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Abstract

Although comparison of RNA-protein interaction profiles across different conditions has become increasingly important
to understanding the function of RNA-binding proteins (RBPs), few computational approaches have been developed
for quantitative comparison of CLIP-seq datasets. Here, we present an easy-to-use command line tool, dCLIP, for
quantitative CLIP-seq comparative analysis. The two-stage method implemented in dCLIP, including a modified
MA normalization method and a hidden Markov model, is shown to be able to effectively identify differential
binding regions of RBPs in four CLIP-seq datasets, generated by HITS-CLIP, iCLIP and PAR-CLIP protocols. dCLIP is
freely available at http://qbrc.swmed.edu/software/.
Rationale
Eukaryotic genomes encode large numbers of RNA-binding
proteins (RBPs), each of which has unique associating prop-
erties with RNAs and impacts the structure, localization,
generation and function of both coding and non-coding
RNAs [1,2]. Comparison of RNA-RBP interaction profiles
across different conditions becomes increasingly important
to understanding the function of RBPs and RNA regulation
processes [3,4]. The advent of the crosslinking immu-
noprecipitation (CLIP) coupled with high-throughput
sequencing (CLIP-seq) technique enables the investigation
of RNA-RBP interactions at the genome level [5-7]. There
are three versions of CLIP-seq experiments, high-throughput
sequencing together with UV-crosslinking and immuno-
precipitation (HITS-CLIP), photoactivatable-ribonucleo-
side-enhanced CLIP (PAR-CLIP) and individual-nucleotide
resolution CLIP (iCLIP) [5-7], of which HITS-CLIP and
PAR-CLIP are most commonly used. These two methods
differ mainly by the crosslinking strategy being used. HITS-
CLIP treats cells with UV light to crosslink proteins with
RNAs and will introduce certain types of mutations in
some of the CLIPed tags at crosslinking sites. For example,
the mutations are specifically deletions if the crosslinked
RBP is Argonaute (AGO) [8]. PAR-CLIP treats cells with
photoreactive ribonucleotide analogs for incorporation into
RNAs before UV treatment, which results in specific T→C
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or G→A substitutions depending on the type of nucleo-
side analog used [6]. One disadvantage of HITS-CLIP
and PAR-CLIP is that reverse transcription must pass
over the residual amino acids on the crosslink sites of
RNAs. iCLIP overcomes this problem by employing a
self-circularization strategy [9]. Also random barcodes
are introduced to discriminate between PCR duplicates
and unique cDNA products.
Although a few bioinformatics tools like PARalyzer,

CLIPZ, wavClusteR and miRTarCLIP [10-13] have been
developed to analyze a single CLIP-seq dataset, the quan-
titative comparison of multiple CLIP-seq datasets has only
recently gained interest in the field [4,14,15]. Piranha [16]
has been developed for CLIP-seq and Ribonucleoprotein
immunoprecipitation followed by high-throughput sequen-
cing (RIP-seq) [17] data analysis, and also provides a pro-
cedure for comparative analysis. However, the comparative
analysis procedure in Piranha is relatively ad hoc, and does
not utilize the spatial dependency among neighboring
genomic locations, which is an important characteristic
in creating differential binding profiles. A straightforward
way to compare RNA-RBP interaction profiles across
conditions is to analyze individual CLIP-seq data separately
to identify the peaks (or binding sites) for each condition
and then use coordinate overlapping or similar approaches
to obtain common and differential binding sites. However,
this ad hoc approach compares the results qualitatively but
not quantitatively. For example, if a region is bound by an
RBP under two conditions (for example, wild type versus
knockout) with both significant enrichment but different
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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binding intensities, the ad hoc approach will not be able to
detect this region as a differential binding site. In addition,
this ad hoc approach is over-sensitive to the cutoffs used
for analyzing individual data, and has been shown to
underestimate the similarity of two samples when applied
to the analysis of multiple chromatin immunoprecipitation
(ChIP)-seq experiments [18,19]. Therefore, a computational
approach that can compare different CLIP-seq datasets
simultaneously and quantitatively is needed.
The main challenge to quantitatively comparing genome-

level sequencing profiles across conditions is that next-
generation sequencing data usually contains relatively
low signal-to-noise ratios [20,21]. Differences in background
levels further complicate the analysis. To address these
problems, several computational approaches have been
developed for comparative ChIP-seq analysis, including
ChIPDiff [22], ChIPnorm [23], MAnorm [24] and dPCA
[25]. These computational approaches have greatly facilitated
the understanding of dynamic changes of protein-DNA
interactions across conditions. However, these computa-
tional approaches cannot be directly applied to CLIP-seq
data to identify differential RNA-protein interactions, due
to some inherent differences between ChIP-seq and CLIP-
seq data. First, CLIP-seq data are strand-specific, while the
tools designed for ChIP-seq experiments do not consider
strands of peaks. Second, CLIP-seq experiments usually in-
duce additional characteristic mutations in high-through-
put sequencing reads, but the mutation information in the
raw sequencing data is simply discarded in the bioinfor-
matics software designed for ChIP-seq data analysis. Third,
CLIP-seq reads are usually short, and the reads are not
shifted or extended when counting tag intensities, but
shifting or extension of reads is a necessary step in ChIP-
seq analysis [26]. Fourth, CLIP-seq requires a much higher
resolution (close to single nucleotide) in detection of RBP-
binding sites, but ChIP-seq software usually work on a
much lower level of resolution. For example, ChIPDiff is
limited to 1 kb and ChIPnorm typically to a resolution of
a few hundred base pairs. In addition, the method pro-
posed by Bardet et al. [18] is not bundled as a portable
software and takes about two days to finish. Therefore, we
have developed the dCLIP software for detecting differential
binding regions in comparing two CLIP-seq experiments.
dCLIP is a two-stage computational approach for com-

