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Abstract

Background: RNA-binding proteins (RBPs) mediate mRNA biogenesis, translation and decay. We recently developed
an approach to profile transcriptome-wide RBP contacts on polyadenylated transcripts by next-generation
sequencing. A comparison of such profiles from different biological conditions has the power to unravel
dynamic changes in protein-contacted cis-regulatory mRNA regions without a priori knowledge of the
regulatory protein component.

Results: We compared protein occupancy profiles of polyadenylated transcripts in MCF7 and HEK293 cells. Briefly,
we developed a bioinformatics workflow to identify differential crosslinking sites in cDNA reads of 4-thiouridine
crosslinked polyadenylated RNA samples. We identified 30,000 differential crosslinking sites between MCF7 and
HEK293 cells at an estimated false discovery rate of 10%. 73% of all reported differential protein-RNA contact sites
cannot be explained by local changes in exon usage as indicated by complementary RNA-seq data. The majority
of differentially crosslinked positions are located in 3′ UTRs, show distinct secondary-structure characteristics and
overlap with binding sites of known RBPs, such as ELAVL1. Importantly, mRNA transcripts with the most
significant occupancy changes show elongated mRNA half-lives in MCF7 cells.

Conclusions: We present a global comparison of protein occupancy profiles from different cell types, and
provide evidence for altered mRNA metabolism as a result of differential protein-RNA contacts. Additionally, we
introduce POPPI, a bioinformatics workflow for the analysis of protein occupancy profiling experiments. Our work
demonstrates the value of protein occupancy profiling for assessing cis-regulatory RNA sequence space and its
dynamics in growth, development and disease.
Background
Posttranscriptional regulation has emerged as a key fac-
tor in controlling eukaryotic gene expression by affecting
virtually every aspect of RNA metabolism. RNA-binding
proteins (RBPs) associate with their target mRNAs and
form messenger ribonucleoprotein (mRNP) complexes
that guide the processing of pre-mRNA into mature
transcripts, control their nuclear export and finally regu-
late translation rates and decay [1]. Importantly, such
RNA-RNP associations are subject to highly dynamic re-
arrangements and modifications that occur during the
life cycle of an RNA molecule, resulting in a highly
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complex spatial and temporal dependent mRNP network.
To date, more than 800 proteins with RNA-binding func-
tions have been identified in mammalian cell lines [2,3].
Different combinations of RNA-binding domains, which in
isolation typically bind short, single-stranded nucleotide se-
quences, determine binding of RBPs to their target tran-
scripts. However, the modular design of most RBPs allows
them to recognize more complex RNA sequence and/or
structural elements [4-6]. In order to increase our under-
standing of how these RNA binding domains work to-
gether to orchestrate binding of RBPs to defined sequence
elements, it is essential to globally identify and characterize
their binding preferences and target regions. Recent ad-
vances in experimental and computational methods have
facilitated transcriptome-wide mapping of RBP interaction
sites on RNA. At their forefront are several UV crosslink-
ing and immunoprecipitation (CLIP) approaches that make
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use of next-generation sequencing to identify individual
RBP binding sites at single nucleotide resolution [7-10]. An
adaptation of the original CLIP procedure [11] is photoac-
tivatable ribonucleoside-enhanced CLIP (PAR-CLIP) [8],
which has successfully been used to characterize binding
preferences of an increasing number of RBPs (reviewed in
[12,13]).
In this context we recently developed a method to

display transcriptome-wide the contacts of the mRNA-
bound proteome on polyadenylated RNA by next-generation
sequencing [2,14]. Briefly, our approach, termed ‘pro-
tein occupancy profiling’, relies on the metabolic labeling
of nascent RNA with the photoactivatable ribonucleoside
analog 4-thiouridine (4SU; Figure 1A). Irradiation of cells
with UV light at 365 nm efficiently crosslinks RBPs to
4SU-labeled target mRNAs. Crosslinked protein-RNA
complexes are isolated by oligo(dT) affinity purification
and ribonuclease treated to generate protein-bound RNA
fragments. Protected RNA fragments are cleared from free
RNA and subjected to small RNA cloning procedures,
followed by Illumina sequencing. Similar to the PAR-CLIP
approach, protein occupancy profiling yields diagnostic
cDNA mutations at sites of direct protein-RNA contacts
(for example, thymine to cytosine in case of 4SU labeling,
Figure 1 Design of protein occupancy profiling experiments and diffe
experimental approach of protein occupancy profiling on RNA. Photoreact
Protein-RNA complexes are crosslinked with low-energy UV light (365 nm).
affinity purification and RNAse I treated. Protein protected RNA fragments a
sequencing. (B) Overview of the differential T-C transition normalization an
filtering criteria, initial normalization shifts T-C transition counts for all replic
differences that might arise from variations in sequencing depth or mRNA
Subsequently, a negative binomial testing scheme is used to identify positi
coding sequence.
hereafter named T-C transitions). These diagnostic transi-
tions allow position-specific identification of crosslinked
uridines, which was shown to be beneficial for data ana-
lysis and understanding of underlying regulatory depend-
encies [8,15]. Protein occupancy profiling has successfully
been applied to reveal the RBP-bound sequence landscape
of human embryonic kidney (HEK) 293 cells, providing a
transcriptome-wide catalogue of potential cis-regulatory
mRNA regions [2].
We compare protein occupancy profiles of MCF7 and

HEK293 cells to pinpoint changes in protein-contacted
regions of polyadenylated RNA, which potentially consti-
tute functional cis-regulatory elements. To globally map
regions of local differences in protein occupancy, we
adapted count-based methods that are frequently used
in differential gene expression analysis for comparison of
T-C transitions (Figure 1B). Our approach is based on a
per-transcript normalization to minimize the impact of
differential expression on the identification of differential
occupancy. Following stringent filtering, we obtained
thousands of crosslinked RNA regions, which likely re-
flect differences in RBP-binding to individual transcript
regions with potential functional consequences. Strikingly,
these differentially contacted regions overlap significantly
rential occupancy analysis. (A) Schematic representation of the
ive ribonucleosides are incorporated into newly synthesized RNA.
Crosslinked polyadenylated transcripts are captured by oligo(dT)
re subsequently subjected to small RNA cloning and Illumina
d statistical testing scheme. For each annotated transcript that passed
ates of the two conditions to the same distributions, thereby removing
expression levels of that particular gene (indicated in light blue).
ons with significantly increased or decreased protein occupancy. CDS,
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with experimentally determined RBP binding sites and re-
veal a correlation of differential protein occupancy with
changes in mRNA half-lives between the two cell lines. All
necessary analysis steps for differential occupancy profil-
ing experiments have been implemented in a computa-
tional workflow, the protein occupancy profiling pipeline
(POPPI), and can be utilized by other researchers to
analyze other profiling data sets.

