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Abstract

WaRSwap is a randomization algorithm that for the first time provides a practical network motif discovery method
for large multi-layer networks, for example those that include transcription factors, microRNAs, and non-regulatory
protein coding genes. The algorithm is applicable to systems with tens of thousands of genes, while accounting
for critical aspects of biological networks, including self-loops, large hubs, and target rearrangements. We validate
WaRSwap on a newly inferred regulatory network from Arabidopsis thaliana, and compare outcomes on published
Drosophila and human networks. Specifically, sustained input switches are among the few over-represented circuits
across this diverse set of eukaryotes.
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Background
The study of system-wide genetic circuit structure is
useful to discover underlying patterns that are difficult
to observe by looking at a few individual interactions in
isolation. Studies of transcription factor (TF) networks
in yeast have shown that even in unicellular organisms,
there is a strong connection between overall regulatory
architecture and TF dynamics [1-3]. Because additional
components, such as non-coding RNAs known as
microRNAs (miRNAs), have been shown to play crucial
roles in gene regulatory networks of nearly every eukar-
yote [4-7], it would be desirable to identify and analyze
patterns of regulatory architecture, especially patterns
that include multiple regulatory entities with a variety of
biological behaviors. For example, an early study used
human gene-expression data to provide evidence that
feed-back and feed-forward circuits involving both TFs
and miRNAs are abundant in TF-miRNA interaction
networks [8].
One of the most relevant methods for identifying

over-represented circuit structures within a larger net-
work is called network motif discovery. This is a well-

established statistical method for finding over-repre-
sented sub-structures within a larger network, and facili-
tates analysis of the small understandable components
of networks, which are used repeatedly as building
blocks for a system. The aim of motif discovery is to
compare the frequency of particular sub-structures
(such as a three-node feed-forward loop) in a given
‘real-world’ network with its frequency in randomized
networks (Figure 1A). If the sub-structure appears much
more often than in these randomized ‘background’ net-
works, it is said to be a network motif. Network motif
finding algorithms have mainly used edge switching
(Figure 1B), a fast and simple randomization method
that preserves the exact in-degree (number of directed
edges coming in) and out-degree (number of directed
edges going out) of every node in a network [9,10].
However, concerns have been raised about the appropri-
ateness of this method because edge switching can sam-
ple uniformly only in the limit of extraordinarily long
sampling times, thus questionable results can be gener-
ated even for small TF-only networks on the order of
several hundred nodes [11,12]. The problem underlying
this difficulty is how to efficiently and uniformly sample
a collection of bipartite graphs with source and target
nodes of fixed in-degrees and out-degrees. To address
this problem, a trade-off between uniformity and speed
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Figure 1 An illustrative overview of network motif discovery, and two possible problems that may be encountered using the classic
edge-switching method for network randomization. (A) How network motif discovery works, illustrated using a subgraph of interest M. The
method determines whether M is observed a significantly large number of times in an original network N, compared with randomized networks
RN. If the P-value falls below a small pre-determined value, the subgraph count of M that is observed in original network N is considered to be
significant, and therefore M is called a network motif for N. (B) Edge switching is a method for generating randomized networks RN in (A) from
an original network N. It operates by repeatedly switching the endpoints of two edges. (Left) The two edges in red are selected for switching
(top) and their endpoints are exchanged, resulting in a valid graph (bottom). (Right) An example of a failed edge switch: the two edges in red
are selected for switching (top), but the exchange of endpoints (bottom) results in an invalid graph, in this case a graph with a double edge.
(C) An example of a low-variance count distribution for a particular subgraph, which indicates that the subgraph is highly significant and
therefore a motif. Low-variance count distributions (that is, those with small standard deviations) are one symptom of insufficiently randomized
networks RN (A), and can result from edge switching in large multi-layer networks.
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must be made when moving from near-regular graphs
(low-variance degrees) to highly irregular graphs (net-
works such as those found in eukaryotes with large TF
‘hubs’ that have nodes of large in-degree or out-degree).
An algorithm that can handle arbitrary degree

sequences (collections of node degrees, however uneven)
was presented in a recent review [13]. This algorithm
was more efficient than previous approximations, but
was ‘far from practical,’ even for hundreds of nodes, and
no code is available.
Two methods are currently available to address the