parative CLIP-seq analysis. As the first stage, a modified
MA-plot approach was designed specifically to normalize
CLIP-seq data across datasets to obtain high resolution re-
sults. As the second stage, a hidden Markov model (HMM)
was developed to detect common or different RBP-binding
regions across conditions. The HMM has a great advantage
in modeling the dependency among adjacent genomic loca-
tions, which leads to improved performance in identifying
differential binding sites. Here, we show that dCLIP can
accurately identify RBP differential binding sites through
the comparative analysis of four differential CLIP-seq
datasets, including HITS-CLIP, PAR-CLIP and iCLIP
experiments. In addition, we compared the performance
of dCLIP and Piranha [16]. Our analysis shows that dCLIP
can identify more biologically meaningful differential bind-
ing sites than Piranha.
Availability
The source code and user manual for dCLIP are provided
in Additional files 1 and 2 for documentary purpose, and
are freely available at [27].
Overview of the software
Data preprocessing
An overview of the dCLIP pipeline is shown in Figure 1.
Data preprocessing is conducted in a strand-specific man-
ner. For HITS-CLIP and PAR-CLIP, duplicate reads with
the same mapping coordinates and the same strand are first
collapsed to unique tags. The characteristic mutations are
collected on all tags and written to separate output files.
CLIP clusters are defined as contiguous regions of non-
zero coverage in either condition and are identified by
overlapping CLIP tags from both conditions. The tags that
comprise each cluster retain their original condition iden-
tity. As a high resolution is needed for CLIP-seq analysis,
dCLIP divides the clusters into bins of small length (the
default is 5 bp) and calculates tag counts in each bin for
both conditions. More specifically, the number of tags
covering each base is calculated and the counts on all
bases in each bin are summed to be the tag intensity count
for that location. Therefore, the i-th bin in the j-th cluster

has a pair of data points x jð Þ
i ¼ x jð Þ

i;1; x
jð Þ
i;2

� �
, where x jð Þ

i;1 is the

tag intensity count for the first condition and x jð Þ
i;2 is the tag

intensity count for the second condition.
iCLIP dataset preprocessing mainly follows that of

Konig et al. [9], with minor modifications. Sequencing
reads with the same random barcode represent PCR dupli-
cates. Duplicates are removed and barcodes trimmed from
the unique tags before mapping to the reference genome. A
helper script, remove_barcode.pl, is provided in the dCLIP
software to help users remove barcodes from Fastq sequen-
cing files. After mapping, the first nucleotide upstream of
each mapped cDNA, defined as the crosslink nucleotide,
is expanded by a few nucleotides (specified by the users)
in both downstream and upstream directions from its
location, namely adding one to the tag counts on all
bases in this short window. Therefore, the total tag count
on each base is calculated as the sum of expanded cDNA
counts covering that base and the mutant tag count will
always be zero. Similarly, cDNA counts in both experimen-
tal conditions are summarized on the bin-level in regions
of non-zero coverage.
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Figure 1 Schematic representation of the dCLIP pipeline. A summary of the major steps of dCLIP is provided as a flow chart. The format of
the input and output files is also provided in the flow chart.
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Data normalization
A normalization step is essential for an unbiased compari-
son because of the different sequencing depths of the two
CLIP-seq samples. However, the common method of
normalizing by total number of tags in high-throughput
sequencing studies could be problematic, because of pos-
sibly different signal-to-noise ratios for different samples.
We implemented the MA-plot normalization method,
which was originally designed for normalizing microarray
data [28] and later applied to ChIP-seq analysis [24]. When
applying the MA-plot method to normalize microarray
data, usually the expression value for each gene is used as a
unit of normalization. When applying the MA-plot method
to normalize multiple ChIP-seq data as in [24], read counts
in the 1,000 bp windows centered on the summits of peaks
are used as a data unit of normalization. However, in dCLIP,
we modified the MA-plot method to normalize count data
on the bin level, because high resolution is required in
CLIP-seq data analysis. The M jð Þ

i ;A jð Þ
i

� �
value of each bin

is then defined as:

M jð Þ
i ¼ ln x jð Þ

i;1 þ c
� �

−ln x jð Þ
i;2 þ c

� �
A jð Þ
i ¼ ln x jð Þ

i;1 þ c
� �

þ ln x jð Þ
i;2 þ c

� �

A small number c is added to each count value to avoid
logarithm of zero count. We assumed that both conditions
share a large number of common binding regions with
similar binding strength. Therefore, a linear regression line

M = a + b ×A is fitted to bins whose x jð Þ
i;1 and x jð Þ

i;2 values are
both larger than a user-defined cutoff. Because common
binding sites should have similar binding strengths, the
parameters derived from the regression model should
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capture the true scaling relationship between the two
samples. This scaling relationship is extrapolated to the
whole dataset, by subtracting a fitted M value from the
linear regression model from the raw M value of every
bin in all clusters. The adjusted M value is used in the
following data analysis.