Results
Protein occupancy profiling in MCF7 cells
In our previous work we profiled protein occupancy on
polyadenylated RNA in HEK293 cells [2]. To globally
assess differences in protein-RNA contacts across differ-
ent cell types and understand their impact on RNA me-
tabolism, we performed protein occupancy profiling in
MCF7 cells. MCF7 cells are estrogen receptor-positive
mammary epithelial adenocarcinoma cells, which are
widely used as a cell culture-based breast cancer model
[16-19]. Following our original study, we generated two
biological replicate protein occupancy libraries from
4SU-labeled MCF7 cells, which were crosslinked using
365 nm UV light. Crosslinked protein-RNA complexes
were purified using oligo(dT) beads and RNase I was
used to reduce the protein-crosslinked RNA fragments
to a length of about 20 to 60 nucleotides. Following
RNase treatment, mRNP complexes were precipitated
using ammonium sulfate and blotted onto nitrocellulose
to remove non-crosslinked RNA. Proteinase K treatment
was used to release protein-protected RNA fragments.
Recovered RNA was ligated to cloning adapters, reverse
transcribed and resulting cDNA libraries were Illumina
sequenced (Additional file 1).
We mapped the pre-processed sequence reads against

the human NCBI36 (hg18) reference genome with
TopHat2 [20] (Additional file 1). Reads were assigned to
genes using RefSeq gene models, which were downloaded
from the UCSC genome browser [21,22]. We observed a
high fraction of sequence reads with diagnostic T-C
transitions (53 to 70%) in both replicate experiments,
which indicates efficient crosslinking of 4SU-labeled
RNA to proteins (Figure 2A,B). Following the describ-
ed procedure, we observed that most reads mapped
to protein coding transcripts (88.3% on average),
while only a small fraction mapped to other RNA types
(Figure 2C,D; Figure S1A,B in Additional file 2). We
subsequently generated a consensus protein occupancy
profile by using the mean number of T-C transitions as
well as the mean read coverage per nucleotide position.
The consensus occupancy profile of MCF7 cells is pub-
licly available [23]. Figure 2E,F shows the T-C transition
profile indicating the protein-RNA contacts on MYC
mRNA transcript as well as a zoom into the 3′ UTR of
cyclin D1 (CCND1). Both transcripts encode promi-
nent oncogenes implicated in various cancers, including
mammary adenocarcinoma [24].

Comparing gene expression and protein occupancy
profiles in MCF7 and HEK293 cells
To estimate the similarity between two protein occupancy
profiles, we computed a per-gene Spearman rank correl-
ation coefficient based on a sliding window approach over
the entire transcript. The median correlation over all
protein-coding transcripts indicated that the two MCF7
replicates showed slightly more variability compared to
the HEK293 replicates (average rank correlation coeffi-
cient of 0.526 compared to 0.687 in HEK293). However,
the profiles from different cell types were clearly distin-
guishable (Figure 3A).
Next, we assessed read coverage distributions in differ-

ent transcript regions and found that coding sequences
(CDSs) and 3′ UTRs were occupied to almost the same
extent in MCF7 cells (Figure 3B, top). We obtained a
similar result in HEK293 cells, yet observed a slightly
lower fraction of occupancy reads mapping to 3′ UTRs.
Both cell lines showed similar patterns in the relative po-
sitioning of T-C transitions over distinct transcript re-
gions (Figure 3C top, average Pearson correlation
coefficient of 0.858). Similar results were obtained for a
comparison of read coverage instead of T-C transitions
(Figure S2 in Additional file 2; average Pearson correl-
ation coefficient of 0.884).
To assess the influence of mRNA expression on occu-

pancy profiles, we performed next-generation sequen-
cing of poly(A) + RNA (mRNA-seq) from MCF7 cells
in triplicates. Similarly, two replicate mRNA-seq data
sets were generated for HEK293 cells. As expected, rep-
licates from the same cell type showed higher correlation
(Figure S3 in Additional file 2). Moreover, we found high
agreement in the fraction of reads mapping to different
transcript regions in both cell types (Figure 3B, bottom).
This is also true for the coverage signal along transcripts
(Figure 3C, bottom). We compared read coverage distri-
butions from mRNA-seq and protein occupancy profil-
ing data and observed an increase in the fraction of
reads mapping to 3′ UTRs in protein occupancy profiles
relative to mRNA-seq data. Subsequently, we quantified
the correlation of protein occupancy profile and mRNA-
seq read coverage by computing Pearson correlation co-
efficients for the data averaged over all transcripts as
shown in Figure 3C and obtained 0.847 and 0.703 for
MCF7 and HEK293 cells, respectively. We then investi-
gated whether read coverage from mRNA-seq data cor-
relates with read coverage from protein occupancy also
on a per-transcript basis. In other words, how much of
the variance in protein occupancy profile read coverage
can be explained by mRNA-seq read coverage. We com-
pared protein occupancy with mRNA-seq data for every
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Figure 2 Protein occupancy profiling in MCF7 cells. (A, B) Nucleotide mismatches in read mappings for both MCF7 replicate experiments.
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transcript by a linear regression approach [25] and av-
eraged over replicates (Figure S4 in Additional file 2).
While the explained variance ranged from 0.007% to
94.1% for individual transcripts, its overall mean fraction
was found to be between 6.7% and 12.1% and 8.9% and
9.4% for MCF7 and HEK293 cells, respectively. This in-
dicates that protein occupancy profiles for individual
transcripts cannot be inferred from mRNA-seq data. We
next employed a less locally constrained approach and
computed gene-wise fold changes between MCF7 and
HEK293 data. A comparison of log2 fold changes de-
rived from protein occupancy profiling and expression
data yielded a correlation coefficient of 0.44 (Figure 3D).
Taken together, despite a general correlation between
averaged occupancy signal and expression read coverage,
our results indicate that only a moderate correla-
tion can be found on a per-transcript level. Therefore,
mRNA-seq data are not sufficient to explain differences
between the two cell lines with regard to the T-C transi-
tion signature as a proxy of protein occupancy.

Differential protein occupancy profiling based on T-C
transition counts
Thus far, we described the analysis of individual occu-
pancy profiling experiments. To identify regions that ex-
hibit differential protein contacts across experimental
conditions, we subsequently focused on detecting local
changes in protein occupancy. In this context, we devel-
oped a bioinformatics workflow to detect significant
positional differences in T-C transition event counts of
individual transcripts. We choose an approach highly
similar to the discovery of differentially expressed genes
based on read counts: counts from a small number of
replicates are compared and positions that show signifi-
cant count differences across conditions are identified.
More specifically, we use established statistical methods
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[26] as realized in the R package edgeR [27]. Using
edgeR, T-C transition count data are modeled by a nega-
tive binomial distribution Yps ~NB(Lsapc,Φp), with Ls
being the total number of T-C transition event counts
per sample s (after trimmed mean of M-values (TMM)
normalization), Φp being the normalization factor
(termed dispersion) and apc being the relative abundance
of T-C transitions at position p in replicates of condition
c, which sample s belongs to. Importantly, instead of
performing the initial per-sample normalization and
computing dispersion factors over all tested genomic po-
sitions at once (as in differential gene expression ana-
lysis), we compute the normalization as well as the
sample- and tag-wise dispersion for each transcript indi-
vidually. As a result, we normalize for global shifts in
T-C transition count base levels that might result from
technical variation such as different sequencing depth.
In addition, a transcript-wise normalization adjusts for
expected changes in T-C transition counts that result
from changes in overall mRNA expression, which would
otherwise be interpreted as differential occupancy (a
graphical description of the normalization approach is
shown in Figure 1B). Transcripts with low numbers of
T-C transitions are removed from our analysis by con-
servative filtering to prevent false positive identification
(see Materials and methods for a detailed description).
In a final step, differential T-C transition event counts
are defined using an exact test analogous to Fisher’s
exact test (for a more detailed description see Robinson
and Smyth [26]).