case of near-regular graphs, a fully polynomial rando-
mized approximation scheme (FPRAS) for undirected
graphs [14], and a software program called Diaconis
Monte Carlo Importance Sampling (DIA-MCIS) [15]
which implements a rapid, statistically motivated heuris-
tic based on sequential importance sampling [16].
Because most biological networks contain TF hubs, and
therefore do not satisfy the regularity conditions required
by these methods, they have not gained popular use
within the computational biology community. A software
implementation of the edge-switching technique, FAN-
MOD (Fast Network Motif Detection) [17], has been
applied to large predicted biological networks in humans
to address a system with many genes and regulation of
small RNAs [18,19]. Although some insight has been
gained by such efforts, such studies have also reported
that even if a large percentage of edges in the predicted
biological network (up to 50% [19]) are replaced with fal-
sified edges, the same network motif outcome is
obtained. Although this could indicate robust results, it
could also strongly suggest that the network motif out-
come is an artifact of the sampling method in these net-
works. Thus, there is clearly a need for evaluation of
appropriate methods to handle network motif analysis in
such large multi-layer graph structures.
These theoretical limitations and concerns about the

edge-swapping algorithm have a direct bearing on our
understanding and interpretation of the actual important
network motifs underlying many biological processes.
However, because to date there is a complete absence of
fast, publicly available algorithmic implementations that
address these challenges, edge switching has remained
the practical method of choice.
We hypothesized that an algorithm that treats the

background graph-generation method in a way that
respects the statistical goal of uniform draws, but also
incorporates realistic biological network behavior, would
reduce or eliminate the problems described above.
Based on state-of-the-art methods from the probability
literature and current biological knowledge of networks
involving both TFs and miRNAs, we designed a new
hybrid algorithm, WaRSwap (Weighted-and-Reverse-
Swap), which respects uniformity constraints even for

graphs with highly uneven in-degree and out-degree dis-
tributions (large source and target hubs), and performs
efficiently on graphs with tens of thousands of nodes
and hundreds of thousands of edges. We compared
WaRSwap with current methods on theoretically moti-
vated test examples, as well as actual TF-miRNA-gene
networks generated with a variety of biological con-
straints (binding stringencies) in a large eukaryotic gen-
ome, Arabidopsis thaliana. For a realistic comparison
on large graphs approaching genome-scale networks, the
Arabidopsis genome was chosen for its low-noise TF
and miRNA target prediction characteristics (small
intergenic regions, near-complementary miRNA target-
ing) and large gene set (around 30,000 genes, similar to
the number of human genes). We found that the
method facilitated discovery of biologically relevant pat-
terns in the gene-circuitry structure and generation of
hypotheses in a large genetic system involving both TFs
and non-coding RNAs. The arrival of the WaRSwap
algorithm is timely, with increasingly available experi-
mental data and interest in other large and complex
genetic systems including human cell lines.
Our validation of WaRSwap in Arabidopsis identified

prevalent autoregulatory gene circuits long associated
with developmental patterning. Among the motifs con-
taining both TFs and miRNAs, the miRNA-mediated
feed-forward loop was a predominant theme, but our
results suggest that this pulse-generating circuit may be
specific to tightly regulated TF and miRNA binding. We
also identified a gene circuit capable of creating a sus-
tained-input switch for a downstream TF or miRNA that
is robustly embedded into the structure of our biological
network in Arabidopsis. We compared these outcomes
with applications of WaRSwap in published Drosophila
and human regulatory networks, and made the striking
finding that sustained-input switches are among the few
over-represented circuits in these networks as well. Our
analysis supports the hypothesis that sub-circuits asso-
ciated with development are dominant across large mul-
ticellular genetic systems because of the need for reliable
spatiotemporal pattern formation in complex organisms.

Results
The goal of network motif discovery is to identify small
over-represented subgraphs within a larger graph struc-
ture. This goal is achieved by counting the number of a
particular subgraph present in the biological network of
interest, and then comparing this number with the distri-
bution of counts for this same subgraph over a number
of randomized networks (using a P-value or z-score as an
indicator of how extreme the value is compared with the
distribution of values from randomized networks; see
Figure 1A for a visual illustration). To obtain a meaning-
ful outcome, randomized networks must be produced in
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a way that 1) samples as uniformly as possible from the
set of all obtainable random networks (that is, it does not
unjustifiably produce certain random networks more
often others), 2) reflects the biological properties of the
actual network, and 3) is time-efficient and practical.
Edge switching operates by taking the original biologi-

cal network, selecting two directed edges within that net-
work, and switching their endpoints if possible (Figure
1B), then repeating this ‘select two edges and swap end-
points’ routine for a defined number of attempts. Net-
work motif discovery using edge switching has been
shown to be valuable in bacterial and yeast networks,
despite the theoretical caveats of the method. However,
because the networks of higher eukaryotes are often lar-
ger (tens of thousands of nodes, as opposed to several
hundred nodes) and contain multiple layers of regulation
(TFs and non-coding RNAs), we discovered that these
caveats can impede analyses of these networks.
We identified three primary difficulties when applying