Hidden Markov model
The HMM is a statistical Markov model in which the sys-
tem being modeled is assumed to have spatial dependency
between neighboring data units. RBP-RNA interactions
involve a short stretch of RNA that can span up to a few
bins [29]. This ensures the strong auto-correlation of tag
counts in neighboring bins, which can be modeled by
HMM. Therefore, we applied HMM to identify common
and differential binding regions from the adjusted M
values. As these adjusted M values come from many
individual CLIP clusters, the HMM model has multiple
observation sequences. During the statistical inference, all
observation sequences share the same transition matrix
and the same emission function.
The HMM has three possible states for each i-th bin in

the j-th cluster:

I jð Þ
i ¼ 0 stronger binding in condition 1

I jð Þ
i ¼ 1

I jð Þ
i ¼ 2

non‐differential binding site
stronger binding in condition 2

8><
>:

Accordingly, the transition matrix Π is a 3 × 3
matrix, whose element πr,s is the transition probability

PrðI jð Þ
i ¼sjI jð Þ

i−1 ¼ rÞ Given state I jð Þ
i , the adjusted M values

are fitted by a three-component normal mixture model.
Because the common peaks that are determined by similar
mechanisms in both conditions are normalized towards
the same binding strength, the middle normal component
is assigned a mean of zero. To avoid unreasonable assign-
ment of bins to hidden states when the adjusted M values
are extremely large or small, the three normal components
are all assumed to have the same variance. Also, to simplify
the problem, the means of first and third normal compo-
nents are assumed to have the same absolute value but
different signs.
To estimate the parameters for the HMM, we adopted an

empirical-based method by fitting the adjusted M values
to a three-component Gaussian mixture model.

f M jð Þ
i jσ; μ; p

� �
¼ p � 1ffiffiffiffiffiffi

2π
p

σ
� e

M
jð Þ
i

þμð Þ2
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2π
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σ

� e
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2π
p

σ

� e
M
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i

−μð Þ2
2σ2

Since we assume that most sites would not show changes
in their binding between conditions, the second component
should dominate the mixture distribution. The first and
third components can be treated as outliers if we solely
focus on the second component. We then apply a median
absolute deviation method [30] to robustly estimate the
standard deviation to estimate σ, by equating σ̂¼median
M‐median Mð Þj jð Þ � 1:4826.
The other parameters P and μ are estimated by a recom-

binant method that combines method of moments esti-
mator and maximum likelihood estimator [31]. Simply
speaking, the second moment and sample second moment
of the mixture distribution are given by:

μ2 ¼ p� μ2 þ σ̂ 2ð Þ þ 1−2pð Þ � ⌢σ 2 þ p� μ2 þ ⌢σ2
� �

μ̂2 ¼
X

M jð Þ
i

� �2
n

By equating the above two formulas, we could get a
constraining relationship between P and μ. The likelihood
function was written as:

L p; μjM jð Þ
i ; σ̂

� �
¼ ∏

i;j
f M jð Þ

i jσ̂ ; μ; p
� �

¼ ∏
i;j
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So, using grid approximation, we obtain a pair of p̂ and
μ̂ that maximize the likelihood function and also maintain
the constraint at the same time.
The emission probabilities are calculated from the fitted

model and fixed for each bin in different states before the
iterations of HMM start. To find the chain of most likely
hidden states, given the observations and the model, a
Viterbi dynamic-programming algorithm is employed to

infer the hidden state I jð Þ
i .

Data visualization
Finally, adjacent bins inferred to be in the same state are
concatenated into continuous regions. A BED file is then
generated to be uploaded to the University of California
Santa Cruz (UCSC) Genome Browser, each entry of which
is one continuous region in the same state. In addition, a
TXT file is generated that describes the inference results
of each bin in more detail. Eight bedGraph files are
generated that store the total or mutant tag counts for
both conditions and both strands. These files can also
be directly uploaded to the UCSC Genome Browser for
visualization. Examples of output files from the dCLIP
pipeline are provided in Additional file 3.

Implementation
The dCLIP software was implemented in the Perl program-
ming language. Perl (versions above 5.16) together with two
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Perl modules PDL and PDL::Stats are needed to run the
program. The implementation is supported on all major
operating platforms.
The dCLIP software inputs SAM format alignment files

of the two conditions to be compared. The SAM format
files can be in single-end mode or paired-end mode. The
users can specify parameters such as bin size, minimal
number of tags in a cluster, the number of nucleotides to
expand for cDNA counts (iCLIP), the type of characteris-
tic mutations to be profiled and the stop conditions for
the HMM.