Identification of differentially occupied RNA sites between
MCF7 and HEK293 cells
We applied the aforementioned approach to compare
protein occupancy profiles of MCF7 and HEK293 cells
and identified a large number of differentially protein-



Schueler et al. Genome Biology 2014, 15:R15 Page 6 of 17
http://genomebiology.com/2014/15/1/R15
contacted mRNA regions. To remove false positive
calls, we used an empirical assessment of the false dis-
covery rate (FDR) by repeating the same analysis, yet
switching replicate assignment of the two conditions
(one MCF7 replicate was assigned as HEK293 replicate
and vice versa), thereby generating a null model distribu-
tion of P-values. We used this approach instead of
the FDR approaches as defined by Benjamini-Hochberg
or Benjamini-Hochberg-Yekutieli [28,29] as the latter
would lead to a low number of significant positions due
to the very large number of tested positions given the
low number of replicates. The P-value distribution ob-
tained from this null model was clearly shifted towards
less significant P-values in comparison to the original
P-values, indicating a low FDR (Figure S5 in Additional
file 2). To minimize detection of false positive differen-
tial positions, we adjusted our analysis to identify posi-
tions with an FDR <0.1. This resulted in 30,006 T-C
transition positions differentially occupied between
MCF7 and HEK293 cells (Additional file 3). Figure 4A,B
shows two examples of mRNA regions harboring differ-
ential T-C transition positions with significantly in-
creased and decreased crosslinking signal in MCF7
compared to HEK293 cells. Despite mRNAs, changes in
protein occupancy can also be observed for long inter-
vening non-coding RNAs (lincRNAs). As an example,
the occupancy profile of the lincRNA EPHA6-1 in both
cell lines is shown in Figure 4C.
In addition to identifying regions of significantly al-

tered protein occupancy based on T-C transitions, we
performed a similar analysis based on read coverage.
Using a previously described peak calling approach
[30,31], we found high agreement between differentially
occupied regions based on read coverage and T-C tran-
sitions (Figure S6 in Additional file 2). However, since
T-C transitions are a key feature of protein occupancy
profiling and the direct signature of protein-RNA cross-
linking events [8], we assessed differences between
MCF7 and HEK293 protein occupancy based on differ-
ential T-C transitions.
It appears easy to reconcile that binding of a single

protein or a protein complex does not only affect a sin-
gle T-C position but rather influences multiple locally
clustered positions. To test this hypothesis, we com-
puted the distance to the closest significantly altered T-
C transition of significant or non-significant positions.
In line with the premise of clustering, we found that
significant positions are closer to each other than to
non-significant positions (Figure 4D). Intriguingly, the
fraction of significant positions not more than 20 nucle-
otides away from the next significant position was 33.8%
while the respective fraction for non-significant positions
was only 11.1%. In addition, we calculated the fraction
of significant T-C transitions that changed towards the
same direction as their closest significant positions (for
example, both show either increased or decreased occu-
pancy in MCF7 versus HEK293 cells). We found that
most (80.4%) of the positions were consistent in their
direction of change. Strikingly, on average these sites
were closer than positions with an opposing direction of
change (Figure 4E).
Next, we investigated the distribution of differential

T-C transitions over different transcript regions and
found a difference between sites with increased and
decreased crosslinking signal in MCF7 compared to
HEK293 (Figure 4F). While uridines with reduced T-C
signal in MCF7 were distributed almost equally to CDS
and 3′ UTRs, sites with increased T-C transitions in
MCF7 cells were clearly enriched in 3′ UTRs. The pos-
itional distribution of sites with significantly increased
and decreased occupancy over individual transcript re-
gions is shown in Figure 4G.
Finally, we assessed the impact of differentially expressed

exons as a possible source of differential T-C transitions.
We would like to emphasize that our approach is not
responsive to overall changes in T-C transition levels
resulting from differential gene expression. However, a
fraction of differential T-C transition positions might be a
result of differential exon usage. In this scenario, skipping
of a complete exon might lead to a local absence of transi-
tion events in one condition. To resolve this problem, we
have implemented an additional filtering approach that
optionally removes exons or transcripts based on differen-
tial expression analysis of mRNA-seq data. Significant
T-C transitions can be removed post hoc if they fall into
a differentially expressed exon, transcript, gene or any
combination of these. For this study, we filtered out posi-
tions in exons with a significant change in expression
across cell types (FDR cutoff of 0.01 and minimal fold
change of 2). With these parameters, we retained 72.7% of
all reported positions, which could not simply be explained
by differential exon usage. This leaves 21,823 out of 30,006
positions with differential RBP occupancy in MCF7 versus
HEK293 cells.
All of the aforementioned analysis steps are imple-

mented in the POPPI workflow [32], which makes (dif-
ferential) protein occupancy profiling experiments more
accessible to a wider user community.

Differentially occupied positions show distinct secondary-
structure characteristics and overlap with binding sites of
known RBPs
As a next step we investigated the properties of mRNA
regions with differential protein contacts. We selected
the top 300 non-overlapping MCF7 positions with in-
creased and reduced T-C transition events relative to
HEK293 cells and excluded sites in differential exons
(Additional files 4 and 5). Non-overlapping residues
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Figure 4 Analysis of differential crosslinking sites observed in MCF7 versus HEK293 cell lines. (A-C) Browser view of three representative
genomic loci encoding differentially occupied transcript regions. Consensus T-C transition profile and read coverage of MCF7 (top) and HEK293
(bottom) are indicated in black and orange, respectively. (A) Dashed red box indicates a position of elevated occupancy in MCF7 versus HEK293
cells in the 3' UTR of the ARID1A transcript. This region coincides with an annotated ELAVL1/HuR binding site previously identified by PAR-CLIP
[15]. (B) Region of significantly decreased occupancy in MCF7 versus HEK293 cells in the 3' UTR of CBX3. (C) Genomic loci encoding the long
intervening non-coding RNA lincRNA EPHA6-1. Regions with increased protein occupancy in MCF7 cells are apparent (D) Empirical cumulative
distribution of the distance to the closest differential T-C transition position (FDR <0.1) for all T-C transitions exhibiting a significant change (red)
compared to non-differential positions (black). Differential positions are closer to each other, indicating clustering of differentially occupied sites.
(E) Boxplot representing distances between significantly differential positions in MCF7 versus HEK293 cells that change towards the same (gray)
or opposing direction (white). Differential positions that share the same orientation are found closer to each other. (F) Fraction of positions with a
significant decrease (left) or increase (right) in T-C transitions located in different transcript regions. Elevated positions have a clear tendency to
distribute towards the 3' UTR. (G) Density of significantly decreased (top) and increased (bottom) T-C transition positions over relative transcript
regions. Decreased T-C transition positions are more frequently observed at the 5' and 3' ends of coding sequences, while up-regulated T-C
transition positions do not show a positional tendency.
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must be separated by at least 20 nucleotides to minimize
the possibility that two T-C transition positions originate
from the same protein 'footprint'. We compared these
top 300 positions with a random set of the same size
(see Materials and methods).
As a first step in our analysis, we investigated secondary-

