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Abstract

A large number of computational methods have been developed for analyzing differential gene expression in
RNA-seq data. We describe a comprehensive evaluation of common methods using the SEQC benchmark dataset
and ENCODE data. We consider a number of key features, including normalization, accuracy of differential
expression detection and differential expression analysis when one condition has no detectable expression. We
find significant differences among the methods, but note that array-based methods adapted to RNA-seq data
perform comparably to methods designed for RNA-seq. Our results demonstrate that increasing the number of
replicate samples significantly improves detection power over increased sequencing depth.

Background
High-throughput sequencing technology is rapidly
becoming the standard method for measuring RNA
expression levels (aka RNA-seq) [1]. The advent of rapid
sequencing technologies along with reduced costs has
enabled detailed profiling of gene expression levels,
impacting almost every field in life sciences and is now
being adopted for clinical use [2]. RNA-seq technology
enables the detailed identification of gene isoforms,
translocation events, nucleotide variations and post-tran-
scriptional base modifications [3]. One of the main goals
of these experiments is to identify the differentially
expressed genes in two or more conditions. Such genes
are selected based on a combination of expression
change threshold and score cutoff, which are usually
based on P values generated by statistical modeling.
The expression level of each RNA unit is measured by

the number of sequenced fragments that map to the
transcript, which is expected to correlate directly with
its abundance level. This measure is fundamentally dif-
ferent from gene probe-based methods, such as microar-
rays. In RNA-seq the expression signal of a transcript is
limited by the sequencing depth and is dependent on
the expression levels of other transcripts, whereas in
array-based methods probe intensities are independent

of each other. This, as well as other technical differ-
ences, has motivated the development of a growing
number of statistical algorithms that implement a vari-
ety of approaches for normalization and differential
expression (DE) detection. Typical approaches use Pois-
son or negative binomial distributions to model the
gene count data and a variety of normalization proce-
dures (see [4] for a review).
In this comparison study, we evaluated a few of the

most commonly used and freely available differential
expression software packages: Cuffdiff [5], edgeR [6],
DESeq [7], PoissonSeq [8], baySeq [9], and limma [10]
adapted for RNA-seq use. We used two benchmark data-
sets: the first is the Sequencing Quality Control (SEQC)
dataset, which includes replicated samples of the human
whole body reference RNA and human brain reference
RNA along with RNA spike-in controls. These samples
are part of the MAQC study for benchmarking microar-
ray technology [11,12] as well as the SEQC effort to char-
acterize RNA-seq technology and include close to 1,000
genes that were validated by TaqMan qPCR. The second
dataset is RNA-seq data from biological replicates of
three cell lines that were characterized as part of the
ENCODE project [13]. Our analysis focused on a number
of measures that are most relevant for detection of differ-
ential gene expression from RNA-seq data: i) normaliza-
tion of count data; ii) sensitivity and specificity of DE
detection; iii) performance on the subset of genes that
are expressed in one condition but have no detectable
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expression in the other condition and, finally, iv) the
effects of reduced sequencing depth and number of repli-
cates on the detection of differential expression. Impor-
tantly, this evaluation does not address the related and
important problem of detecting differential isoform
expression and identification of novel transcripts. Rather,
the evaluation is restricted to the specific case of detect-
ing DE based on unified gene models.
Our results demonstrate substantial differences among

the methods both in terms of specificity and sensitivity
for the detection of differentially expressed genes. In
most benchmarks Cuffdiff performed less favorably with
a higher number of false positives without any increase
in sensitivity. Our results conclusively demonstrate that
the addition of replicate samples provides substantially
greater detection power of DE than increased sequence
depth. Hence, including more replicate samples in
RNA-seq experiments is always to be preferred over
increasing the number of sequenced reads.

Theoretical background
A convenient starting point for comparing different
RNA-seq analysis methods is a simple count matrix N of
n × m where Nij is the number of reads assigned to gene
i in sequencing experiment j (that is, read counts). Such
matrices can be produced from alignment data using
tools such as HTSeq [15], Picard [16], BEDTools [17],
featureCounts [18] or Cufflinks [19]. The study presented
here does not address the important subtleties when cal-
culating gene counts, in particular which gene model to
use, how to count reads overlapping intronic regions and
the use of ambiguously mapped reads. Rather, the focus
is on the comparison between methods given a fixed
expression count matrix. For Cuffdiff, which uses a dif-
ferent quantitation method that is not compatible with
the others, we used its joint method Cufflinks and for all
other methods we used HTSeq. It is important to recog-
nize that the number of reads which overlap a gene i is
not a direct measure of the gene’s expression. Rather
the count measure Nij ∝ liμij where μij and li are the
expected expression and gene length, respectively. Hence
there is a clear length bias when measuring gene expres-
sion by RNA-seq [20]. One effect of this bias is to reduce
the ability to detect differential expression among shorter
genes simply from the lack of coverage since the power
of statistical tests involving count data decreases with a
lower number of counts [21,22].
Differential gene expression analysis of RNA-seq data