edge switching, as implemented in FANMOD, on net-
works of the desired size; in this case, the tens of thou-
sands of nodes and hundreds of thousands of edges in an
Arabidopsis network (Table 1). Using the recommended
settings and three-node motif searches, we found an unex-
pectedly large number of motifs with a high z-score and
small P-value, which did not greatly narrow the focus to a
much smaller set of subgraphs. This result alone is not
worrisome because it is possible that, biologically, all of
the motifs are significant. However, upon close inspection
of the resulting background histogram of many ‘significant’
motifs, we found the standard deviation of the number of
randomized motifs to be very small (Figure 1C), clearly

indicating inadequate sampling. Finally, upon tracing the
execution of the algorithm, we discovered a large number
of failed switches; that is, an edge swap between two adja-
cent nodes that results in multiple edges and therefore
cannot be performed (Figure 1B). In our networks, an esti-
mated 50% of the motifs discovered with edge switching
exhibited the problems above (Table 1), which is the pro-
blem our algorithm addresses.
We hypothesized that these problems were symptomatic

of an inadequate exploration of the random graph search
space for large networks with highly uneven degree distri-
butions, such as the biological networks typical of multi-
cellular eukaryotes. Arabidopsis is advantageous for graph
construction because of its straightforward miRNA target
identification and short intergenic regions, which limit the
cis-element search space. Despite this, the number of
Arabidopsis genes (around 30,000) also far exceeds that of
single-cellular organisms, and is similar to the size of
the human gene set. Given this large genome size but
relatively simple architecture, this system is ideal for meth-
odological development. We designed a new algorithm
using high-confidence Arabidopsis networks to test and
address the algorithmic requirements of motif finding in
large eukaryotic gene networks with multiple layers of
regulation.

WaRSwap: an algorithm to identify over-represented
TF-miRNA-gene circuits in large eukaryotic genomes
WaRSwap design addresses motif discovery in large
multi-layer networks
The Core Method of the WaRSwap sampling algorithm
combines two main strategies to achieve fast, near-uniform

Table 1 Graph size, percentage of failed FANMOD edge switches, and motif count standard deviations for the 12
biological networks considered in the analysis.a

FNR (TF binding
sites)

deltaG (miRNA targets),
n

Nodes,
n

Edges,
n

FANMOD failed switches,
%

Standard deviation

WaRSwap count,
n

FANMOD count,
n

0.2 60 27,289 463,239 96 1,241,486 3,638

70 27,281 462,242 96 18,154 3,626

80 27,257 461,146 96 17,512 3,426

0.4 60 25,835 255,485 89 713,360 3,739

70 25,791 254,488 89 10,484 3,726

80 25,734 253,392 90 10,244 3,588

0.6 60 21,034 107,776 73 255,576 1,791

70 20,883 106,779 73 3,751 1,759

80 20,653 105,681 74 3,658 1,637

0.8 60 12,366 36,301 57 58,094 434

70 12,009 35,303 58 841 420

80 11,506 34,203 59 825 392

Abbreviations: FANMOD, Fast Network Motif Detection; FNR, False-negative rate, miRNA, MicroRNA; TF, Transcription factor; WaRSwap, Weighted-and-Reverse-
Swap.
aFor each biological network, there were 2,500 random subgraphs generated using the WaRSwap and FANMOD algorithms.
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sampling on graphs with both regular and highly uneven
degree distributions. (1) in weighted sampling the algorithm
uses dynamically corrected weighting at each vertex selec-
tion step to place an edge between two vertices according
to their current degrees and total required degrees [14];
this strategy avoids over-selection of hub-hub connections.
(2) Reverse swapping is then carried out if necessary. This
distributes edges from the large source hubs first; if/when
the algorithm reaches a state where no valid edge can be
created, it backtracks to find a valid swap with an already-
placed edge, so that the method can proceed instead of dis-
carding the sample. These two core strategies are illustrated
in Figure 2.
The WaRSwap Core Method is incorporated into an