structure characteristics. We used the LocalFold algo-
rithm [33] to compute the accessibility of each region
in a window of ±50 nucleotides around each differential
T-C transition and compared these to the same analysis
performed over random sites. Accessibility in this re-
spect is the probability of an individual nucleotide be-
ing unpaired calculated over the ensemble of predicted
RNA secondary structures. A high accessibility indi-
cates a low probability that the nucleotide is paired,
while a lower than average accessibility might reflect
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the occurrence of structural motifs. Strikingly, we ob-
served a higher than expected accessibility around posi-
tions with elevated crosslinking signal in MCF7 (about
five nucleotides to either side; Figure 5A). Interestingly,
for positions with reduced T-C transitions, we observed
a seemingly opposing result (Figure 5B), indicated by
regions of low accessibility upstream and downstream
of T-C transitions. This pattern possibly reflects the
presence of structural motifs, which could function as
binding sites for RBPs [34,35]. Both findings were
robust to the number of analyzed regions (Figure S7 in
Additional file 2).
Next, we analyzed whether regions with significantly

different protein-RNA contacts are associated with RNA
recognition elements of known RBPs. The recently de-
scribed compendium of in vitro derived RNA-binding
motifs represents a valuable collection of RNA recogni-
tion elements for 205 distinct RNA binding proteins
from 24 different eukaryotes [36]. Respective motifs are
distributed as a collection of position weight matrices
(PWMs). To correlate individual motifs to our top 300
differentially occupied mRNA regions, we scanned a
region of 50 nucleotides around these sites with all
PWMs and derived one score per region by summing
the scores over all positions (see Material and methods).
Subsequently, we used Wilcoxon’s rank sum test to de-
fine PWMs with significantly higher scores around the
differential positions when compared to random re-
gions. Using a significance threshold of 0.01, we found
48 and 52 PWMs to show enrichments at the top 300
positions with decreased and increased T-C transitions
in MCF7 versus HEK 293 cells, respectively (Additional
files 6 and 7).
Strikingly, PWM scores for ELAVL1 and other members

of the ELAVL family of RNA-binding proteins were signifi-
cantly higher in regions with increased protein-mRNA
contacts in MCF7 cells (Figure 5C). ELAVL1 is a highly
conserved RBP that stabilizes mRNAs by binding to AU-
rich elements (ARE) and thereby influences expression of
target transcript-encoded proteins that are frequently in-
volved in cell cycle control, carcinogenesis, senescence and
stress response [15,37,38]. Motifs significantly overrepre-
sented in regions with reduced protein occupancy in
MCF7 cells were mildly enriched for serine/arginine-rich
splicing factors (SRSFs; Figure 5D). SRSF proteins are
known to play a major role in constitutive and alternative
splicing and mRNA transport. Yet, recent analyses suggest
that they may also contribute to mRNA stability and influ-
ence translation [39-41]. Strikingly, SRSF proteins have also
been predicted to be associated with RNA destabilization
[36]. In particular, SRSF1 was shown to reduce GRO
chemokine mRNA half-life by binding to its 3′ UTR [42].
To further investigate the high enrichment of ELAVL

protein RNA recognition elements in the top 300 sites
with increased binding in MCF7, we examined whether
the differentially contacted mRNA regions coincide with
experimentally determined in vivo RBP binding sites.
We downloaded all PAR-CLIP-derived binding sites
from the doRiNA database [43,44]. This set consists of
PAR-CLIP experiments of 14 RBPs with a total number
of 622,176 annotated RNA binding sites. Some RBPs
were represented by multiple independent datasets.
While the doRiNA database includes additional CLIP ex-
periments, we focused exclusively on PAR-CLIP data
sets, as these provide local binding site definitions. We
intersected the top 300 differentially occupied positions
as well as random positions with PAR-CLIP data and
counted the number of positions that overlapped with a
PAR-CLIP binding site. The difference between top and
random positions was scored using a Fisher’s exact test.
The complete results for MCF7 sites with increased and
decreased crosslinking signal compared to HEK293 are
provided in Additional files 8 and 9. Looking at the top
300 positions with increased T-C transitions, we found a
significant overlap with binding sites of all four pub-
lished ELAVL1 PAR-CLIP experiments. Between 16.7%
and 49% of the top 300 sites with increased occupancy
were overlapping with at least one PAR-CLIP binding
site (respective random sites yielded 4.3% to 37% over-
lap) at FDRs from 1.20 × 10-5 to 0.01351, respectively.
In addition, a significant overlap with PUM2 sites
(5% versus 1% for real and random sites, respectively,
FDR = 0.01878) was observed. For the set of the top
300 positions with reduced protein occupancy in MCF7,
we did not observe a significant overlap with any of the
experimentally derived RBP binding sites. To further
investigate our observation that MCF7 cells show a
comparably higher occupancy on ELAVL1 PAR-CLIP
sites, we performed a motif analysis in the surrounding
areas ±25 nucleotides (Figure S8A in Additional file 2).
As expected from the PWM analysis, these regions were
highly enriched in 7-mers known to be present in high
affinity targets of ELAVL1, which are also overrepre-
sented in ELAVL1 PAR-CLIP clusters and compromise
the UUUUUUU, UUUGUUU and UUUAUUU sequence
motifs [15,45]. Consistent with these findings, the best-
characterized ELAVL1 bound ARE is defined by the core
sequence AUnA, with n most frequently being 3 [46,47].
Testing the frequency of respective AREs in the top in-
creasingly occupied regions revealed that these AREs are
significantly more frequent than random (one-sided bi-
nomial test P-value of 5.61 × 10-4). We repeated the
7-mer analysis on regions with decreased occupancy.
Compared to regions of elevated occupancy, we found a
different set of enriched 7-mers (mostly GC-rich and
GA-rich; Figure S8B in Additional file 2).
To further confirm binding of ELAVL1 to regions with