generally consists of three components: normalization of
counts, parameter estimation of the statistical model and
tests for differential expression. In this section we provide
a brief background into the approaches implemented by
the various algorithms that perform these three steps.
We limit our discussion to the most common case of

measuring differential expression between two cellular
conditions or phenotypes although some of the packages
can test for multi-class differences or multi-factored
experiments where multiple biological conditions and
different sequencing protocols are included.
Normalization
The first difficulty to address when working with sequen-
cing data is the large differences in the number of reads
produced between different sequencing runs as well as
technical biases introduced by library preparation proto-
cols, sequencing platforms and nucleotide compositions
[23]. Normalization procedures attempt to account for
such differences to facilitate accurate comparisons
between sample groups. An intuitive normalization is to
divide the gene count simply by the total number of
reads in each library, or mapped reads, as first introduced
by Mortazavi et al. [1], a normalization procedure named
reads per kilobase per million reads (RPKM). A defi-
ciency of this approach is that the proportional represen-
tation of each gene is dependent on the expression levels
of all other genes. Often a small fraction of genes account
for large proportions of the sequenced reads and small
expression changes in these highly expressed genes will
skew the counts of lowly expressed genes under this
scheme. This can result in erroneous differential expres-
sion [24,25]. A variation of RPKM, termed fragments per
kilobase of exon per million mapped reads (FPKM), was
introduced by Trapnell et al. to accommodate paired-end
reads [19]; however, this has the same limitation of cou-
pling changes in expression levels among all genes.
DESeq computes a scaling factor for a given sample by
computing the median of the ratio, for each gene, of its
read count over its geometric mean across all samples. It
then uses the assumption that most genes are not DE
and uses this median of ratios to obtain the scaling factor
associated with this sample. Cuffdiff extends this by first
performing intra-condition library scaling and then a sec-
ond scaling between conditions. Cuffdiff also attempts to
account for changes in isoform levels explicitly by addi-
tional transcript-specific normalization that estimates the
abundance of each isoform.
Other normalization procedures attempt to use a sub-

set of stably expressed genes or to normalize within repli-
cated samples to globally adjust library sizes. The
trimmed means of M values (TMM) from Robinson and
Oshlack [25], which is implemented in edgeR, computes
a scaling factor between two experiments by using the
weighted average of the subset of genes after excluding
genes that exhibit high average read counts and genes
that have large differences in expression. Another
approach is to sum gene counts up to the upper 25%
quantile to normalize library sizes as proposed by Bullard
et al. [24] and is the default normalization in the baySeq
package. The PoissonSeq package uses a goodness-of-fit
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estimate to define a gene set that is least differentiated
between two conditions, which is then used to compute
library normalization factors. Quantile normalization
ensures that the counts across all samples have the same
empirical distribution by sorting the counts from each
sample and setting the values to be equal to the quantile
mean from all samples [26]. This normalization is widely
used in expression arrays and is implemented in the
limma package. Recently, a new normalization function
termed voom designed specifically for RNA-seq data was
added to the limma package. It performs a LOWESS
regression to estimate the mean-variance relation and
transforms the read counts to the appropriate log form
for linear modeling [27].
Statistical modeling of gene expression
If sequencing experiments are considered as random
samplings of reads from a fixed pool of genes then a nat-
ural representation of gene read counts is the Poisson
distribution of the form f (n, λ) = (λne−λ)/n! where n is
the number of read counts and l is a real number equal
to the expected number of reads from transcript frag-
ments. An important property of the Poisson distribution
is that the variance is equal to the mean, which equals l.
However, in reality the variance of gene expression across
multiple biological replicates is larger than its mean
expression values [28-30]. To address this over-disper-
sion problem, methods such as edgeR and DESeq use the
related negative binomial distribution (NB) where the
relation between the variance ν and mean μ is defined as
ν = μ + aμ2 where a is the dispersion factor.
Estimation of this factor is one of the fundamental dif-

ferences between the edgeR and DESeq packages. edgeR
estimates a as a weighted combination of two compo-
nents: a gene-specific dispersion effect and a common
dispersion effect calculated from all genes. DESeq, on the
other hand, breaks the variance estimate into a combina-
tion of the Poisson estimate (that is, the mean expression
of the gene) and a second term that models the biological
expression variability. Cuffdiff computes a separate var-
iance model for single-isoform genes and multi-isoform
genes. Single-isoform expression variance is computed
similarly to DESeq and multi-isoform variance is mod-
eled by a mixture model of negative binomials using the
beta distribution parameters as mixture weights. baySeq
implements a full Bayesian model of negative binomial
distributions in which the prior probability parameters
are estimated by numerical sampling from the data. Pois-
sonSeq models the gene counts Ni,j as a Poisson variable
in which the mean μi,j of the distribution is represented
by the log-linear relationship log μij = log dj + log bi +
giyj where dj represents the normalized library size, bi is
the expression level of gene i and gi is the correlation of
gene i with condition yj (note that in [8] the subscripts i