Case studies
miR-155/AGO HITS-CLIP dataset
We used dCLIP to analyze the miR-155/AGO HITS-CLIP
dataset from Loeb et al. [4], where the authors were in-
terested in revealing miR-155-dependent AGO protein-
binding sites. During microRNA (miRNA) biogenesis,
double miRNAs are incorporated into the RNA-induced
silencing complex [32] after being processed by Dicer.
The miRNA/miRNA* duplex is then separated within the
AGO protein and only one strand (the ‘guide strand’) will
be retained before binding to mRNA targets. As a result,
AGO protein, as one of the key catalytic components of
the RNA-induced silencing complex, serves as a scaffold
for miRNA and mRNA interaction. In this study [4],
miR-155 knockout mice were generated, and CD4+ T
cells were extracted from both the wild-type mice and the
miR-155-knockout mice for performing HITS-CLIP experi-
ments. Therefore, the differential AGO protein-binding
sites should provide important cues for miR-155 targeting
events.
Raw sequencing reads were downloaded from [GEO:

GSE41288] and mapped to the mm9 reference genome by
Bowtie [33]. Unmapped reads were aligned by Novoalign
(Novocraft Technology, Selangor, Malaysia). There were
a total of 37 million mapped reads for the wild-type
condition, and 34 million mapped reads for the miR-155
knockout mouse. A total of 58,872 individual clusters were
identified and divided into a total of 1,131,870 bins. The
adjusted M values had an autocorrelation of 0.81, corrob-
orating the feasibility of using HMM for identifying com-
mon and differential binding sites for CLIP-seq datasets.
For this dataset, the majority of the AGO binding sites
that represent potential target sites of other miRNAs
should remain overall unchanged after miR-155 knock-
out, as miR-155 knock out only directly influences a
small proportion of AGO binding sites, thus satisfying
the underlying assumption of the dCLIP algorithm as
described above. dCLIP conducted MA-plot followed by
linear regression to normalize the two CLIP-seq samples
(Figure 2a,b), and fitted a three-component mixture model
to the adjusted M values (Figure 2c). After HMM had
reached convergence, the updated Π matrix showed that
the HMM had probabilities of 0.76, 0.97 and 0.79 for the
next bin to be in the same state as the previous bin, for
state 0, state 1 and state 2, respectively. This confirmed
again the assumption of strong dependencies between
neighboring bins.
Using dCLIP, we identified 77,589 regions with no dif-

ferential binding, 7,594 regions with stronger binding in
the miR-155 knockout condition and 19,306 regions with
stronger binding in the wild-type condition. The number
of regions with stronger binding in wild-type was much
larger than the number of regions with stronger binding
in miR-155 knockout, which was reasonable because
diminishing of AGO protein binding at miR-155 target
sites should be the main effect of miR-155 knockout. To
narrow down the list of sites for analysis, 1,469 regions
that had stronger binding and an average tag intensity
of at least 30 in the wild-type condition were selected.
Figure 3 shows an example target region located in the
3’ untranslated region (UTR) of the Zfp652 gene. A bin
size of 10 bp was chosen for this analysis and sensitivity
profiling across a big range of bin size values showed
that the majority of these 1,469 regions were constantly
detected regardless of the bin size used (Figure 4).
Among the 1,469 genomic regions, 150 regions contained

at least one 6-mer seed motif of miR-155 (GCATTA).
These represented the putative miR-155 targets, as evi-
denced by the accumulation of a large number of deletion
mutations immediately upstream of the miR-155 seed
motif matches in the mapped reads (Figure 5a). Among
these 150 regions, 114 overlapped with the 3ʹUTR of at
least one gene (Figure 5b), consistent with previous know-
ledge of the miRNA targeting mechanism. In the original
publication [4], by using an ad hoc approach, the authors
identified a list of 108 targets that satisfied the same
criteria: stronger binding in wild-type than in knockout;
located in the 3’UTR of at least one gene; and at least one
seed motif match. There were 57 common binding sites
shared by the 114 sites found by dCLIP and 108 sites
found by the ad hoc approach. Although dCLIP identified
more binding regions containing the seed motif of miR-155
than the original ad hoc approach, the total number was
still relatively small. We believe the main reason for this
was due to the non-canonical seed match. Of the 1,469
genomic sites identified by dCLIP, we searched for seed-like
motifs with one mismatch (for example, GCACTA) or one
bulge (for example, GACATTA) to the perfect 6-mer seed
miR-155 motif (GCATTA), and found a total of 58 seed-like
motifs with one bulge and 441 seed-like motifs with one
mismatch, as well as 150 motifs having perfect matches. Al-
though not all of, and not only, these sites are non-canonical
miR-155 target sites, the numbers indicate the prevalence
of possible non-canonical binding sites for miR-155.
To assess the reliability of the inference results from