algorithm with the capacity to handle multi-layered
graph structures, which treats the interactions between
each type of node in the network according to their bio-
logical constraints (Figure 3). In a biological network
with three different types of nodes, that is, TFs, miR-
NAs, and non-TF protein-coding genes (referred to
hereafter simply as ‘genes’), there are five biologically
different types of targeting interactions that occur
(represented in a graph by directed edges): TF®TF,
TF®miRNA, TF®gene, miRNA®TF, and miRNA®-
gene. Among these five graph layers, there are effectively
two different types of source-target interaction (see
Figure 3): layers where sources can target themselves
(TF® TF) and layers where this cannot happen (all
others). Thus, self-loops are handled in a natural way by
the method; they are simply treated as a directed edge
from a source to a target in the TF®TF layer of the
network, and the core algorithm is applied to this layer
exactly as to all others. Because miRNA and TF target
sites may be gained and lost during evolution, we speci-
fically designed WaRSwap to preserve the in-degree dis-
tribution for each layer rather than the exact in-degrees.
Figure 3 shows how this is achieved using WaRSwap:
for each source-target layer in the network, the in-
degrees are first permuted, and the core sampling
method described above is then applied to the layer.
The WaRSwap algorithm is presented in full, step-wise
detail in the Methods section.
WaRSwap handles the highly uneven degree distributions
of biological networks
The theoretical underpinnings of the WaRSwap Core
Method are designed to handle large graphs that might
have highly irregular degree distributions. However, all
algorithms must make some tradeoffs in uniformity
when handling extreme cases. To evaluate the relative
ability of the Core Method to sample graph spaces uni-
formly in a practical way, we used canonical examples to
directly compare its performance with two other meth-
ods: FANMOD [17], a commonly used implementation
of the edge-switching algorithm, and DIA-MCIS [12,15],

an importance sampling method intended to address the
shortcomings of edge-switching in TF networks. Figure 4
displays a comparison on three graphs of increasing ver-
tex number, for which it is still possible to enumerate the
total number of graphs with the same fixed in-degrees
and out-degrees. Even on this progression of tiny exam-
ples, the number of possible outcomes increased rapidly
(as discussed in the Introduction, there is no closed for-
mula for determining the number of such graphs). Each
algorithm was applied to the given graph (Figure 4) (in
the case of WaRSwap and DIA-MCIS, the methods
started from the given degree sequences defined by the
graph rather than the graph itself) to generate 10,000
random graphs.
We found that WaRSwap behaved in accordance with

its theoretical expectation. On examples without
extreme degree distributions (Figure 4a, b), the Core
Method tightly clustered the results about the uniform
probability value compared with FANMOD, while on
extreme examples, such as the canonical ‘large-hub’
graph in Figure 4c [20], this finding also held true. We
also found that whereas the other methods tended to
undersample graphs with no hub-hub connections,
WaRSwap slightly oversampled (as in the case of Figure
4c), although not to an extent greater than FANMOD’s
deviation for many sampled instances. WaRSwap’s
weighting correction parameter can be specifically
tuned; here, it was simply fixed at the smallest definable
integer value for all real-world biological networks that
we considered in our study (detailed in Methods), and it
was not chosen to enhance performance on these speci-
fic examples in any way. Interestingly, DIA-MCIS gener-
ally achieved its goal of sampling more uniformly than
FANMOD on these small examples where degree distri-
butions were relatively even (Figure 4a, b); however, the
method went awry in other cases (Figure 4c) and vastly
undersampled the graphs with no hub-hub connections.
Additional degree variation and sampling uniformity
comparison examples are provided (see Additional file 1).
The construction of WaRSwap accomplishes three

design goals for a network motif discovery algorithm in
large multi-layer networks involving both TFs and miR-
NAs. 1) Within each biological network layer, WaRSwap
samples uniformly on both near-regular graphs and on
canonically troublesome extreme cases with large source
and target hubs. 2) WaRSwap accounts for important
biological properties of graphs involving both TFs and
miRNAs. TFs target themselves in real biological net-
works (in fact, self-loops are an important theme in
developmental networks [21]), and TF binding sites as
miRNA target sites are not static entities, but rather
may be gained and lost over time [22]. 3) WaRSwap
results in a valid graph after visiting each source node
once (the result of distributing high weights first, then
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Figure 2 Weighted-and-Reverse-Swap (WaRSwap). (A) WaRSwap weighted vertex selection step: source vertices are placed in
descending degree order, and sources ‘select’ their targets for a directed-edge pairing of source and target. The target vertices are
selected by a source via weighted random sampling without replacement, with each target being assigned an ‘attraction’ weight that is
proportional to the current source and target capacity, but reduced by a factor that prevents overly frequent selection of large-degree source-
target pairs. In this way, over-selection of hub to hub connections is avoided. In the weighting formula, m is the number of required edges in
the graph. (B) WaRSwap reverse-swap step: if the algorithm reaches a state where a source S has undistributed edges to place (such as the
orange edge in the top illustration) but no valid targets, S will also have unfilled capacity for at least one target (shown here as TS1) for which a
valid edge exchange can be determined. The method identifies a corresponding target (shown here as TS’4) from a previously visited source S’,
such that the unplaced edge of S can connect to this target, and the previously placed (orange) edge from S’ to TS’4 can be moved to fill the
open capacity of the S’ target, TS1.
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performing exchanges to escape invalid states), allowing
the method to sample quickly enough to be practical on
large graphs (see Methods).