and j are samples and genes, respectively). If the expression
of gene i is not correlated with the sample j class (that is,
there is no significant difference in gene i expression
between two conditions) then gi is zero.
Test for differential expression
The estimation of the parameters for the respective statis-
tical model is followed by the test for differential expres-
sion, the calculation of the significance of change in
expression of gene i between two conditions. Both edgeR
and DESeq use a variation of the Fisher exact test adopted
for NB distribution; hence, they return exact P values
computed from the derived probabilities. Cuffdiff uses the
test statistics T = E[log(y)]/Var[log(y)], where y is the ratio
of the normalized counts between two conditions, and this
ratio approximately follows a normal distribution; hence, a
t-test is used to calculate the P value for DE. limma uses a
moderated t-statistic to compute P values in which both
the standard error and the degrees of freedom are modi-
fied [10]. The standard error is moderated across genes
with a shrinkage factor, which effectively borrows informa-
tion from all genes to improve the inference on any single
gene. The degrees of freedom are also adjusted by a term
that represents the a priori number of degrees of freedom
for the model. The baySeq approach estimates two models
for every gene, one assuming no differential expression
and a second assuming differential expression using the
two sample groups. The posterior likelihood of the model
of DE, given the observed data, is used to identify differen-
tially expressed genes. In the PoissonSeq method the test
for differential expression is simply a test for the signifi-
cance of the gi term (that is, correlation of gene i expres-
sion with the two conditions), which is evaluated by score
statistics. By simulation experiments it was shown that
these score statistics follow a chi-squared distribution,
which is used to derive P values for DE. All methods use
standard approaches for multiple hypothesis correction
(for example, Benjamini-Hochberg) with the exception of
PoissonSeq, which implemented a novel estimation of
false discovery rate (FDR) for count data that is based on
permutation.

Results and discussion
Assessment of normalized counts by sample clustering
and log expression correlation
Normalization of read counts is a critical step in the ana-
lysis of RNA-seq data that is required to control for the
differences in sequencing depths so that gene expression
levels can be directly comparable across different sam-
ples. In addition, some normalization methods can be
used to correct for other effects such as variations in GC
content and transcript length [23]. To evaluate the differ-
ent normalization techniques we performed hierarchical
clustering of samples after log2 transformation of the
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normalized count values. We expect that normalization
will remove variations that are not due to biological dif-
ferences and hence the resulting clusters will coincide
with biological sources. Indeed, all methods achieved per-
fect separation between sample types for both the SEQC
and the ENCODE datasets suggesting that all normaliza-
tion methods are able to correct for variable sequencing
depths (see Figures S1 and S2 in Additional file 1 and see
Materials and methods for a description of samples). The
Dunn cluster validity index, which measures the ratios of
inter-cluster over intra-cluster distances, indicates a
higher cluster separation for the SEQC technical replicate
datasets (average Dunn index 3.41) relative to ENCODE
biological replicates (average Dunn index 1.00), confirm-
ing that biological replicates are more variable than tech-
nical replicates (Figure S3 in Additional file 1). The log2
distributions of the normalized read counts are similar
among most methods with the exception of limmaVoom
and Cuffdiff (Figure S4 in Additional file 1), presumably
due to the gene-specific normalization approaches by
those two methods in contrast to the global scaling that
is used by the other methods.
Some normalization methods, such as TMM or the

goodness-of-fit estimate, are meant to be used in con-
junction with a DE testing method and not for direct
comparison between samples. As an additional measure
of the accuracy of normalization we correlated the log2
normalized expression changes reported by each method
with log expression changes measured by qRT-PCR,
which is only available for the MACQ dataset [31]. Since
expression changes are unit-less measures (a ratio of two
expression values) we expect the changes to be similar in
magnitude and in range regardless of the measurement
platform. To assess how accurately the methods matched
the PCR data, we used root-mean-square deviation
(RMSD) to measure the difference in the reported
expression changes to the PCR standard. We found that
all methods performed well with an average RMSD accu-
racy of 1.65 (and Pearson correlation of 0.92) (Figure 1).