the dCLIP software, we studied the conservation scores
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Figure 3 An example of putative miR-155 target sites identified
by dCLIP. The tag intensities in the wild-type and miR-155 knockout
conditions are shown. Green bars indicate regions with the same
binding strength, and blue bars indicate regions with stronger AGO
binding in the wild-type than the knockout condition. The yellow
rectangle indicates the 6-mer seed motif of miR-155. KO, knockout.
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and gene expression levels of the targets identified by only
one method and not the other. We fetched the phyloP
(phylogenetic p-score) conservation scores in a 200 bp
window covering the seed motif matches of miR-155.
Then the conservation scores were averaged for the 57
sites found only by dCLIP and the 51 sites found only by
the ad hoc method. The sites found only by dCLIP had
much higher average conservation scores around the
miRNA seed matches than those identified only by the ad
hoc method (Figure 6). Because functional miRNA binding
sites tend to be conserved across species, the results indi-
cate that dCLIP identified more reliable differential binding
sites than the ad hoc approach. One interesting thing to
note is that while most studies focus only on the degree of
conservation within seed motif matches [34,35], our results
seem to suggest that miRNA targets are located in broader
contiguous regions conserved across multiple species.
miRNAs have been shown to suppress gene expression

through translational repression and mRNA decay [36-38].
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Therefore, we expected that miR-155 target genes would be
mainly upregulated after miR-155 knock out, and that these
changes could be measured at the mRNA level. We identi-
fied genes whose 3’UTRs had at least one putative miR-
155 target site, and used the microarray experiment data
from the original publication to calculate the expressional
changes after miR-155 knockout. We found that dCLIP-
specific target genes showed significant upregulation after
knockout compared to the background distribution, whereas
the ad hoc-specific target genes did not (Figure 7). There-
fore, the gene expression results also confirmed that dCLIP
outperforms the ad hoc method in identifying reliable
differential AGO binding sites.

FMR1 PAR-CLIP dataset
To show that dCLIP can also handle PAR-CLIP data-
sets, we applied the dCLIP software to a PAR-CLIP data-
set where the RBP under investigation is fragile X
(a)

Figure 5 Counts of nearby deletions and genomic annotations of the
around miR-155 seed motif matches. The x-axis is the relative distance to t
deletions per putative target site. The red rectangle shows the position of
and RefSeq genes. Distal intergenic refers to the genomic regions that are
sequences; UTR, untranslated region.
mental retardation protein (FMRP) [39]. The FMR1 RBP
family comprises three members, FMR1, FXR1 and FXR2.
FMR1 encodes for many isoforms, of which isoform 7 is
predominantly expressed [40]. The authors identified two
major binding motifs of FMR1, ACTT/ACTG and AGGA/
TGGA. The authors generated a recombinant FMR1 iso-
form 7 protein with a point mutation I304N in the KH2
domain. Through electromobility shift assays and PAR-
CLIP experiments conducted with the wild-type and
I304N proteins, the authors found the KH2 domain to be
specific for binding to the ACTT/ACTG motif. Therefore,
diminished binding to the ACTT/ACTG motif, rather
than the AGGA/TGGA motif, should be the primary ef-
fect of the point mutation.
We downloaded the raw sequencing files from [GEO:

GSE39686]. Adapters were trimmed and the sequencing
reads were aligned to the hg19 genome using Bowtie
[33]. Then we analyzed the mapping files with the dCLIP
(b)

150 binding sites identified by dCLIP. (a) Deletion mutations
he miR-155 seed motif match, and the y-axis is the mean number of
the miR-155 motif. (b) Overlap of the 150 AGO protein binding sites
not coding sequences, 3ʹUTRs, 5ʹUTRs or introns. CDS, coding



Figure 6 Conservation scores of AGO binding sites found by
only one method and not the other. The y-axis is the phyloP
conservation scores, and the x-axis is the relative distance to the
start of miRNA seed match. The purple and green lines show the
averaged conservation scores for the dCLIP-specific and ad hoc
method-specific sites. The color bars at the bottom show the P-values
of one-way t tests of the conservation scores in a 3 bp moving
window between the ad hoc and dCLIP methods.
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software. dCLIP found a total of 9,859 FMR1 isoform 7
binding sites that had stronger binding strength in the
wild-type than in the I304N mutant condition and had
at least an average tag intensity of three in the wild-type
condition. We show one such binding site in Figure 8a.
This binding site locates in the 3’UTR of the Smad4
gene. The blue bar marks the binding region that has re-
duced binding upon mutation. Both the total tag counts
and T→C mutation counts are shown.
We further calculated the number of T→ C mutations

that occur on top of all ACTT, ACTG and TGGA motifs
found within those 9,859 binding sites in both the wild-
type and I304N condition (Figure 8b). The T→C mutation
counts on the T bases in these motifs were divided by the
Figure 7 The expressional differences of target genes found by
only one method and not the other. The expression profiles of all
genes constitute the background distribution. P-values were
calculated by a one-sided Kolmogorov-Smirnov test comparing
method-specific genes with the background distribution. The x- axis
shows the cutoff, and the y- axis shows the percentage of genes that
have differential expression greater than the cutoff (as compared to
background). ko, knockout; wt, wild-type.
total T→C counts in a 30 bp window as the background
distribution. Because the AGGA motif does not have a T
base, there were no T→C mutations on top of this motif
and this motif was thus not included in this analysis.
The normalized number of T→ C mutations in the
I304N condition was smaller than the number of T→C
mutations in the wild-type condition for the ACTT/ACTG
motif as well as the TGGA motif, consistent with these sites
having weaker binding in the I304N condition. The extent
by which the relative T→ C mutation counts decreased
in the I304N condition was much more significant for
the ACTT/ACTG motif (P <2e-16 for ACTT, P = 1.9e-12

