WBC types of interest
measured by DNA methylation were highly correlated
with the established, gold standard methods of WBC
quantification (Figure 3B-D; Figure S6B-D in Additional
file 1). In fact, these results were similar to those observed
when comparing the three traditional methods to each
other (Figure S7 in Additional file 1).
To consider the differences between the 'expected'
values (that is, known WBC DNA amounts in the mix-
tures, or measurements obtained using gold standard
methods) and the 'observed' values (that is, estimates ob-
tained using DNA methylation), we constructed Bland-
Altman plots showing the difference between each pair
of values relative to the mean of these two values. We



Figure 2 DNA methylation signatures distinguishing normal human leukocyte subtypes on a custom, low-density DNA methylation
microarray. Purified WBC subset samples are displayed in columns with cell type indicated at the bottom on the x-axis. Individual CpG loci are displayed
in rows with the gene containing each locus indicated to the right on the y-axis. Methylation values range from completely unmethylated (yellow) to
completely methylated (blue) as indicated in the key at the bottom left. Samples and loci are organized according to unsupervised, hierarchical clustering.
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calculated the root-mean-square-error (RMSE) for each
pair of values that indicates the standard deviation in
model prediction error. This analysis was performed for
each pair of gold standard measurements. These results
indicate that the agreement between our approach and
each of the gold standard methods was excellent, and we
observed little evidence of systematic bias. The mean
differences between expected and observed values were
near zero, and RMSE values were generally around 3 to
4.3 percentage points (Figure S8 in Additional file 1).
These levels of uncertainty were similar to those seen
when agreement and RMSE were assessed between the
gold standard methods, though FACS and automated
differential values showed slightly better agreement than



Table 2 Proportions of DNA from purified cells combined
into mixtures that artificially reconstruct blood under
clinical conditions
Clinical condition T cells B cells NK cells Granulocytes Monocytes

Normal 20% 2.5% 1.5% 67% 9%

T-cell lymphopenia 1 6% 6% 5% 70.5% 12.5%

T-cell lymphopenia 2 2% 7% 6% 71.5% 13.5%

Granulocytosis 10% 0% 0% 90% 0%

Granulocytopenia 34.5% 17% 16% 9% 23.5%

B-cell lymphopenia 20.5% 0.5% 2% 67.5% 9.5%

Monocytosis 14% 0% 0% 61% 25%
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the others with a RMSE of about two percentage points
(Figure S9 in Additional file 1).
Interestingly, when optimized independently, the best

minimum sets of CpG loci were different on the two
platforms examined. There are several explanations for
this fact. First, a greater number of purified WBC refer-
ence samples were run in experiments using the LDMA.
Second, the chemistries of the two platforms were suffi-
ciently different that not all loci performed exactly the
same on the LDMA (GoldenGate technology) as they
did on the HDMA (Infinium technology). In fact, some
very meaningful CpG loci that were on the HDMA
could not be placed on the custom LDMA due to limita-
tions of the technology, and in some instances we used
nearby CpGs instead (for example, the CD3Z promoter).
Thus, some CpG loci that were excluded from the final
analyses are still biologically meaningful, but since DNA
methylation patterns at multiple CpG loci can signal the
same phenotype, not all of these loci are needed to obtain
accurate estimates of cell mixture proportions. Thus, dif-
ferent platform-specific optimal sets of cell lineage-
specific DMRs reflect the same biology. This suggests the
best panel of gene regions for a given platform should be
identified by a mixed strategy using mathematics com-
bined with curation based on biological knowledge, and
considering the chemistries of different platforms. Third,
even gold standard methods show differences in measure-
ments obtained using different platforms, so it is not sur-
prising to find some differences between independent
methylation platforms.