WaRSwap identifies nested subsets of circuits identified
by edge swapping
We first performed a stability analysis to determine a
number of samples for which WaRSwap provided highly
stable P-value output over all three-node subgraphs for
the large biological networks under evaluation. We
found that having 2,500 random graphs per background
distribution was more than sufficient. We then com-
pared WaRSwap and FANMOD using a set of large bio-
logical networks (Table 1), which resulted from different
TF binding-site and miRNA target stringencies. In parti-
cular, we constructed networks with four different TF
binding thresholds, from an extremely stringent match-
ing requirement for each TF binding domain, as repre-
sented by a positional weight matrix (PWM) with a
false-negative rate (FNR) of 80%, to a strong but less
stringent requirement (FNR of 20%). For each of these
TF binding thresholds, we constructed networks with
three different miRNA target stringencies as represented
by a minimum deltaG (dG) free energy threshold (from
most to least stringent, dG ≥ 80, dG ≥ 70, dG ≥ 60).
WaRSwap and FANMOD were applied to each network,
and three-node subgraphs were considered (these appli-
cations omitted self-loops from the networks to allow

for direct comparison). For each method, we considered
a three-node subgraph to be a motif if it was over-repre-
sented in one or more of the biological networks with the
simultaneous requirements of a P-value of < 0.01, a z-
score of > 2.0, and a standard deviation (SD) of > 1
(reported in terms of number of observations).
Under these strict requirements, we found that WaRS-

wap network motifs were a near-nested subset of the cor-
responding results using standard edge switching
(FANMOD) (see Additional file 1: Figure S1). This result
was true across all of the datasets in our study, even
when different upstream region lengths were considered
(see Additional file 1: Figure S2). When considering
three-node circuits where all nodes interact, the resulting
sets were strictly nested (Additional file 1: Figure S3).
WaRSwap loosened the requirement from preserving
exact target node in-degrees in randomized networks to
preserving only in-degree distribution. It was therefore
striking that this more extensive randomization led to
fewer network motifs at a given P-value cutoff, and in
particular, did not lead to any additional motifs not sug-
gested by edge swapping.
Evidence from these comparison studies strongly sup-

ports our hypothesis that for large graphs, symptoms indi-
cative of spuriously ‘discovered’ network motifs derive
from the fact that edge switching does not appropriately
explore the space of possible random graphs. Rather than
being ‘conservative’, edge switching can produce

Figure 3 Weighted-and-Reverse-Swap (WaRSwap) treats the biological network as a composition of five possible source and target
layers, The only layer that has self-loops is the TF®TF layer. Each layer is randomized by first permuting target in-degrees, then applying the core
WaRSwap algorithm. The result is a randomized network that preserves target in-degree distribution with respect to each source-target type.
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Figure 4 The methods Fast Network Motif Detection (FANMOD) (involves edge switching), Diaconis Monte Carlo Importance Sampling
(DIA-MCIS) (involves importance sampling), and Weighted-and-Reverse-Swap (WaRSwap) were used to produce 10,000 randomized
graphs for each of three examples. The resulting graphs were tabulated according to their unique numerical representation (simply shown as
integers on the × axis). The percentage of each graph produced is plotted on the Y axis, and the horizontal dotted line in each plot displays the
percentage representing perfect uniformity. (A). Because there are 13 possible graphs using the same in-degrees and out-degrees as the example
shown, an algorithm that samples the graph space uniformly would produce each possible type of graph exactly 1/13 of the time. The values shown
in red correspond to the single possible graph with no connections between the source vertex of out-degree 3 and the target vertex of in-degree 3,
which is the graph instance displayed here. (B) An example with 58 possible graphs. (C) The graph instance at the left is a canonical example of an
extremely uneven degree distribution [20]. In this example, all vertices are blue because they are represented here as being both sources and targets
(that is, as transcription factors). Graphs with these particular in-degrees and out-degrees can have three different types of topologies, as shown here.
The instance at the left is the only possible one with no hub to hub connection, and the sampling outcome for this graph is highlighted in red on the
plots for each method. The other two topologies shown correspond to 90 and 10 possible outcomes, respectively. Thus, methods that consider self-
loops (for example, Diaconis Monte Carlo Importance Sampling (DIA-MCIS) and Weighted-and-Reverse-Swap (WaRSwap)) have a total of 101 possible
labeled outcomes, whereas those that do not consider these (for example, Fast Network Motif Detection (FANMOD)) have a total of 91 possible
labeled outcomes. Graphs containing self-loops correspond to the 10 rightmost X-axis labels in the plots for DIA-MCIS and WaRSwap.
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misleading results because the null distribution of sub-
graph counts is actually too narrow. In many cases, this
produces sub-circuit characteristics in the randomized
graphs that are unrepresentative of the original graph (and
thus, these circuits have a tendency to spuriously ‘stand
out’ with a high P-value). WaRSwap produces randomized
graphs that better explore the space of all possible such
graphs; on average it yields larger SDs for all subgraphs
considered (see Table 1) and relatively smooth P-values as
the network parameters are varied (Figure 6). For a given
number of background graphs, WaRSwap thus provides a
more conservative and trustworthy result for large multi-
layer networks. This greatly reduces concern over pre-
viously reported difficulties in determining whether a sub-
graph is a network motif or simply a robust artifact that is
due to the limitations of edge switching in large multi-
layer networks [18].