Differential expression analysis
We next evaluated the ability of the various methods to
detect differentially expressed genes using both the
ERCC and TaqMan data. The ERCC data contains a mix-
ture of spike-in synthetic oligonucleotides that are mixed
into samples A and B at four mixing ratios: 1/2, 2/3, 1
and 4. It is, therefore, possible to test how well the meth-
ods correctly identify these ratios. Using the mixing ratio
of 1:1 (log ratio = 0) as the true negative set and all
others as true positives, we performed a ROC analysis to
compare the performance of the various methods in
detecting differentially mixed spike-in controls. Overall,
all methods performed reasonably well in detecting the
truly differentiated spike-in sequences with an average

area under the curve (AUC) of 0.78 (Figure S5 in
Additional file 1).
A more comprehensive control group is the set of

roughly 1,000 genes whose expression changes were pre-
viously measured by qRT-PCR as they span a wider range
of expression ratios and represent a sampling of the human
transcripts [31]. We performed a ROC analysis using a log2
expression change cutoff of 0.5 (1.4 × expression change
measured by qRT-PCR) as the threshold for true differen-
tiation. The AUC values at this cutoff indicate comparable
performance among all methods with a slight advantage for
DESeq and edgeR (Figure 2a). We extended this analysis by
measuring AUC at increasing cutoff values of qRT-PCR
expression changes, which define sets of differentially
expressed genes at increasing stringency (Figure 2b). Here
we find a significant performance advantage for negative
binomial and Poisson-based approaches with consistent
AUC values close to 0.9 or higher in contrast to the Cuff-
diff and limma methods, which display decreasing AUC
values indicating reduced discrimination power at higher
expression change log values.

Null model evaluation of type I errors
A primary goal for any differential expression algorithm is
to minimize type I errors, which are incorrect rejections of
the null hypothesis H0: μi,A = μi,B, where μi,A||B is the
mean expression of gene i in condition A or B, resulting in
a false prediction of differential expression (false positive).
To test the number of false positive predictions from the
null models we performed a series of intra-condition com-
parisons using the SEQC technical replicate samples from
each condition (see Materials and methods). No genes are
expected to be differentially expressed in these compari-
sons and the distribution of P values is expected to be uni-
form since they are derived from the null model. We note
that baySeq was excluded from this analysis since it
reports posterior probabilities of a model and not P values,
which does not allow us to control it with the same strin-
gency as other methods. We indeed found that the
P values for all methods were largely uniform although less
so for the lower 25% expressed genes where experimental
noise is larger than the expression signal (Figure 3). A
noticeable exception was the increase in the P values at the
lower range (≤0.05) for the Cuffdiff distribution indicating
a large number of false positives. A similar observation was
noted by Anders et al.: Cuffdiff had an inflated number of
false positive predictions in their null model comparison
[32]. This trend was even more pronounced when the null
model comparison was performed without replicated sam-
ples (for example, Sample A 1 vs Sample A 2, Figure S6 in
Additional file 1).
Table 1 summarizes the number of false-positive predic-

tions identified by each method at an adjusted P value cut-
off (or FDR) of ≤0.05. Null model P values were computed
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Figure 1 RMSD correlation between qRT-PCR and RNA-seq log2 expression changes computed by each method. Overall, there is good
concordance between log2 values derived from the DE methods and the experimental values derived from qRT-PCR measures. Upper quartile
normalization implemented in baySeq package is least correlated with qRT-PCR values. DE, differential expression; RMSD, root-mean-square deviation.

Figure 2 Differential expression analysis using qRT-PCR validated gene set. (a) ROC analysis was performed using a qRT-PCR log2
expression change threshold of 0.5. The results show a slight advantage for DESeq and edgeR in detection accuracy. (b) At increasing log2
expression ratios (incremented by 0.1), representing a more stringent cutoff for differential expression, the performances of the Cuffdiff and
limma methods gradually reduce whereas PoissonSeq performance increases. AUC, area under the curve.
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from three intra-condition comparisons between repli-
cated samples from the same biological condition (see
Materials and methods). In total, 16,287, 16,286, 1,620 and
12,139 P values were calculated for genes in the 100%,
75%, 50% and 25% read count quartiles, respectively.
Hence, every gene has three reported P values from every
method representing the three null model comparisons.
Note that at the bottom 25% quantile, genes with zero
counts were excluded. Although the number of false pre-
dictions is below the 5% false discovery rates, the reduced
specificity points to inflation of differential expression

detection by Cuffdiff. When the comparison was per-
formed with no replicated samples, Cuffdiff’s false discov-
ery exceeded 5% where all other methods remained well
below this limit.

Evaluation of genes expressed in only one condition
Almost all RNA-seq experiments include a subset of
genes that have no detectable read counts in one of the
tested conditions due to very low or lack of expression.
In those cases the assessment of differential expression is
confounded by the lack of expression signal in one of the

Figure 3 P value distributions by gene read count quantiles from null model evaluations. Null model comparison where differential
expression (DE) is evaluated between samples from the same condition is expected to generate a uniform distribution of P values. Indeed, the P
value density plots, stratified by read count quartiles, have a uniform distribution. However, at the common significance range of ≤ 0.05 there is
a noticeable increase in P value densities in Cuffdiff results indicating larger than expected false DE genes. The smoothing bandwidth was fixed
at 0.0065 for all density plots and 25% was the lowest gene read count quartile.