Storage conditions do not affect WBC estimates obtained
using DNA methylation
The stability of DNA suggests that our method can over-
come many limitations of previous WBC quantification
methods, since this novel approach does not require
fresh blood or an intact cell membrane. This implies that
our method should be applicable to samples that were
previously precluded from immunological assessment,
such as archived blood samples that have been stored in
hospitals and laboratories, or blood samples that were
collected in an anticoagulant that is not compatible with
a particular method. We sought to verify that blood anti-
coagulant and storage temperatures do not alter WBC
quantification by DNA methylation. Each of the six ven-
ous whole blood samples from disease-free human do-
nors was collected into three different anticoagulants:
citrate, heparin and EDTA. A portion of each of these
samples was used for DNA extraction (that is, using
fresh blood) and the remainder was then divided into
three aliquots that were stored at room temperature, 4°C
or -80°C for at least 24 hours prior to DNA extraction
(Figure S10 in Additional file 1). All of these DNA sam-
ples were then run on the LDMA platform to assess
DNA methylation, generating a target data set to con-
sider the effects of blood storage conditions. All seven
WBC types of interest were quantified in each of these tar-
get samples by performing our projection via quadratic
programming using the LDMA reference set, utilizing
only the minimum number of 20 CpG loci established by
the crosscheck procedure described above. Results indi-
cated that the storage conditions examined did not alter
WBC subset quantities measured in human blood by
DNA methylation (Figure 4).

Conclusions
Because our DNA methylation-based approach is robust
across platforms, highly correlated with widely utilized
gold standard methods and independent of blood collec-
tion and storage conditions, it will enable immune profil-
ing to be performed in a wide variety of samples that were
previously precluded from immunological assessment.
Such profiling includes archived blood samples from large
epidemiologic studies allowing investigators to account for
shifts in normal immune cell distributions [28,29].
The current work is sufficient to validate the method

for these research applications and it indicates that the
method’s dynamic range of sensitivity is within a reason-
able scale to warrant further consideration as having
clinical utility. This method may serve as a reliable alter-
native to the accepted reference standard of manual dif-
ferential, as well as the automated differential, and even
FACS-based analysis. It will be necessary to confirm that
lineage-specific DMRs are consistent across ages, ethnic-
ities and genders in these applications. However, recently
Koestler et al. [30] reported that DNA methylation-based
prediction of leukocyte subset profiles was not biased
by demographic factors. This suggests that fundamental
leukocyte epigenetic programming is consistent between
individuals with different demographic characteristics.
Looking ahead we envision that DNA methylation-based

approaches might be used to differentiate and enumerate
any type of lineage-stable human cells within complex mix-
tures. This presents an unprecedented opportunity for the
development of a new generation of methods for cellular



Figure 3 Quantitative reconstruction of leukocyte subsets using a custom, low density DNA methylation microarray. In all panels, the
x-axis indicates the quantities of specific WBC subsets determined using DNA methylation. Cell type is indicated by color and sample type is indicated
by shape of the point, as described in the inset legends. Lines are drawn from the origin with a slope of one indicating ideal correspondence between
the displayed values in each panel. (A) DNA from purified WBC subsets was combined in quantities mimicking human blood under clinical conditions.
The expected quantity of each cell type is indicated by the y-axis. (B-D) Whole blood samples from disease-free human donors subjected to WBC subset
quantification by established methods. Results of the established methods are shown on the y-axis and include manual 5-part differential (B), automated
5-part differential (C) and FACS (D).
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quantification that exploits the human methylome; sup-
porting the feasibility of 'molecular' histology. Using the im-
mune system as a model, we have created a paradigm for
the mapping of cell-specific DNA methylation signatures in
order to generate reference libraries of efficacious bio-
markers that distinguish different cell types. Moreover,
we have established powerful computational tools to
quantitatively reconstruct the precise makeup of cellular
mixtures. In the past, simultaneous quantification of nor-
mal or disease-associated changes in cell population com-
position has been accomplished using flow cytometry,
electrical impedance, light scatter and/or immunohisto-
chemistry. This can require large volumes of fresh blood or
tissue, and, for flow cytometry, can involve laborious