for ACTG) than the TGGA motif (P = 1.4e-5). This was
expected because the I304N point mutation locates in the
KH2 domain responsible for binding to the ACTT/ACTG
motif. Because the ACTT/ACTG and TGGA/AGGA mo-
tifs always occur in adjacent or nearby regions on the
genomic sequence, a loss of binding affinity to the ACTT/
ACTG motifs by the I304N mutation should lead to a sec-
ondary, weaker effect on the binding of the protein to
neighboring TGGA/AGGA motifs. Overall, the analysis of
this FMR1 PAR-CLIP dataset shows that dCLIP also per-
forms well on PAR-CLIP datasets.

miR-124/AGO HITS-CLIP dataset
We also benchmarked the performance of dCLIP against
Piranha [16], which provides a procedure for comparative
CLIP-seq analysis. In the Piranha software, read intensities
are first counted and binned. It also defines a set of prop-
erties that vary along with the count data. These one or
more properties could be either count or other types of
data. For example, one property could be the binned count
data of the second condition, which enables Piranha to
identify differentially regulated RBP binding sites in this
scenario. The count of the second condition is used to scale
the count of the first condition and the scaled count data
are used to fit a model. For fitting the statistical model, a
variety of options are provided, including Poisson Model,
Negative Binomial Model, Zero Truncated Poisson Model
and Zero Truncated Negative Binomial Model. Finally, bins
with significant P-values are identified as differential bind-
ing sites.
We compared the performance of the dCLIP and Piranha

software on the miR-124/AGO HITS-CLIP dataset pro-
duced from the original publication of Piranha [16]. In this
dataset, HEK293 cells were transfected with miR-124 to
identify its targets by comparison against non-transfected
cells. Because miR-124 is not endogenously expressed, the
AGO binding sites that are enriched in the transfected
condition compared with the non-transfected condition
should mostly mark miR-124 binding sites. We down-
loaded the raw sequencing data from SRA056343, trimmed
adapters and then aligned the Fastq files to the hg19
genome using Bowtie [33] and Novoalign. Then dCLIP and
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Figure 8 The analysis of the FMR1 dataset by dCLIP. (a) An example of FMR1 binding site with stronger binding in the wild-type condition
than the I304N condition. The total tag counts and T→ C mutant tag counts are shown. Green bars indicate common binding regions, and blue
bars indicate regions with stronger binding in the wild-type than the I304N condition. The peak heights are scaled proportionally to the total
sequencing depths of the two samples. (b) The relative counts of T→ C mutations on top of all ACTT/ACTG and TGGA motifs found within the
9,859 binding sites. The T→ C mutation counts on the T bases in these motifs are divided by the total T→ C counts in a 30 bp window as
background distribution. Because the sequences surrounding these motifs vary and for each base outside these motifs only a fraction of the
9,859 binding sites have T base, they are all marked as N. The P- values shown are for testing the differences in the proportions of T→ C counts
on top of each motif out of the total T→ C counts in the 30 bp window between the wild-type condition (pink line) and I304N condition
(blue line). WT, wild-type.
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Piranha (using the Poisson model) were used to identify the
differential AGO binding sites enriched in the transfected
condition. For both tools, a bin size of 5 bp was used.
dCLIP identified a total of 419 sites that were more