Table 1 Number of false differential expression genes predicted by each method at adjusted P values (or false
discovery rate) ≤0.05 separated by gene read count quantiles.

Expression quantile Cuffdiff DESeq edgeR limmaQN limmaVoom PoissonSeq baySeq

100% (high expression) 28 5 3 0 0 7 1

75% 76 6 0 0 0 0 0

50% 84 27 1 2 0 0 0

25% (low expression) 5 9 0 87 0 0 0

Total 193 47 4 89 0 7 1
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tested conditions, which can lead to reduced sensitivity
(type II error), or more commonly to P values that are
inconsistent with the expression levels. Ideally, for this
subset of genes the P values for differential expression
should be monotonically correlated with the signal-to-
noise ratios in the expressed condition (μ/s, the ratio of
the mean over standard deviation) such that higher ratios
will be assigned more significant P values to reflect the
confidence in the expression measurement.
We evaluated this correlation using pair-wise compari-

sons among the three ENCODE datasets. We performed
an isotonic regression that models the relation between
predictor (signal-to-noise) and response (adjusted
P value) variables with the added constraint of maintain-
ing a monotonic dependency (that is, if xi ≤ xj then f(xi) ≤
f(xj)). The results clearly show that the limma and baySeq
approaches (and to some extent PoissonSeq) exhibit the
desired monotonic behavior between the signal-to-noise
and confidence in differential expression as measured by
adjusted P values whereas DESeq, edgeR and Cuffdiff
have poor correlation between these measures (Figure 4).
Consistent with the regression analysis, the Kendall-tau
rank correlation coefficients also indicate that adjusted
P values for limma and baySeq are best correlated with
signal-to-noise (Figure S7 in Additional file 1). Overall,
limma and baySeq had the closest correlation between
the two variables demonstrating close to ideal modeling.
We postulate that for this subset of genes, DESeq and
edgeR methods default to a Poisson model, which implies
that the variance is equal to the mean. Hence, the P
values are well correlated with the mean expression (data
not shown) but there is no correction for wide variations
in gene counts among replicate libraries.
Incorrect modeling of differential expression in this sub-

set of genes may also result in high levels of false negative
or false positive predictions where genes with high signal-
to-noise ratios are not identified as differentially expressed
or conversely genes with low signal-to-noise are declared
to be differentially expressed. Indeed, DESeq and edgeR
assign adjusted P values of ≤ 0.05 to almost all genes in
this dataset regardless of their signal-to-noise values.
To measure the sensitivity and specificity we performed
a ROC analysis using a signal-to-noise ratio of ≥3 as
the classification threshold for differential expression
(Figure 4b). The AUC values support the regression results
that limma and baySeq had a performance advantage over
other methods. Cuffdiff showed significantly reduced
specificity relative to other methods as indicated by the
large number of false negative genes that have significant
signal-to-noise ratios but poor P values (gray points below
the 1.3 line, that is, adjusted P values > 0.05, in Figure 4a).
This analysis was repeated with the SEQC datasets with
similar results (Figure S8 in Additional file 1).

Impact of sequencing depth and number of replicate
samples on differential expression detection
A common challenge when designing RNA-seq experi-
ment is to maximize the detection power of the study
under a limited budget or sample availability. This has
raised a number of practical questions. First, what is the
desired sequence depth for reliable detection of differential
expression and more broadly what is the detection power
at a given depth and number of replicates? Second, given a
limited sequencing budget, is it preferable to maximize the
sequencing depth or increase the number of replicate sam-
ples? Finally, what is the impact of different sequencing
depths and varying number of replicates on the perfor-
mances of the DE methods? To address these questions
we performed a series of comparisons using combinations
of subsets of the sequenced reads and samples. We gener-
ated a series of down-sampled libraries where a subset of
50%, 40%, 30%, 20%, 10% and 5% reads were randomly
sampled from each library (see Materials and methods).
We defined the true set of DE genes as the intersection of
the DE genes identified by DESeq, edgeR, limmaVoom
and baySeq using the full-size libraries and all five repli-
cates. We then evaluated DESeq, edgeR, limma and Pois-
sonSeq using a decreasing number of replicates and
sequence depth, by calculating their: i) sensitivity rates,
measured as the fraction of the true set, and ii) false posi-
tive (FP) rates, defined as the number of genes identified
only by the evaluated algorithm. This analysis was per-
formed on both the SEQC technical replicate samples and
the ENCODE biological replicate samples.
As expected, all methods had a smaller number of FPs

with increasing number of replications and increased
sequencing depths although there are noticeable differ-
ences between the methods. limmaQN and edgeR had
the lowest rates of FPs whereas DESeq had the highest
(Figure 5a and Figures S9 to S15 in Additional file 1).
Interestingly, false positive calls among the lowest 25% of
expressed genes increased with sequencing depth and
number of replicates in contrast to the higher expression
quartile where the FP rate reduces when more data is
provided. However, the total number of FPs is lowest in
the bottom 25% expression indicating that all methods
are conservative when predicting DE at low expression
ranges.
Sensitivity rates also improve significantly with increased