Figure 4 Comparisons of DNA methylation-based immune cell quantification (using the LDMA) for different blood anticoagulants and
storage conditions. All blood samples were from disease-free human donors. Lines are drawn from the origin with a slope of one indicating
ideal correspondence between the displayed values in each panel. In all panels, cell type is indicated by color and shape of the point indicates
(A) blood anticoagulant or (B-D) storage condition in the same blood anticoagulant, including heparin (B), EDTA (C), and citrate (D).
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antibody tagging [31,32]. In contrast, our approach is high-
throughput and entails simple, convenient DNA analysis
techniques that can easily be automated to facilitate rapid
quantitative reconstruction of cell subsets.

Materials and methods
Figure S1 in Additional file 1 summarizes the workflow
carried out for all samples, derived from human whole
blood, that were utilized in this work. Blood was obtained
through an institutional review board-approved donor pro-
gram at AllCells, LLC (Alameda, CA, USA) and research
was carried out in accordance with the Helsinki declar-
ation. Samples were de-identified and randomized prior to
sodium bisulfite conversion and subsequent DNA methyla-
tion interrogation; thus, researchers were blind to specific
sample identities. Data for all DNA methylation microarray
experiments are available on NCBI’s Gene Expression
Omnibus (GEO), in accordance with MIAME, under ac-
cession numbers GSE39981 (HDMA for purified leukocyte
subtypes), GSE54647 (LDMA for purified leukocyte sub-
types, artificial bloods, and whole bloods) and GSE54670
(HDMA for artificial bloods and whole bloods).

Purified leukocyte subtypes
Venous whole blood samples were collected from
79 disease-free human donors whose demographic
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characteristics are shown in Table 1. Each of these sam-
ples was used to obtain a homogenous population of
one specific type of leukocyte, which was purified by
MACS, a method of cell separation that utilizes antibody-
conjugated magnetic microbeads, using a combination of
positive and negative selection protocols (Miltenyi Biotec
Inc., Auburn, CA, USA). All 79 purified cell samples had
their purity confirmed by FACS. Representative FACS re-
sults for all 15 of the sample types are shown in Figure S2
in Additional file 1. The hierarchical relationship bet-
ween all of the different populations of MACS purified
leukocyte subtypes, as well as the number of replicate
samples for each cell type, is illustrated in Figure S3 in
Additional file 1.

Conventionally profiled whole bloods
Six additional venous whole blood samples were collected
from different disease-free human donors whose demo-
graphic characteristics are summarized in Additional file 3.
The workflow for these samples is illustrated in Figure S10
in Additional file 1. Each of the six whole blood samples
was first divided into three aliquots, each containing a dif-
ferent anticoagulant: heparin, citrate or EDTA. For each
blood sample, portions of the aliquot in heparin were used
to perform conventional immune profiling methods, in-
cluding flow cytometry (described below), manual 5-part
white blood cell differential and CBC with automated
5-part white blood cell differential. Another portion of this
aliquot for each sample was subjected to methylation as-
sessment on the HDMA (described in detail below). A por-
tion of all three aliquots for each blood sample was
also subjected to methylation assessment on the LDMA
(described in detail below) without being stored overnight.
The remainder of these three aliquots for each of the six
blood samples was divided into three more aliquots, each
to be stored overnight at a different temperature (room
temperature, 4°C, and -80°C) prior to methylation assess-
ment on the HDMA.

Differential leukocyte counts
Manual WBC counts were performed according to
established standards [33,34] and automated WBC
counts were performed using the XE-5000™ Automated
Hematology System (Sysmex America, Inc., Mundelein,
IL, USA) according to the manufacturer's instructions.
Cell types that were enumerated included total WBC,
lymphocytes, monocytes, neutrophils, basophils and
eosinophils.