increased protein-RNA contacts in MCF7, we compared



Figure 5 Comparison of differentially occupied mRNA regions to RNA secondary structure predictions, presence of RNA binding
motifs and changes in mRNA half-lives. (A, B) Average positional accessibility around the top 300 positions with significantly increased (A) or
decreased (B) T-C transitions in MCF7 versus HEK293. Accessibility reflects the probability of each nucleotide to be unpaired as computed by the
LocalFold algorithm [33] averaged over all 300 regions. Accessibility of real positions is indicated in red/blue while results obtained from random
regions are indicated in grey. Light grey areas around random accessibilities reflect one standard deviation. We smoothed the data by using a
window of ±2 nucleotides. (C, D) RNA binding proteins associated with the 20 most significantly enriched RNAcompete position weight matrices
(PWMs) [36] found in a ±25 nucleotide region around positions with increased (C) and decreased (D) T-C transitions. CisBP-RNA database IDs of
each PWM are indicated in brackets. The significance level of each PWM is represented by a -log10 transformation of the respective P-value on
the left, while the ratio between top differentially occupied and random positions is given in log2-scale on the right. Additional files 6 and
7 contain the full list of significant PWMs. (E) Empirical cumulative density distribution of log2 fold changes in mRNA half-lives between MCF7
and HEK293 cells. The top 300 genes with decreased occupancy are shown in blue while the top 300 genes with increased occupancy are shown
in red. Both groups are shifted to longer half-lives in MCF7 relative to the distribution of all other genes (black). We determined the significance
levels of both shifts with a one-sided t-test yielding P-values of 0.000898 and 0.00644 for targets harboring positions of increased and decreased
occupancy, respectively.
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our data to a previous study carried out in MCF7 cells
that used RNA-immunoprecipitation experiments in
combination with microarray analysis (RIP-Chip) to
identify transcripts bound by ELAVL1 [37]. We selected
300 genes with the most significantly increased protein
occupancy in MCF7 cells and compared the distribution
of z-scores observed in RIP-Chip experiments to all
genes that were tested for differential T-C transitions
(Figure S9 in Additional file 2). Indeed, they showed sig-
nificantly higher affinity for ELAVL1 (P-value <10-6), in-
dicating that these transcripts represent ELAVL1-bound
mRNAs that are differentially occupied in MCF7 cells
compared to HEK293 cells.

Transcripts with increased protein occupancy in MCF7
cells show elevated mRNA half-lives
Having analyzed properties of RNA regions differentially
contacted by proteins, we were interested in the func-
tional association of, and possible consequence for, the
respective genes. We therefore defined the set of the top
300 target genes as those genes that harbor the most sig-
nificantly increased or decreased T-C transition events
in their respective mRNAs. While these two groups
could overlap (that is, the same gene may contain posi-
tions belonging to the top elevated as well as reduced
set of positions), their actual overlap was minor (36 out
of 300 tested target genes). To gain insight into the asso-
ciated gene functions, we performed a Gene Ontology
(GO) term and pathway enrichment analysis of these
targets using the R package g:Profiler [48], which imple-
ments a multiple testing adjustment approach that is
specifically tailored to the analysis of functionally anno-
tated gene sets [49].
For target mRNA transcripts with increased positional

crosslinking signal in MCF7 we observed significant as-
sociation to splicing and mRNA processing as well as
RNA transport and surveillance (see Additional file 10
for all GO terms and pathways with adjusted P-value <0.1
and at least five associated genes). For target mRNA tran-
scripts with decreased positional occupancy in MCF7,
we found an association to the regulation of cell cycle
and gene expression as well as regulation of translation
(Additional file 11). A significant fraction of genes harbor-
ing decreased T-C transition events in MCF7 cells are also
associated to terms such as 'RNA processing', 'posttran-
scriptional regulation of gene expression', and 'ribonu-
cleoprotein complex assembly', which links differential
occupancy patterns on mRNA to regulators of post-
transcriptional regulation.
We have observed a significant enrichment of se-

quence motifs and experimentally determined binding
sites for ELAVL1 and other regulators that affect RNA
stability in our top differentially occupied target regions.
Consequently, we tested whether the corresponding
target genes exhibit changes in mRNA half-lives. We
generated two replicate measurements of mRNA half-
lives in both cell types by 4SU labeling and purification
of labeled and unlabeled mRNA populations after 1 h of
labeling and under steady state assumption as described
by Dölken et al. [50] and Schwannhäusser et al. [51].
Since the individual replicates showed high correlation
(Figure S10 in Additional file 2), we calculated the aver-
age half-life observed in both experiments and used
those values for all subsequent analyses. We then tested
whether mRNA transcripts containing differentially oc-
cupied T-C positions also show significant changes in
their half-life distribution. To this end, we calculated
log2 fold changes in estimated half-lives in MCF7 versus
HEK293 cells and compared the top 300 differentially
occupied transcripts to all tested genes. Remarkably, we
found significantly increased mRNA half-lives for tran-
scripts with reduced as well as elevated T-C transitions
in MCF7 cells (Figure 5E; P = 0.00644 and P = 0.000898
for decreased and increased occupancy in MCF7, re-
spectively). Intriguingly, a more careful examination
revealed elevated mRNA half-lives of many growth-
promoting proto-oncogenic factors like CCNA2, CCNB2
and CDKN1A that are well-established targets of ELAVL1
[52] and show increased local protein occupancy in
MCF7 cells.
Summarizing our results on the analysis of differential

occupancy profiling experiments, gene expression mea-
surements, estimation of mRNA half-lives and extensive
in silico analyses (sequence, structure, functional annota-
tion), we found 1) a significant increase of occupancy
at putative ELAVL1 binding sites, 2) top differentially
occupied genes to show a functional association to cell
growth, cell proliferation as well as mRNA processing,
and 3) increased half-lives of mRNA targets with differ-
ential local protein occupancy. These findings couple
our predictions of local differential protein occupancy to
a global regulatory outcome on the level of posttran-
scriptional gene regulation.

Discussion
Posttranscriptional gene regulation is elicited through
a complex and highly interdependent network of RNA-
binding proteins and non-coding RNAs that form
dynamic ribonucleoprotein complexes to orchestrate
specific regulation of RNA transcripts throughout their
lifecycle [53]. While transcriptome-wide approaches based
on RNA immunoprecipitation in combination with cross-
linking (CLIP) revealed precise target and binding site
information for individual proteins, a more global picture
of the sequence space contacted by the ensemble of
these regulators remained elusive. The protein occupancy
profiling methodology now enables generation of high-
resolution maps of protein-RNA interaction that globally
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captures contacts of the poly(A) + RNA-bound proteome.
Combining protein occupancy profiling with the computa-
tional framework described in this study enables an un-
biased investigation of cis-regulatory RNA regions involved
in a posttranscriptional gene-regulation.
Here, we have established a bioinformatics workflow

to compare protein occupancy profiles of polyadenylated
RNA. Protein occupancy profiling data from HEK293
cells has been obtained previously [2]. The newly gener-
ated MCF7 dataset was of high quality with 53 to 70% of
mapped reads showing characteristic T-C transitions as
well as high correlation between the two replicates. Sub-
sequently, we compared protein occupancy profiles of
MCF7 and HEK293 cells on a global scale. Interestingly,
we found only small differences between the two cell
lines, with almost the same fraction of reads mapping to
3′ UTRs and coding regions. Comparison to mRNA-seq
data revealed that the fraction of protein occupancy pro-
filing sequence reads mapping to 3′ UTRs was higher
than expected, suggesting increased protein-RNA con-
tacts in 3′ UTR regions in both cell lines. Similarly, we
compared local distributions of RBP occupancy over
different transcript regions (5′ UTRs, CDS, 3′ UTRs),
but observed only minor differences between the two
cell lines. However, the bulk read distribution averaged
over transcripts is similar for RNA-seq and profiling data
from the same condition. We therefore investigated the
dependency of protein occupancy profiling signal on
expression data on a per-transcript basis. In contrast to
our global findings described above, the protein occu-
pancy and mRNA-seq profiles of single transcripts
showed only marginal correlation, thus indicating that
the protein occupancy of a given transcript cannot be es-
timated based on RNA-seq data.
Utilizing established statistical methods that are fre-