sequencing depth and number of replicates although, here
as well, significant variability exists between methods and
between expression levels (Figure 5b and Figures S9 to S15
in Additional file 1). Surprisingly, edgeR’s sensitivity for
the top half of expressed genes decreases with increasing
sequence depth (Figure S12 in Additional file 1). This is in
contrast to the expected trend that other methods exhibit
in which sensitivity improved with increasing number of
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reads. The most striking effect of sequence depth and
number of replicates is apparent in lowly counted genes
where sensitivity ranges from <10%, when the comparison
is performed with 5% of reads and two replications, to
100% detection when the comparison was performed using
the all the reads and all replicates. In contrast, for the
highly expressed genes there is little gain in sensitivity with
increasing sequencing data or measurements. With most
methods, over 90% of differentially expressed genes at the
top expression levels are detected with little as two repli-
cates and 5% of the reads.
Taken together these results lead to two conclusions.

First, the number of replicate libraries has a greater effect
on DE detection accuracy than sequencing depth. This is

true for both technical and biological replicates. Second,
DE detection of lowly expressed genes is most sensitive
to the number of reads and replication whereas there is
little benefit to increasing sequencing depths for detect-
ing DE in highly expressed genes.

Conclusions
In this study we performed a detailed comparative analysis
of a number of methods for differential expression analysis
from RNA-seq data. For the various methods, our com-
parison focused on the performance of the normalization,
control of false positives, effect of sequencing depth and
replication, and on the subset of gene expressed exclu-
sively in one condition. In contrast to other approaches,

Figure 4 Comparison of signal-to-noise ratio and differential expression (DE) for genes expressed in only one condition. (a) The
correlation between signal-to-noise and -log10(P) was used to evaluate the accuracy of DE among genes expressed in one condition. A total of
10,272 genes was exclusively expressed in only one of the contrasting conditions in the DE analysis between the three ENCODE datasets. Gray
shaded points indicate genes with adjusted P value ≥ 0.05, which are typically considered not differentially expressed. The results show that
Cuffdiff, edgeR and DESeq do not properly account for variance in measurements as indicated by poor agreement with the isotonic regression line.
(b) ROC curves for detection of DE at signal-to-noise ratio of ≥3. AUC: area under curve.
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Figure 5 False positive rates and sensitivity of differential expression (DE) with sequencing depth and number of replicate samples.
Differentially expressed genes in GM12892 vs MCF-7 cell lines were divided into four count quartiles and false positive rate and sensitivity were
measured by decreasing sequence counts and changing the number of replicate samples. Points and bars are average and standard deviation,
respectively, from five random samples of reads from each library; see Materials and methods for details. (a) Number of false positives defined as the
number of DE detected genes in GM12892 vs MCF-7 that were only identified by the specific method. (b) Sensitivity rates defined as the fraction of
true set genes. Note that PoissonSeq’s maximum sensitivity is below 1 since it was not included in the definition of the true set. See Figures S9 to S15
in Additional file 1 for similar plots for DE between other cell lines and technical replicates. DE, differential expression; FP, false positive.
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which rely on simulated data generated by specific statisti-
cal distribution or limited experimental datasets [23,33,34],
we used the SEQC experimental dataset where a large frac-
tion of the differentially expressed genes were validated by
qRT-PCR and biological replicates from three cell lines
profiled by the ENCODE project [13]. Overall, no single
method emerged as favorable in all comparisons but it is
apparent that methods based on negative binomial model-
ing (DESeq, edgeR, and baySeq) have improved specificity
and sensitivities as well as good control of false positive
errors with comparable performance. However, methods
based on other distributions, such as PoissonSeq and
limma, compared favorably and have improved modeling
of genes expressed in one condition. On the other hand,
Cuffdiff has reduced sensitivity and specificity as measured
by ROC analysis as well as the significant number of false
positives in the null model test. We postulate that this is
related to its normalization procedure, which attempts to
account for both alternative isoform expression and length
of transcripts. Table 2 summarizes the comparison results
in addition to a number of additional quality measures,
which were not directly evaluated in this study.
Surprisingly, the limma package, which was developed

and optimized for expression array analysis, had compar-
able, and by some measures improved, performance for
both normalization versions tested relative to the other
models, which were tailored for RNA-seq analysis.
Furthermore, the difference between quantile normaliza-
tion or the RNA-seq specific voom function in limma
was evident in the number of false DE genes in the null
model and in the sensitivity to the sequencing depth and
number of replicated samples. limma models the data as
a normal distribution, which is a reasonable assumption
for array intensities but perhaps counterintuitive for
count data since it models discrete data with a con-
tinuous distribution. However, it is plausible that in the
limit of large counts it is more important to model the