enriched in the miR-124-transfected than the control cells,
with an average tag count of at least five in the miR-124
transfected cells. We ranked target sites identified by
Piranha by P-value and chose a cutoff that resulted in
418 final sites, in order to match the number of sites
identified by dCLIP. There were a total of 202 common
sites found by both methods. We then selected sites
that could only be found by dCLIP (217) and those could
only be found by Piranha (216) to conduct downstream
comparison. First, we searched for motifs matching to any
7-mer from the reverse-complement of the miR-124
mature sequence within the RNA sequences of method-
specific target sites. We plotted the motif matches relative
to the target site centers in Figure 9a,b. The sequences of
the dCLIP-specific sites contained 95 7-mer matches, of
which 85% were within 20 bp of the target site centers. By
comparison, the sequences of the Piranha-specific sites
only contain 41 7-mer matches, of which 58% were within
20 bp of the target site centers. We also plotted the total
motif matches found by each method in Figure 9c,d.
Second, we investigated the number of deletions around
peak centers. Since deletions are the characteristic muta-
tions of RBP-binding sites in AGO HITS-CLIP experiments
[8], we expected to find more deletions in the true differ-
ential binding sites. We counted the number of deletion
mutations within the method-specific targets in both
the miR-124 transfected and control cells. We divided the
deletion counts in the miR-124-transfected cells by the
mean number of deletions in the control cells and plotted
the relative deletion counts for each method (Figure 9e,f).
The dCLIP-specific targets provided a much higher relative
count of deletion mutations than the Piranha-specific
targets. In conclusion, the results of both motif matches
to miR-124 and deletion mutation counts suggest that
dCLIP was able to identify more biologically meaningful
target sites than the Piranha software.
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Figure 9 Comparison of the dCLIP software and the Piranha software. (a,b) Motif match counts within target sites found by only one
method and not the other. Targets sites were extended to 100 bp both upstream and downstream from the peak center. Then the RNA
sequences covered by the target sites were scanned for matches to any 7-mer from the reverse-complement of the mature miR-124 sequence
(GGCAUUCACCGCGUGCCUUA). The x-axis is the relative distance of motifs to the peak centers and the y-axis is the number of sites with motif
matches. (c,d) Total motif match counts within target sites found by each method. (e,f) Targets sites were extended to 100 bp both upstream
and downstream from the peak center. Then the deletion mutations were counted within the method-specific target sites in both miR-124
transfected and the control conditions. The mutation count number in the transfected condition was divided by the mean count number in the
control condition to produce a relative ratio. The relative counts were then plotted for each set of method-specific sites. The x-axis is the relative
distance of deletions to the peak centers and the y-axis is the relative counts.
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TDP-43 iCLIP dataset
dCLIP is also able to analyze iCLIP datasets. The major
difference of processing iCLIP datasets from HITS-CLIP
and PAR-CLIP datasets is that cDNA counts, rather than
total tag counts, are analyzed by the algorithm and no
mutant tag counts are collected. We downloaded the
TDP-43 iCLIP datasets from [41]. The TDP-43 RBP protein
is mainly localized to the nucleus, and is involved in
transcription, alternative splicing and the development
of many diseases [42]. Aggregation of misfolded TDP-43
has been implicated in the neurodegenerative diseases fron-
totemporal lobar degeneration (FTLD) and amyotrophic
lateral sclerosis [43]. In this study, the authors conducted
iCLIP experiments with human postmortem cortical
tissue from three healthy individuals and three patients
who had sporadic FTLD with TDP-43 inclusions. The
sequencing data from both sets of participants were
pooled before mapping and we used an in-house program
to remove PCR duplicates and trim the barcodes. We then
mapped the sequencing tags to the hg19 reference gen-
ome and used dCLIP with a bin size of four nucleotides
to analyze the alignment files. We also compared the
performance of Piranha (PoissonRegression) with dCLIP
on this iCLIP dataset.
The original publication determined that the FTLD

iCLIP samples, compared to healthy samples, had increased
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binding of TDP-43 to small nucleolar RNAs (snoRNAs),
small nuclear RNAs (snRNAs), transfer RNAs (tRNAs)
and ribosomal RNAs (rRNAs), while binding to miRNAs
decreased [41]. Figure 10a shows an example, in which
the TDP-43 protein bound more strongly to the ACA35
snoRNA (SCARNA1) in the patients with FTLD than in
healthy individuals. To examine this on a genome-wide
scale, we calculated the proportion of sites with stronger
binding in the FTLD tissues that could be mapped to each
of the non-coding RNA species divided by the proportion
of sites with stronger binding in the healthy condition that
could be mapped to the same non-coding RNA species.
Indeed, we confirmed the original publication’s finding by
the fact that the sites found to have stronger binding in
the FTLD brains by dCLIP are more likely to be mapped
to snoRNAs, snRNAs, tRNAs and rRNAs and less likely
to be mapped to miRNAs, as compared to sites with
stronger binding in the healthy controls (Figure 10b). The
ratios of proportions calculated from differential binding
sites found by Piranha for snoRNAs, snRNAs, tRNAs and
rRNAs were also >1; however, the ratio for miRNAs was
approximately 1.2, inconsistent with the original publica-
tion’s finding. Moreover, this bias in annotation, reflected
by the ratios of proportions, was more dramatic in differ-
ential binding sites found by dCLIP than in differential
binding sites found by Piranha, for rRNAs, snRNAs
and tRNAs (with only one exception for snoRNA). These
results suggest that dCLIP is able to properly analyze
iCLIP datasets and also performs better than Piranha.

Discussion
The two-stage procedure implemented in dCLIP includes
an MA normalization step and a HMM to identify differ-
ential and common binding sites. The MA normalization
is a critical step to make the CLIP-seq data comparable
(a) (b) 
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Figure 10 The analysis results of dCLIP on the TDP-43 iCLIP datasets.
stronger binding in postmortem FTLD brains than healthy brains. The cDN
the FTLD brain. The height of each peak represents un-normalized cDNA c
species. The ratio is calculated as the proportion of sites found to have stro
species, divided by the proportion of sites having stronger binding in the h
also calculated for the differential binding sites found by Piranha, for comp
non-coding RNA, rRNA, ribosomal RNA; snoRNA, small nucleolar RNA; snRN
across conditions. The straightforward rescaling by the
total number of reads across samples is not appropriate
for comparative CLIP-seq analysis because the signal-to-
noise ratio usually varies across different conditions. The
modified MA plot normalization method in dCLIP not
only addresses the issue of different signal and noise levels
effectively, but also works on much smaller units than those
used for microarray and ChIP-seq data analysis, allowing
dCLIP to detect binding sites of higher resolution required
for CLIP-seq data analysis. To reduce potential bias and
conduct rigorous comparison across different conditions, we
recommend adopting the same experimental and bio-
informatics procedures, such as RNase digestion, high-
throughput sequencing and alignment, for both conditions.
The HMM plays a key role in identifying differential