quently used in differential gene expression analysis, we
identify differentially occupied positions based on a stat-
istical test as implemented in the edgeR package [27].
Instead of performing normalization and defining disper-
sion factors over all tested positions at once, we compare
occupancy profiles in a transcript-wise manner using only
transcripts that fulfill strict filtering criteria. By doing
so, we normalize for differences that are due to different
expression levels between cell types. To additionally rule
out any significant differences resulting from local
changes in expression by alternative splicing, we have
implemented an additional filtering approach that inter-
sects differential positions with differential exons, tran-
scripts or genes from RNA-seq data. Generally, we advise
to perform additional gene expression measurements to
pinpoint these potential biases.
We used the aforementioned approach to identify po-

sitions with elevated and reduced T-C transition events
in transcripts expressed in MCF7 versus HEK293 cells.
Strikingly, we found patterns of non-random accessibil-
ity in these two categories, indicating that these regions
might constitute bona fide protein binding sites. Com-
paring a set of 300 top differentially contacted positions
to known RBP-binding sites, we observed significantly
increased protein occupancy on ELAVL1 binding sites
in MCF7 cells. Interestingly, ELAVL1 was found to be
up-regulated and preferentially localized to the cyto-
plasm in multiple cancer cell lines (including MCF7
[54]), which correlates with carcinogenesis and poor
prognosis [55-57]. Given its regulatory function on a
subset of transcripts involved in malignant transform-
ation and cell proliferation, several studies proposed a
central role of ELAVL1 in breast, colon, lung and ovarian
cancer [58-60]. Furthermore, it was shown that ELAVL1
contributes to stabilization of its target transcripts by
binding to AREs and thereby inhibits mRNA decay, which
ultimately leads to increased protein levels [15,38,61]. A
detailed analysis of regions with increased protein contacts
revealed enrichment of ELAVL1 binding-sites and re-
spective AU-rich recognition elements, indicating that the
known ELAVL1 binding preferences can be recapitulated
from comparative analysis of differential protein occu-
pancy profiling datasets. While it has been stated that
ELAVL1 binding sites are enriched for certain microRNA
target sites [62,63], we did not observe a significant associ-
ation of the differentially crosslinked positions with micro-
RNA binding sites (data not shown).
Finally, we set out to investigate the functional conse-

quence of altered protein occupancy on the transcript
level. Driven by the intriguing observation that regions
with elevated protein occupancy in MCF7 cells showed
significant enrichment of binding motifs and PAR-CLIP
binding sites of ELAVL1, we reasoned that ELAVL1
might play a key role in explaining differences in protein
occupancy between MCF7 and HEK293 cells. By analyz-
ing ELAVL1 RIP-ChIP data we observed that transcripts
with regions of elevated protein occupancy are signifi-
cantly enriched in ELAVL1-RIPs in MCF7 cells. Consid-
ering the established function of ELAVL1 to increase the
mRNA stability of important cellular transcripts with
diverse roles in cell proliferation and carcinogenesis, we
accessed differences in mRNA half-life between MCF7
and HEK293, possibly attributed to differential ELAVL1
binding. Thus, we can correlate differential protein-RNA
contacts with a direct regulatory outcome, indicated by
altered RNA metabolism. Strikingly, we observed an
overall shift towards elevated mRNA half-lives of the top
300 differentially occupied transcripts. Importantly, we
detected increased mRNA half-lives for cancer-related
transcripts such as CCNA2, CCNB2 and CDKN1A that
were previously shown to be stabilized by ELAVL1 [52].
In addition, we introduced POPPI, a fully automated

computational analysis pipeline specifically tailored to
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the analysis of protein occupancy profiling experiments.
POPPI provides a highly flexible framework that stream-
lines the analysis steps and produces comparable statis-
tics as well as intuitive figures to determine experimental
quality, replicate correlation as well as functional ana-
lysis. Most importantly, we have added routines that
identify local dynamic changes in occupancy profiles
across different conditions (that is, different cell types
or perturbations).
In conclusion, protein occupancy profiling is a power-

ful approach to study dynamics in protein-RNA interac-
tions for coding transcripts as well as lincRNAs. Global
mapping of protein-RNA contact sites on lincRNAs
holds the potential to provide valuable insights into the
modular design of these non-coding RNAs and deter-
mine the individual lincRNA-protein interaction do-
mains. Using our approach, researchers gain an unbiased
view of differentially protein-bound cis-regulatory RNA
regions to uncover differences in posttranscriptional
regulatory interactions.

Conclusion
Binding of microRNA and RBPs to a large number of
mRNA targets weaves a complex network of posttranscrip-
tional gene regulation. Their combinatorial assembly, dy-
namic in time and space, determines the fate of protein-
coding transcripts. Protein occupancy profiling provides an
unbiased and system-wide insight into protein-contacted
mRNA regions. We implemented a computational frame-
work to streamline analysis steps and to detect differential
protein occupancy on RNA across replicate experi-
ments from different biological conditions. Import-
antly, our comparison of occupancy profiles in HEK293
and MCF7 cells is a first step in gaining a deeper under-
standing of the underlying posttranscriptional regulatory
dependencies, which determine the fate of individual
RNAs between cell types.