variance accurately than the discreteness. This study
demonstrates that for datasets with a large number of
genes (or tags), the limma package is well suited for detect-
ing DE genes and that modeling gene count data as a log
normal distribution, with the appropriate pseudo counts, is
a reasonable approximation.
The results from sequencing depth and replication ana-

lysis demonstrate conclusively that the number of sample
replicates is the most significant factor in accurate identifi-
cation of DE genes [33]. This is not surprising considering
that the focus of most methods is to model the variability
in gene expression measurements and therefore increasing
the number of replicates adds power to this estimate.
Since the squared signal-to-noise improves with increased
mean expression [35], DE among the highly expressed
genes is easily detected even with low sequencing depth
and few sample replicates. From a practical point of view,
studies focused on detecting DE among lowly expressed
genes will benefit significantly from an increased number
of replicates. Many additional factors that directly impact
the detection of differential expression were not consid-
ered in this study such as choice of alignment algorithm,
derivation of gene counts, multi-factored studies, detection
of alternative transcripts and choice of sequencing plat-
form. Cuffdiff, for example, incorporates differential iso-
form detection, which is not supported by the simple gene
counting methods evaluated here. It is also important to
note that the evaluated methods may not be applicable to
all types of RNA-seq data. For example, small RNA
sequencing is not always amenable to quantile normaliza-
tion as performed in this study (data not shown). Similarly,
RNA-seq data from cross-linking and immunoprecipita-
tion (CLIP) or RIP-seq from RNA-binding proteins are
fundamentally different in nature from typical trans-
criptome profiling and therefore require specialized mod-
els. Finally, the field of high-throughput sequencing is
rapidly evolving with new technologies being continuously

Table 2 Comparison of methods.

Evaluation Cuffdiff DESeq edgeR limmaVoom PoissonSeq baySeq

Normalization and clustering All methods performed equally well

DE detection accuracy measured by AUC at increasing
qRT-PCR cutoff

Decreasing Consistent Consistent Decreasing Increases up to log
expression change ≤ 2.0

Consistent

Null model type I error High
number of
FPs

Low
number of
FPs

Low
number of
FPs

Low
Number of
FPs

Low number of FPs Low
number of
FPs

Signal-to-noise vs P value correlation for genes
detected in one condition

Poor Poor Poor Good Moderate Good

Support for multi-factored experiments No Yes Yes Yes No No

Support DE detection without replicated samples Yes Yes Yes No Yes No

Detection of differential isoforms Yes No No No No No

Runtime for experiments with three to five replicates
on a 12 dual-core 3.33 GHz, 100 G RAM server

Hours Minutes Minutes Minutes Seconds Hours

AUC, area under curve; DE, differential expression; FP, false positive.
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introduced. These add additional elements of variability
to the measurements and will require specific considera-
tion [36].
The emergence of RNA-seq as the method of choice

for transcriptional profiling has motivated the develop-
ment of a growing number of algorithms for normalization
and analysis. This comparative study is the first exhaustive
comparison of the widely used DE methods on experimen-
tal data. It provides important guidelines for evaluating
RNA-seq analysis methods and points the direction for
future improvements.

Materials and methods
Datasets
In this study, we used samples from two sources that were
part of the SEQC study, each generated from a mixture of
biological sources and a set of synthetic RNAs from the
External RNA Control Consortium (ERCC) at known con-
centrations. The samples from group A contain the Strate-
gene Universal Human Reference RNA (UHRR), which is
composed of total RNA from ten human cell lines, with
2% by volume of ERCC mix 1. The second group of
samples B contains Ambion’s Human Brain Reference
RNA (HBRR) with 2% by volume of ERCC mix 2. The
ERCC spike-in control is a mixture of 92 synthetic polya-
denylated oligonucleotides, 250 to 2,000 nucleotides long,
which are meant to resemble human transcripts. The two
ERCC mixtures in groups A and B contain different con-
centrations of four subgroups of the synthetic spike-ins
such that the log expression change is predefined and can
be used to benchmark DE performance (see the Methods
section in main SEQC publication). Four replicate libraries
from groups A and B were prepared by a single technician
and a fifth sample was prepared by Illumina for a total of
ten libraries. All libraries were sequenced as paired-end
100 bases in the Epigenomics Core facility at Weill Cornell
Medical College with a full block design on two flow cells
on a single HiSeq2000 instrument (GEO accession
GSE49712). We note that these samples are considered
technical replicates and therefore represent an idealized
scenario of minimal variation.
ENCODE Biological replicate datasets were generated by

the ENCODE project [13] and the fastq files were down-
loaded [14]. We used replicate libraries from human cell
lines GM12892 (three replicates), H1-hESC (four repli-
cates) and MCF-7 (three replicates) sequenced as 75
paired-ends at the CalTech center. To determine whether
the ENCODE data adequately represents the variability
seen in biological samples we plotted the mean of the nor-
malized counts against the variance for the three cell lines
(Figure S16 in Additional file 1). The results show that the
variance does increase more rapidly than the mean indi-
cating that the ENCODE data is indeed over-dispersed

and is a good model for the variability seen in biological
replicates.