Developmental circuits are building blocks of the
Arabidopsis gene network
Because WaRSwap allowed us to identify a small set of the
most confident network motifs, we examined the classes
of the three-node motif topologies for several cases: one-
node motifs without self-loops (that is, they are self-loops
themselves), and two-node or three-node motifs ‘deco-
rated’ by self-loops on the TF nodes. Three over-repre-
sented topologies emerged (Figure 5): 1) regulating feed-
back motifs that can serve as sustained-input switches (or

sustained noise repressors), 2) a two-node bi-stable switch,
and 3) the miRNA-mediated feed-forward loop (FFL).
Additionally, self-loops themselves were over-represented,
and a wide variety of decorated three-node subgraphs
were found to be motifs when the decorated and self-loop-
less subgraphs were considered separately (see Methods).
The FFL is generally common in TF networks of both

unicellular and multicellular organisms, and two of the
most abundant types exhibit temporal control functions
such as pulse generation, response acceleration, and fil-
tering of noisy input signals [21]. The miRNA-mediated
FFL was originally identified in human gene-expression
studies as being abundant [8], and has been universally
noted in subsequent network motif finding applications
of edge switching to a variety of organisms. However,
regulating feed-back motifs have not been noted. Inter-
estingly, in this study we observed two types of regulat-
ing feed-back motifs, both of which are associated with
development in multicellular organisms [21]: a bi-stable
switch, known as a ‘lock-on’ motif, which ensures
expression of two TFs after either one reaches a crucial
threshold, and a ‘sustained-input’ motif that ensures
stable expression of a downstream gene or miRNA in
cases where both regulating TFs serve as activators. The
sustained-input switch can also have a noise-repression
role when both regulating TFs serve as repressors, as an
input signal to either regulating TF is damped, shutting
down input to the downstream gene.

Figure 5 Three categories of network motifs were discovered in our Arabidopsis networks by Weighted-and-Reverse-Swap (WaRSwap).
1) The microRNA (miRNA)-mediated feed-forward loop; 2) sustained-input (or noise-damping) switches for transcription factors (TFs), miRNAs, and
genes; and 3) the lock-on bi-stable switch for TFs.
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All of these motifs (including the lock-on motif, whose
observation is enabled by WaRSwap’s ability to test net-
works containing self-loops) serve functions consistent
with the need for a multicellular organism with a large
and complex genetic system to achieve and maintain
spatial patterning integral to development. Regulating
feed-back motifs, including the sustained-input switches
and noise repressors, are known to be crucial compo-
nents of canonical plant sub-networks that serve a well-
studied purpose in plant development. For example, the
plant TFs AP1 and LFY are known to upregulate both
each other and their mutual target PI as part of the cell-
fate determination process during flower development
[23]. Mutual feed-back switches with and without self-
loops are central to hormonal control of root meristem
cell differentiation (such as SHY2 and Auxin mutual
repression) [24] and to stem cell maintenance in shoot
apical meristem (such as CLV3 and WUS) [25,26]. Our
study identified thirteen instances of miRNA-mediated
FFLs at the highest level of binding stringency, eight
two-node bi-stable switches, and several hundred sus-
tained-input switches. All of the entities involved in
these circuits have experimental support for gene
expression within the same Arabidopsis root cell type.
The circuits have been made available for further study
(see Additional file 2).
In order to provide additional insight into how these