Materials and methods
Protein occupancy profiling on mRNA
HEK293 and MCF7 cells were grown in medium
(DMEM high glucose with 10% (v/v) fetal bovine serum,
1% (v/v) 2 mM L-glutamine, 1% (v/v) 10,000 U/ml peni-
cillin/10,000 μg/ml streptomycin) supplemented with
200 μM 4SU 16 h prior to harvest. For UV crosslinking,
culture medium was removed and cells were irradiated
on ice with 365 nm UV light (0.2 J/cm2) in a Stratalinker
2400 (Stratagene La Jolla, CA, USA), equipped with light
bulbs for the appropriate wavelength. Following cross-
linking, cells were harvested from tissue culture plates
by scraping them off with a rubber policeman, washed
with ice-cold phosphate-buffered saline and collected by
centrifugation (4°C, 10 minutes). Resulting cell pellets
were resuspended in five cell pellet volumes of lysis/
binding buffer (100 mM Tris–HCl pH 7.5, 500 mM LiCl,
10 mM EDTA pH 8.0, 1% lithium-dodecylsulfate, 5 mM
dithiothreitol (DTT)) and incubated on ice for 10 mi-
nutes. Lysates were passed through a 21 gauge needle to
shear genomic DNA and reduce viscosity. Oligo(dT)
beads (50 μl; bed volume) were briefly washed in lysis/
binding buffer, resuspended in the appropriate volume
of lysate and incubated 1 h at room temperature on a
rotating wheel. Following incubation, supernatant was
removed and placed on ice for multiple rounds of
mRNA hybridization. Beads were washed three times in
one lysate volume lysis/binding buffer, followed by three
washes in one lysate volume NP40 washing buffer
(50 mM Tris pH 7.5, 140 mM LiCl, 2 mM EDTA, 0.5%
NP40, 0.5 mM DTT). Following the washes, beads were
resuspended in the desired volume of elution buffer
(10 mM Tris–HCl, pH 7.5) and transferred to a new
1.5 ml microfuge tube. Hybridized polyadenylated
mRNAs were eluted at 80 degrees for 2 minutes and elu-
ate was placed on ice immediately. Beads were re-
incubated with lysate for a total number of three deple-
tions by repeating the described procedure. Following
RNAse treatment (RNAse I, Ambion Austin, TX, USA;
100 U) protein-RNA complexes were precipitated by
ammonium sulfate. After centrifugation (16000 RCF,
4°C, 30 minutes), resulting protein pellets were resus-
pended in SDS loading buffer and separated on a NuPAGE
4-12% Bis-Tris gel (Life Technologies (Carlsbad, CA,
USA)). Separated protein-RNA complexes were transferred
to a nitrocellulose membrane, desired bands migrating be-
tween 10 kDa and 250 kDa were cut out and crushed
membrane pieces were Proteinase K (Roche Diagnostics
(Mannheim, Germany)) digested (2 mg/ml Proteinase K,
30 minutes, 55°C). Following Proteinase K treatment,
RNA was phenol/chloroform extracted and ethanol pre-
cipitated. Recovered RNA was dephosphorylated using
calf intestinal alkaline phosphatase (NEB (Ipswich, MA,
USA); 50 U, 1 h, 37°C). After dephosphorylation RNA was
phenol/chloroform extracted, ethanol precipitated and
subjected to radiolabeling using polynucleotide kinase
(NEB; 100 U, 20 minutes, 37°C) and 0.2 μCi/μl γ-32P-ATP
(Perkin Elmer (Waltham, MA, USA)). Radiolabeled RNA
was again phenol/chloroform extracted and recovered by
ethanol precipitation. Subsequent small RNA cloning and
adapter ligations were performed as described previously
[8,14,52].
Protein occupancy profiling sequencing data have been

deposited under Gene Expression Omnibus (GEO) ac-
cession number GSE49831.

RNA-seq library generation
MCF7 cells were maintained at 37°C in RPMI supple-
mented with 10% fetal calf serum, 100 U/ml penicillin
and 100 μg/ml streptomycin. For RNA isolation, 5 × 105
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cells were grown in triplicates under normal conditions,
and harvested two days later. Cells were lysed and RNA
was isolated using the InviTrap Spin Cell RNA Mini
Kit (Stratec Molecular GmbH (Berlin, Germany)). RNA
quality was analyzed with the Agilent RNA 6000 Nano
Kit, and the concentration was measured with the Qubit
RNA Assay Kit (Invitrogen). Library preparation was
carried out with the TruSeq™ RNA Sample Preparation
Kit (Illumina (San Diego, CA, USA)) using barcoded
primers. Libraries were sequenced on Illumina HiSeq
using a paired-end protocol (2 × 100 nucleotides).
MCF7 mRNA-seq sequencing data have been depos-

ited under GEO accession number GSE49831.
HEK293 total RNA was extracted using the miRNeasy

kit (Qiagen (Hilden, Germany)) following the instruc-
tions of the manufacturer. RNA (4 μg) was used for poly
(A) +mRNA library preparation following the TruSeq
RNA sample Prep v2 LS protocol (Illumina). The librar-
ies were sequenced on an Illumina Genome Analyzer
GAII or Illumina HiSeq for 100 cycles (multiplexed 1 ×
101 + 7 index).
HEK293 mRNA-seq sequencing data have been depos-

ited under GEO accession number GSE49831.

Transcriptome-wide half-life measurements
For global mRNA half-life measurements, MCF7 and
HEK293 cells were labeled with 700 μM 4SU for 60 mi-
nutes. Total RNA was extracted using the miRNeasy kit
(QIAGEN). 4SU residues were biotinylated using EZ-Link
biotin-HPDP (Thermo Fisher Scientific (Waltham, MA,
USA)). Biotinylated 4SU-labled RNA was separated from
non-labeled RNA using μMACS Streptavidin MicroBeads
(Miltenyi (Bergisch Gladbach, Germany)) and 4SU-labeled
RNA was eluted from μColumns by addition of 100 mM
DTT. RNA was recovered from the flow-though and
4SU-labeled fractions using MinElute Spin columns (QIA-
GEN). Input (total), flow-though (non-labeled RNA) and
eluted (4SU-labled RNA) samples were used for poly(A) +
mRNA library preparation following the TruSeq RNA
sample Prep v2 LS protocol (Illumina). The libraries
were sequenced on an Illumina Hiseq 2500 for 100 cycles
(multiplexed 1 × 101 + 7 index). mRNA half-lives were
computed from gene-wise FPKM (fragments per kilobase
of exonic sequence per million fragments mapped) as
previously described [51]. To access changes in mRNA
half-life, we computed the log2 fold change of all mea-
sured genes on quantile normalized data.
MCF7 and HEK293 half-life measurement sequencing

data have been deposited under GEO accession number
GSE49831.

General bioinformatic methods
BAM files were processed with the Samtool program
[64]. BED file processing was performed with the help of
the Bedtools [65]. Calculation of local accessibility was
done using the LocalFold algorithm [33]. Illustration
of occupancy profiles was done with the help of the
UCSC Genome Browser [22]. GO term and pathway
enrichment analysis was performed using the R package
g:Profiler [48].

The protein occupancy profiling pipeline (POPPI)
To streamline the analysis of protein occupancy profiling
data and thereby leveraging its accessibility, we have
bundled scripts used in this study into the protein occu-
pancy profiling pipeline (POPPI). POPPI performs the
following analysis steps: read processing, read mapping,
transcriptome-wide read coverage and position-specific
T-C transition event profiling as well as global compari-
son to genomic features and across different experiments
(see Figure S11 in Additional file 2 for a schematic repre-
sentation). All analysis steps produce diagnostic plots as
well as text statistics combined in an HTML file that can
directly be used for quality assessment of profiling experi-
ments (see Additional file 12 for POPPI output generated
for individual MCF7 and HEK293 profiles analyzed in this
study and Additional file 3 for POPPI output on differen-
tial protein occupancy profiling). To ensure high tran-
sparency for the user and enable POPPI to run on any
Unix-based machine architecture, we have realized the
pipeline as a series of Unix Makefiles, which are dynamic-
ally adjusted to an individual experiment with the help of
simple configuration files. These Makefiles invoke pipeline
building blocks, which were implemented in Perl as well
as R and Bioconductor [66].
POPPI takes FASTQ files as input, which are either