Sequence alignment and gene counts
All sequenced libraries were mapped to the human gen-
ome (hg19) using TopHat(v.2.0.3) [5] with the following
parameters: ‘-r 70 –mate-std-dec 90’. A custom GTF file
that includes both RefSeq information (from the UCSC
genome browser) and the ERCC transcript information
was used (–GTF $SEQCLB/hg19_150_ERCC.gtf) along
with the transcriptome index option (–transcriptome-
index $SEQCLIB/hg19_150_ERCC). Genes shorter than
150 bp were excluded from this GTF file. HTSeq
(v.0.5.3p3) [15] was used to generate the count matrix with
the following parameters: ‘htseq-count -m intersection-
strict -s no’ with the same GTF file used for the alignment
step ($SEQCLIB/hg19_150_ERCC.gtf).

Normalization and differential expression
With the exception of Cuffdiff, all differential expression
analysis was performed using the same gene count matrix
output from HTSeq. Analysis followed the procedures
and steps described in the package documentation and
unless stated otherwise default parameters were used in
all function calls. Adjusted P values for multiple hypoth-
esis corrections were used as calculated by the methods.
The following are the details for each package used in
this study:

• DESeq (v.1.10.1): The dispersion estimate call to
estimateDispersions had parameters: ‘method="per-
condition"’ and ‘fitType="local"’ and for null model
evaluation with no replicates ‘method="blind"’, ‘fit-
Type="local"’ and ‘sharingMode="fit-only"’.
• edgeR (v.3.0.2): In the null model comparison with
no replicates the common.dispersion value was set
to 0.4 as suggested by the documentation.
• PoissonSeq (v.1.1.2): No minimum expression mean
was applied and the number of permutations was 500.
• baySeq (v.1.12.0): Sequence length correction was
added to the normalization as suggested in the docu-
mentation. Negative binomial parameter estimation
was performed using getPriors.NB using quasi-likeli-
hood estimation. Note that baySeq reports posterior
probabilities for differences between two models and
not P values.
• limma(v.3.14.1) Analysis was performed in two
modes, which have different normalization procedures.
Quantile normalization was performed on the log2
transformed gene counts (with the addition of 1 to
avoid a log of 0) by normalizeBetweenArrays function
(known as limmaQN). In the second mode, counts
were normalized using the voom function where library
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sizes were scaled by edgeR normalization factors and
the mean-variance trend was calculated using LOWESS
regression (known as limmaVoom). Note that limma
does not allow contrasting libraries with no replication
and therefore limma was excluded from the single
library comparisons.
• cuffdiff (v.2.0.0 (3365)) with the options: ‘–no-
update-check –emit-count-tables’ and GTF file
$SEQCLIB/hg19_150_ERCC.gtf.

For each method, comparisons were performed between
the five replicates from sample type A with the five repli-
cates from type B. In the null model comparison two
models were tested, with replication and without replica-
tion. In the replication model, replicates from the same
samples were contrasted: {A1, A2} vs {A3, A4}, {A1, A2}
vs {A3, A4, A5} and {B1, B2} vs {B3, B4}. Comparisons
without replication were performed between the following
samples: A1 vs A2, A3 vs A4, B1 vs B2 and B3 vs B4.

Sample clustering
Normalized counts were log2 transformed after addition of
pseudo counts. For counts produced by HTSeq the pseudo
counts were set to the smallest non-zero gene count in
each library and for FPKM data the pseudo count was set
to 0.001. Clustering was performed using the R hclust
function with the Euclidean distance measure.

Random sampling and sequencing depth
To assess the effect of a reduced sequencing depth, we
used DownsampleSam, a function from Picard [16] that
randomly samples read pairs from a SAM file using a uni-
form probability. We generated a first set of reduced cover-
age depth samples by subsampling every sequence library
with a probability of p1 = 0.5 for retaining each read. We
then subsampled the resulting files with a probability p2 =
0.8. Therefore, we generated a set that subsampled the ori-
ginal files with a probability p1 × p2 = 0.4 representing 40%
sequencing depth. We continued this subsampling cascade,
ultimately generating six sets of files with 0.5, 0.4, 0.3, 0.2,
0.1 and 0.05 of the reads sampled from the original files.
We then repeated the operation five times, generating five
random datasets for each fraction value.
For each subsampled fraction, we used the five indepen-

dent samplings to compute differential expression between
every combination of subsets of samples (for example, all
groups of two samples from condition A compared to all
groups of two samples from condition B). We evaluated
the DE using DESeq, edgeR, PoissonSeq and limma using
the two described modes.

Source code
The source code and data files are available online [37].
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