Fluorescence activated cell sorting of leukocyte subsets
Blood samples were directly stained for cell surface markers,
and incubated for 20 minutes in the dark at 4°C. All anti-
bodies used were purchased from eBioscience, Inc. (San
Diego, CA, USA). Each blood sample was split into two
aliquots. In the first aliquot cells were stained with: anti-
human CD3e FITC (catalog number 11-0039-41), anti-
human CD4 APC-eFluor 780 (catalog number 47-0049-41),
anti-human CD8a 605NC (catalog number 93-0088-41),
anti-human CD16 PE-Cy7 (catalog number 25-0168-
41), anti-human CD25 APC (catalog number 17-0259-41),
anti-human CD45 PerCP-Cy5.5 (catalog number 45-9459-
41), anti-human CD56 PE (catalog number 12-0567-41),
and anti-human CD127 eFluor 127 (catalog number 48-
1278-41) to analyze T cells, NKT cells, and NK cells. In
the second aliquot, cells were stained with: anti-human
CD14 FITC (catalog number 11-0149-41), anti-human
CD15 eFluor 450 (catalog number 48-0159-41), anti-
human CD16 PE-Cy-7, anti-human CD19 APC-eFluor
780 (catalog number 47-0199-41), anti-human CD45
PerCP-Cy5.5, and anti-human CD123 PE (catalog number
12-1239-41) to analyze B cells, monocytes, and granulo-
cytes (neutrophils, eosinophils, and basophils).
Unstained, isotype, and fluorescence-minus-one (FMO)

controls were used to determine sample gating and back-
ground. Individual compensation controls were used in
each sample run. CountBright counting beads (Invitrogen,
catalog number C36950) were added for cell quantifica-
tion. Acquisition was performed within 12 hours of blood
draw on the FACSAria III flow cytometer (Becton Dickinson,
Franklin Lakes, NJ, USA) using FACSDiva Software (Becton
Dickinson). An acquisition limit of 10,000 events was used
on the monocyte gate, using a forward scatter (FSC) versus
side scatter (SSC) dot plot, for each aliquot. Final data
analysis and presentation of results was done using Flowjo
software (TreeStar, Inc., Ashland, OR, USA).
The following outlines the cell types and detection pa-

rameters. Lymphocytes: low SSC and low FSC; B cells:
CD45+ and CD19+; T cells: CD45+ and CD3+ anti-
bodies; helper T cells (Th): CD3+ and CD4+; regulatory
T cells (Tregs): CD3+ and CD4+ and CD25+ and
FOXP3+; cytotoxic T cells (Tc): CD3+ and CD8+; NK T
cells (NKT): CD3+ and C56+; NK cells: CD3- and CD56+;
effector NK cells: CD3- and CD16+ and CD56 dim (that
is, lower level); regulatory NK cells: CD3- and CD16- and
CD56 bright (that is, higher level); CD8+ NK cells: CD3-
and CD8+ and CD56+ antibodies; CD8- NK cells: CD3-
and CD8- and CD56+; granulocytes: high SSC and high
FSC; eosinophils: CD44+ and high SSC and high FSC; ba-
sophils: CD123+ and high SSC and high FSC; neutrophils:
CD15+ and CD16+ and high SSC and high FSC; mono-
cytes: low SSC and high FSC and CD14 + .

DNA extraction
Genomic DNA was extracted and purified from whole
blood and from MACS purified leukocyte samples using
AllPrep DNA/RNA/Protein Mini Kit (QIAGEN, Valencia,
CA, USA, catalog number 8004) or DNeasy blood and
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tissue kit (QIAGEN, Cat No. 69506) according to the
manufacturer’s protocol. DNA was then quantified by
NanoDrop ND-1000 Spectrophotometer (NanoDrop Tech-
nologies, Inc., Wilmington, DE, USA). Some samples were
then further purified using the DNA Clean and Concentrator
according to the manufacturer’s protocol (ZYMO Research
Corp., Irvine, CA, USA, catalog number D4004). Samples
were kept at 4°C for short-term storage or at -20°C for long-
term storage.