motifs may be specifically contributing to developmental
programs, we performed an analysis using the GOStat
toolset [27] to identify statistically significantly over-
represented Gene Ontology (GO) terms in the set of Ara-
bidopsis genes (including miRNAs) that we identified as
being both 1) present in at least one WaRSwap-identified
motif and 2) co-expressed in the same Arabidopsis tissue
as all other genes participating in the same motif. In this
gene set, 19 over-represented GO terms (with respect to
all Arabidopsis genes as a control) were identified. Func-
tional categories are generally related to transcriptional
and post-transcriptional gene regulation, but specific
categories include epigenetic control and regulation of
developmental processes. Of the five categories related to
development (these terms were associated with miRNAs
164c and 167a), the specific functional terms all highlight
reproductive structure development, including specifica-
tion of floral organ number. This is supportive of the
concept that the sustained-input switches in the Arabi-
dopsis system take on roles that include morphological
patterning. We have made the gene list and GOStat ana-
lysis output available (see Additional file 3).

FFLs are significant only under stringent binding
conditions
In our analysis, we examined a large variety of parameter-
ized networks for the purpose of understanding the

behavior of a network motif discovery algorithm in
response to graded differences in network construction
(Table 1). In running WaRSwap over this grid of 12 net-
works, we found that the use of different TF binding
requirements resulted in clear differences in the network
motifs identified and in their quantitative significance
values. When different miRNA target stringencies were
used, these differences were much less pronounced.
However, we still observed a clear trend for the miRNA-
mediated FFL, which became even more predominant
when three-node subgraphs with all possible TF self-loop
decorations were considered separate entities (Figure 6).
We found that in addition to miRNA-mediated FFLs

becoming increasingly significant with greater TF binding-
stringency cutoffs, there was also a tendency toward
increasing significance at more stringent hybridization
energy requirements for miRNA targeting. Therefore, in
the networks under examination, it appears that FFLs are
over-represented only under the strictest of binding condi-
tions. WaRSwap enables this trend to be discovered via
analysis of multiple parameterized networks, by providing
adequate randomization in the larger networks with looser
binding-threshold requirements. This finding is consistent
with the hypothesis that the temporal control functions of
FFLs (for example, pulse generation of TFs with many
downstream effectors) are common only under tightly
regulated binding conditions that ensure FFL regulation
occurs in the proper context of the larger network.

Sustained-input switches unify network motif outcomes
in Arabidopsis, Drosophila, and human TF-miRNA-gene
regulatory networks
While generating high-confidence genome-scale net-
works in animal organisms is a challenge compared with
generating them in Arabidopsis, because the TF binding-
site and miRNA target predictions are considerably lower
confidence endeavors in these systems (larger intergenic
distances and more complex miRNA target patterns), we
wanted to compare the motif outcome of WaRSwap with
that of FANMOD in other eukaryotes. We chose Droso-
phila and human networks provided by the modEN-
CODE and ENCODE consortiums, as each of these has
published a sizeable network with some experimental
support that involves both TFs and miRNAs [28,29].
We applied WaRSwap and FANMOD to each of these

TF-miRNA-gene networks in exactly the same manner as
for the Arabidopsis networks, and had a striking result
from the motif comparison of the Drosophila network; the
outcome was essentially identical to that of the Arabidopsis
comparison. FANMOD predicted eight three-node motifs,
whereas WaRSwap showed that only four of these motifs
were truly over-represented: an miRNA-mediated FFL
controlling a gene, and all three types of sustained-input
switches (Figure 7). Additionally, WaRSwap also showed
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that the lock-on switch was a motif, as was TF auto-
regulation.
The human network was a considerably smaller net-

work, where there was more agreement between the
two algorithms (Figure 7); there was agreement on three
out of the four motifs, and two of these three were sus-
tained-input switches. This comparison emphasizes that
despite varying degrees of confidence in network con-
struction, there is very strong support across multiple
systems for the previously unrecognized sustained-input
switch being an important over-represented circuit in
eukaryotes.

Discussion
WaRSwap is necessary to distinguish motifs from artifacts
No practical solution has been presented previously to
reliably handle motif finding for large directed networks
with imbalanced node degree, which is a significant barrier
for biologists aiming to understand regulatory networks.
The FANMOD program implements an edge-switching
algorithm to provide a fast-running solution for small net-
works and an option for multicolored input networks.