used as is or reduced to unique reads in accordance with
user demands. Filtered reads are subsequently mapped
to the reference genome using spliced-mapping ap-
proaches as implemented in TopHat2 [20,67] or STAR
[68], which are both integrated into the POPPI pipeline.
A spliced-mapping approach is essential as protein occu-
pancy profiling data contain a considerable number of
reads spanning exon junctions. In our presented ana-
lysis, mapping of protein occupancy reads to human
genome hg18 was performed using TopHat2 (version
2.0.6) with number of splice mismatches set to 0, intron
length set to be between 10 and 100,000 nucleotides, a
minimal segment length of 18 nucleotides, a minimal
anchor length of 4 and a minimal isoform fraction of 0.
Alternatively, users can directly contribute read map-
pings as BAM files, which are integrated into the pipe-
line as is. Subsequently, mapped reads are assembled
into transcriptome-wide occupancy profiles. These pro-
files consist of two sub-features, the coverage tracks,
which reflect positional read depth, as well as the T-C
transition tracks, which represent the number of ob-
served T-C transition events per uridine. The pipeline
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generates output in standardized file formats (BED and
BAM files) as well as additional plain text tables, which
allows an easy inspection and integration with other
data - for example, using the UCSC Genome Browser
[22]. In addition, occupancy profiles can be viewed sep-
arately for different transcript regions (UTRs and CDS)
to facilitate an easy assessment of regional profile character-
istics. The final step of our analysis pipeline is the compari-
son of two different occupancy profiles to define regions of
significantly altered occupancy based on changes in T-C
transition counts as described in the Results section. Not-
ably, the user can adjust all differential occupancy pipeline
parameters, including the thresholds used for filtering tran-
scripts and the used significance thresholds.
For the analyses presented in this study, we used our

differential pipeline module in the following way. As an
initial step we used quantile normalization to normalize
the T-C count distributions of the two HEK293 as
well as MCF7 protein occupancy profiling experiments.
For any further computation, including gene filtering as
well as the estimation of sample- and position-wise
normalization parameters for the edgeR count statistics
and testing for differential T-C counts, we only consid-
ered positions that showed at least two T-C transition
counts in at least two of the four samples. We filtered
out genes that showed less than 50 of these positions
to allow robust dispersion estimation using the edgeR
functions calcNormFactors, estimateCommonDisp and
estimateTagwiseDisp. All subsequent steps were per-
formed for each gene individually. After applying TMM
normalization, we counted the number of positions with
a positive and negative fold change. If a gene showed
more than two-thirds of positional fold changes pointing
in the same direction, we further excluded this gene
from any consequent testing to ensure a good mixture
of T-C signal from both cell lines. Applying this filtering
scheme resulted in 5,089 valid genes. Of those, all valid
positions were tested for significant differences in their
T-C transition counts using the exact testing scheme
implemented in the edgeR exactTest method.
We additionally implemented the possibility to filter re-

ported positions based on gene expression. To this end,
we counted the number of reads assigned to each gene,
transcript and exon and used these tables in a subsequent
edgeR test for differential expression, again estimating
both sample- and feature-wise dispersions. P-values were
transformed into FDRs using the p.adjust method in R.
For the analyses performed in this study, differentially oc-
cupied positions inside exons showing differential expres-
sion (FDR <0.01, fold change >2) were filtered out.
POPPI can be readily used for different species as it

provides automatic data retrieval for species-specific
annotation data like reference genome sequence and
gene models. A detailed description of all implemented
functionalities, output files and quality assessment plots
is given in Additional file 13. Additional documentation
as well as the possibility to download the pipeline can be
found at [32].

Definition of top real and random position and top target
gene sets
For functional analysis, we focused on the 300 most sig-
nificant differential positions both increased and decreased
in the comparison of MCF7 and HEK293 cell occupancies.
To prevent any bias based on clustered positions, we re-
quired top positions to be more than 20 nucleotides apart.
The respective random position set was produced by ran-
domly shifting the initially defined top positions upstream
or downstream by 100, 50 or 30 nucleotides while ensur-
ing that the resulting position remained inside of a gene.
To further reduce any potential sequence-dependent bias,
we additionally ensured that each random position
reflected a uridine in the transcript by shifting the result-
ing position to the closest genomic thymine or adenine
dependent on transcriptional direction.
To define the set of top targets associated to differen-

tially increased and decreased occupancy, we sorted all
target genes by the significance of their most significant
differential position in both categories. Subsequently, the
top 300 target genes from both groups were analyzed.

Testing for enrichment in RNAcompete motifs
To define if certain RBP motifs were enriched around our
top differential T-C transition positions, we downloaded
all available PWMs and sequence logos annotated to hu-
man RBPs from the cisBP-RNA website [69]. Following a
procedure suggested by one of the authors of the human
RNAcompete study in a personal communication, we sub-
sequently scanned the region ±25 nucleotides of the top
and random differential T-C transition positions using the
following approach. First, we calculated for each sub-
sequence of length k (with k being the length of the
PWM) a score by multiplying the probabilities of the re-
spective positions in the PWM. To prevent probabilities
of zero, we added a small pseudo-count (0.01) to each col-
umn of the PWM initially and divided by the total count
for each column. Second, we summed the resulting scores
over the entire region. Third, we compared the PWM
scores of the top and random regions using a one-sided
Wilcoxon rank sum test and a significance threshold of
0.01. To associate PWMs to their respective RBPs, we
used the 'RBP_information.txt' table that comes with the
PWM annotation from the cisBP-RNA website.

Additional files

Additional file 1: Table S1. Read and mapping statistics.

http://www.biomedcentral.com/content/supplementary/gb-2014-15-1-r15-S1.xls
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Additional file 2: Supplementary Figures S1 to S11.

Additional file 3: Table S2. All positions with significantly changing
occupancy (FDR <0.10) in MCF7 versus HEK293 cells. Positions
additionally passing the differential exon filter are indicated in the
last column.

Additional file 4: Table S3. Top 300 positions with significantly
enhanced occupancy in MCF7 versus HEK293 cells.

Additional file 5: Table S4. Top 300 positions with significantly
decreased occupancy in MCF7 versus HEK293 cells.

Additional file 6: Table S5. Human RBP RNAcompete PWMs with
significantly (P < 0.01) higher scores in the region ±25 nucleotides around
top versus random positions with significantly enhanced occupancy in
MCF7 versus HEK293 cells.

Additional file 7: Table S6. Human RBP RNAcompete PWMs with
significantly (P < 0.01) higher scores in the region ±25 nucleotides around
top versus random positions with significantly decreased occupancy in
MCF7 versus HEK293 cells.

Additional file 8: Table S7. Overlap of doRiNA PAR-CLIP sites to top
300 positions with significantly enhanced occupancy in MCF7 versus
HEK293 cells.

Additional file 9: Table S8. Overlap of doRiNA PAR-CLIP sites to top
300 positions with significantly decreased occupancy in MCF7 versus
HEK293 cells.

Additional file 10: Table S9. Significant GO terms and pathways
(adjusted P-value <0.1, at least five associated genes) associated to top
300 target genes associated to positions with significantly enhanced
occupancy in MCF7 versus HEK293 cells.

Additional file 11: Table S10. Significant GO terms and pathways
(adjusted P-value <0.1, at least five associated genes) associated to top
300 target genes associated to positions with significantly decreased
occupancy in MCF7 versus HEK293 cells.

Additional file 12: HTML output of the POPPI pipeline run for the
MCF7 and HEK293 protein occupancy profiling experiments.

Additional file 13: Detailed description of POPPI functionality and
output files.
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