Artificial blood samples
Genomic DNA from five of the purified leukocyte sam-
ples was combined in quantities that mimicked human
blood under seven clinical conditions (Table 2). DNA
was mixed thoroughly and stored briefly at 4°C prior
to analysis.

Sodium bisulfite conversion
Genomic DNA from the six conventionally profiled
whole blood samples, genomic DNA from the 79 puri-
fied leukocyte samples, and DNA mixtures in the seven
artificial blood samples were first randomized, then
treated with sodium bisulfite using ZYMO EZ-96 DNA
Methylation Kit (ZYMO Research Corp., catalog number
D5004), and then stored at -80°C until needed. This en-
ables assessment of DNA methylation by converting
unmethylated cytosine residues to uracil.

High-density DNA methylation microarray
To explore patterns of cell lineage-specific DNA methy-
lation and examine the viability of our mathematical
models, we ran 46 of the purified leukocyte DNA sam-
ples on the Infinium® HumanMethylation27 Beadchip
microarray and six of the artificial blood reconstruction
samples (excluding T-cell lymphopenia 1), and the six con-
ventionally profiled whole blood samples on the Infinium®
HumanMethylation450 Beadchip microarray (Illumina Inc.).
These platforms quantify the methylation status of 27,578
CpG loci, and 485,577 CpG loci, respectively. The ratio of
fluorescent signals is computed from both alleles using the
following equation:

β ¼ max M; 0ð Þð Þ= Uj j þ Mj jð Þ þ 100

The resultant β-value is a continuous variable ranging
from 0 (unmethylated) to 1 (completely methylated) that
represents the methylation at each CpG site and is used
in subsequent statistical analyses. Data were assembled
with the methylation module of GenomeStudio software
without normalization (Illumina, Inc.) [35].
Following the crosscheck optimization procedure, a

minimum number of 34 CpG loci were selected to es-
tablish DNA methylation signatures for the HDMA ref-
erence library. These loci were found in the following
genes: CLEC9A (2 loci), INPP5D, INHBE, UNQ473,
SLC7A11, ZNF22, XYLB, HDC, RGR, SLCO2B1, C1orf54,
TM4SF19, IGSF6, KRTHA6, CCL21, SLC11A1, FGD2,
TCL1A, MGMT, CD19, LILRB4, VPREB3, FLJ10379,
HLA-DOB, EPS8L3, SHANK1, CD3D (2 loci), CHRNA3,
CD3G (2 loci), RARA, GRASP.

Low-density DNA methylation microarray
To thoroughly validate our DNA methylation-based ap-
proach to immune profiling, we ran all 79 purified
leukocyte samples, all seven artificial blood reconstruc-
tion samples, and all 72 samples of the six convention-
ally profiled whole blood samples (each stored under 12
different conditions) on the VeraCode® custom Golden-
Gate® Methylation assay (GGMA). This assay uses a
four-probe design to differentiate between methylated
and unmethylated sequences for a custom panel of 96
different CpG loci. This process involves generation of
DNA targets through allele-specific amplification using
universal primers, and hybridization to a bead array at
sites bearing complementary address sequences. The hy-
bridized targets contain a fluorescent label denoting a
methylated or unmethylated state for a given locus.
Methylation status of each interrogated CpG site is cal-
culated as the ratio of fluorescent signal from one allele
relative to the sum of both methylated and unmethy-
lated alleles, thereby generating a β-value ranging from 0
(unmethylated) to 1 (fully methylated). Several different
control types ensure data quality. Each bead type is rep-
resented with an average 30-fold redundancy. Data were
assembled with the methylation module of GenomeStu-
dio software (Illumina, Inc.) without normalization.
Following the crosscheck optimization procedure, a

minimum number of 20 CpG loci were selected to estab-
lish DNA methylation signatures for the LDMA reference
library. These loci were found in the following genes:
FGD2, HLA-DOB, BLK, IGSF6, CLDN15, SFT2D3,
ZNF22, CEL, HDC, GSG1, FCN1, OSBPL5, LDB2,
NCR1, EPS8L3, CD3D, PPP6C, CD3G, TXK, FAIM.