and common binding sites of two CLIP-seq samples in
the dCLIP software. HMM can increase signal-to-noise
ratios for sequencing data analysis, because it takes into
account the correlation between consecutive bins. This
is particularly important for CLIP-seq data, because of
small bin size and high correlations between consecutive
bins. The HMM in dCLIP defined a common binding
state and two differential binding states. One thing to
note for the three-state HMM is that the identified differ-
ential binding sites, for example the ones with inferred
state of enriched and non-enriched, may actually only have
a small tag enrichment in condition one, and an even
smaller tag enrichment in condition two. Therefore, the
differential binding sites need to be ranked and screened
as such sites may not be of real interest to biologists.
The analysis of the miR-155/AGO HITS-CLIP dataset,
for example, set a cutoff of average tag intensity of 30 in
the wild-type condition.
One assumption of the dCLIP algorithm is that most

sites will not have changes in their binding between
roportions of sites mapped to each 
ncRNA species
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(a) An example of TDP-43 binding site on the ACA35 snoRNA with
A counts are shown. Red bars indicate regions with stronger binding in
ounts. (b) Ratios of proportions of sites mapped to each ncRNA
nger binding in the FTLD condition by dCLIP, mapped to each ncRNA
ealthy individuals mapped to the same ncRNA species. The ratios are
arison with dCLIP. FTLD, frontotemporal lobar degeneration; ncRNA,
A, small nuclear RNA; tRNA, transfer RNA.
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conditions. Our simulation studies (Additional file 4) show
that dCLIP is able to handle comparative CLIP-seq analysis
when there are more than 50% of common binding sites
between two samples. We recommend users to roughly
assess whether this assumption is valid or not for their ex-
periments based on biological knowledge or preliminary
bioinformatics analysis. In addition, dCLIP software will
issue a warning if the estimated proportion of common
binding sites with similar binding strength is less than 50%.
The dCLIP software was benchmarked against the

Piranha software. Piranha incorporates covariates which
could represent transcript abundance, count data in the
second condition or positional mutation information. How-
ever, the covariate is incorporated in the statistical model
in the exactly same way no matter which type of data it
actually represents. This design enables Piranha to be
easily applied to a wide variety of CLIP-seq data analysis
scenarios. However, this one-for-all method also harms
the detection power of RBP binding regions of interest in
each specific scenario, as different data types have their
unique properties and should be treated differently. The
dCLIP method is specialized in comparing two CLIP-seq
experiments and was shown to perform better than Piranha
in identifying differential binding sites. Therefore dCLIP
should be a better choice when the users are interested in
identifying differential or common RBP-binding sites.
The pairwise approach to compare CLIP-seq data in

dCLIP can be extended to multiple-sample comparison.
When there are n samples, a transition matrix of 2n states
need to be implemented in the HMM. Theoretically, dCLIP
can be easily modified to handle as many samples as
possible. However, if n exceeds 10, the computation cost
will increase dramatically. In addition, the normalization
method also needs to be changed to suit the multiple-
sample comparison. For example, the trimmed mean of M
values method [44] or the upper-quartile normalization
method [45] could be modified to handle the normalization
step for multiple-sample comparisons. Currently, most
CLIP-seq studies do not conduct transcript abundance
measurements [29,46] and, accordingly, most current
CLIP-seq analysis tools, such as PARalyzer [13], do not
consider transcript abundance either. However, taking
background transcript abundance into account will be
very helpful for more accurately defining RBP binding
sites in either one-sample scenarios or multiple-sample
scenarios. If the background expression data is available,
that information can be relatively easily incorporated into
dCLIP to further refine its performance.
We present a new computational approach, dCLIP,

for the comparative analysis of CLIP-seq data. dCLIP was
implemented as an easy-to-use command line tool in the
Perl programming language. The dCLIP software is able
to handle HITS-CLIP, PAR-CLIP and iCLIP datasets, and
can take single-end or paired-end sequencing files as
input. The dCLIP software is strand-sensitive and is able
to detect differential binding sites at almost single-base
resolution. It also correctly keeps all of the characteristic
mutation information for later analysis. Real data analysis
shows that dCLIP can accurately identify differential bind-
ing regions of RBPs and outperforms another CLIP analysis
program, Piranha [16]. We anticipate that the dCLIP soft-
ware will become a helpful tool for biologists and bioinfor-
maticians for comparative CLIP-seq data analysis.

Additional files

Additional file 1: Source code of the dCLIP software 1.0.

Additional file 2: User guide for the dCLIP software 1.0.

Additional file 3: Exemplary output files of the dCLIP software.

Additional file 4: Simulation results to test the robustness of the
dCLIP software.
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