Statistical methods
All statistical analyses were performed using the R statis-
tical platform [36] and code is provided in Additional file 4.

Identification of cell lineage-specific methylation
To identify DNA methylation signatures that represent
biomarkers of leukocyte subtypes, we applied a linear
mixed effects (LME) model to the purified leukocyte
HDMA data with cell type designated as the fixed effect
and beadchip as the random effect (controlling for plate
effects). This generated F-statistics for every CpG on the
array indicating how well differential methylation at that
locus distinguishes seven different leukocyte lineages: T
cells, B cells, NK cells, monocytes, eosinophils, basophils,
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and neutrophils. This also generated seven coefficients for
each CpG indicating directionality and intensity of differ-
ential methylation at that locus for the cell types.

Selection of CpG panel for immune profiling
Using the LME results, we implemented a stochastic
search algorithm to determine the best combination of
putative DMRs to use for the simultaneous assessment
of T cells, B cells, NK cells, monocytes and granulocytes
in a human blood sample. This algorithm assesses the
predictive ability of a selected panel of CpG loci by ana-
lyzing the variance in methylation across cell types as
designated in a contrast matrix. If substitution of a ran-
domly selected locus for one of the loci in the panel im-
proves the predictive ability, the substitution is accepted
and the new locus replaces the old in the panel. We im-
plemented this search algorithm for 50,000 iterations
starting from 10 different random number seeds in three
stages: first starting with the top 500 F-statistics, then
the top 500 absolute effect sizes (based on the LME co-
efficients), and then the top 500 from the first two
stages. The stochastic search algorithm was then imple-
mented one more time, starting from the top 96 from
the final stage above until the acceptance rate for substi-
tutions definitively dropped to zero.

DNA methylation-based cell quantification
To estimate cell mixtures by DNA methylation marks,
we employ a constrained projection, wherein a DNA
methylation profile from a target profile is projected
onto mean methylation profiles for isolated cell types,
subject to the constraint that the projection values (esti-
mated mixing weights) are greater than or equal to zero
and sum to less than one. The mean values are obtained
from a reference library of DNA methylation signatures,
and the projection is implemented via quadratic pro-
gramming [37,38]. Details of this algorithm have previ-
ously been described [27].

Significance, correlation and error
To determine the probability of obtaining the observed
success rates in predicting purified WBC subtype iden-
tities by chance using the crosscheck procedure displayed
in Figures S4 and S5 in Additional file 1, we used the
broadly defined cell type categories (monocyte, eosinophil,
basophile, neutrophil, T cell, B cell and NK cell) as the
'true' category label, and calculated the sum of the pre-
dicted fractions that were correctly categorized within
these broad types. This was the observed test statistic. For
each permutation we shuffled the labels with respect to
the samples and calculated the same statistic to obtain the
permutation (null) distribution for the same statistic. Pearson
correlations were calculated between expected and observed
(or a given pair of observed) measurements of WBC subtype
quantities in the cell mixtures and the human whole blood
samples. RMSE values were calculated using the hydroGOF
package via the following formula: sqrt(Mean((Expected -
Observed)2).

Microarray data
Microarray data have been deposited on NCBI’s Gene Ex-
pression Omnibus in accordance with MIAME under ac-
cession numbers GSE39981, GSE54647 and GSE54670.

Additional files

Additional file 1: All supplementary figures referenced in this
manuscript.

Additional file 2: Table S1. Which shows the results of the LME model
applied to purified WBC HDMA data for the 96 gene regions placed on
the LDMA, along with other annotations for the gene regions, including
which regions were selected for final analyses using each platform.

Additional file 3: Table S2. Which displays the demographic characteristics
of the six disease-free human donors who provided whole blood samples for
comparison to established methods of cell quantification and consideration of
blood storage conditions.

Additional file 4: R code used to perform statistical analyses.
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