However, the authors of FANMOD acknowledge that
when a relatively small number of random graphs are
sampled and/or the reported percentages of failed edge
switches are high, the results are not reliable. These pro-
blems are alleviated as one approaches the limit of sam-
pling an infinite number of random graphs. However, the
long run times resulting from subgraph enumeration, even
with three-node subgraphs and relatively small numbers
of samples (around 1,000), are prohibitive, particularly
when the method is not designed to run in parallel. As a
result, analyses performed with good intentions that use a
small fraction of even the minimum number of random
graphs recommended for edge switching [30] are unlikely
to yield meaningful results as the graph sizes grow larger.
WaRSwap presents a practical solution for such analyses,
providing a statistically justified algorithm for large TF-
miRNA networks that can be run in parallel and with run
times that do not compete with subgraph enumeration.
In this study, we tested and applied WaRSwap using

large multi-layer graphs in Arabidopsis that involve both
TFs and miRNAs, as well as non-TF protein-coding genes.
Over a wide variety of parameterized networks, three

Figure 6 P-values for the miRNA-mediated feed-forward loop (FFL) over the 12 Arabidopsis networks evaluated by Weighted-and-
Reverse-Swap (WaRSwap). (Left) Self-loops in the networks were not considered; (right) self-loops were taken into account, so that miRNA-
mediated FFLs with one or more transcription factor (TF) self-loops were considered to be separate subgraphs in the analysis.
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motifs stood out: the sustained-input switch, the two-node
bi-stable switch, and the miRNA-mediated FFL. By con-
structing these networks over a range of different binding-
stringency requirements for TFs and miRNAs, network
motif discovery can suggest a trend that is instrumental in
hypothesis generation. For example, we found that
the FFL in the Arabidopsis network was strongly over-
represented using high-stringency settings, whereas the
co-regulation of TFs, miRNAs, and genes by two upstream
TFs in a sustained-input switch was an over-represented
phenomenon primarily at intermediate TF binding-profile
matches. It is reasonable to assume that the miRNA-
mediated FFL may be predominant in situations where a
gene pulse is desired in specific circumstances that are
regulated by strong TF promoter signals and an excellent
miRNA target-binding match. Our observation about
FFLs is consistent with findings in human cells that use
methods different from network motif discovery [8], as
these studies often use conservation as a proxy for

stringent binding requirements. Our results also illustrate
the importance of how a putative biological network is
constructed from data, as different underlying assumptions
in a construction can yield striking differences in qualita-
tive results. We note that our algorithm produced output
that varied relatively smoothly with network parameteriza-
tion (Figure 6), supporting the sufficiency of the sampling
method and the reliability of the graph construction
method. An algorithmic application comparison in
Drosophila and human networks provides strong support
for the validity of the findings of our main study in high-
confidence Arabidopsis networks.

WaRSwap highlights motifs associated with multicellular
development
As in the human system, Arabidopsis is known to have
both large TF source hubs as well as target hubs. One dif-
ference is that plant miRNAs are thought to target TFs
preferentially (as opposed to a wide variety of gene classes).

Figure 7 Network motif outcomes from Fast Network Motif Detection (FANMOD) and WaRSwap compared for published Drosophila
and human networks.
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Given these similarities and differences, it is interesting that
gene-expression studies have shown that the microRNA-
mediated FFL is prevalent in animals [8], and seems to be a
robust presence in the eukaryotic kingdom, including
plants. In our investigation we found two types of network
motifs that are associated with roles in development and
fate specification, namely a sustained-input switch and a
two-node bi-stable switch. This may be at least partly due
to the character of the input set, as many of the TFs in our
collection have clearly been of interest for their roles in
such processes. Nonetheless, it is a useful hypothesis that
these switches are over-represented in Arabidopsis net-
works because of their widespread function as crucial
building blocks of developmental gene-regulation net-
works. The two-loop developmental switch is canonically
noted in the systems biology literature as a developmental
regulator [21], yet it has been absent from the literature on
finding eukaryotic network motifs, because of the lack of
suitable algorithms addressing large-scale networks
containing TF self-loops. Additionally, we found many
‘decorated motifs’, that is, motifs that are significant when
one or more nodes have self-loops. This finding might be
partly due to the fact that self-loops themselves are over-
represented in this particular system; however, it is well
documented that smaller TF-only developmental networks
tend to contain such motifs as well [21].
Regardless of self-loops, the sustained-input switch is a

motif observed here for the first time as an over-repre-
sented network motif in a large eukaryotic system. This
same result was obtained whether the sustained-input
target was a TF, miRNA, or other coding gene, and always
at a medium TF binding-threshold requirement, as men-
tioned above. This motif has clear implications in develop-
mental network architectures because of its function when
both of the ‘input TFs’ are serving as activators or repres-
sors. It can be seen qualitatively that in the case where
both are activators, upregulation of either input TF will
result in sustained upregulation of the third gene (TF/
miRNA/gene), leading to a lasting temporal effect on
downstream targets. In the case where both are repressors,
upregulation of either input TF will lead to downregula-
tion of the other as well as of the third gene, allowing for a
rapid shut-off signal in the presence of either input. In the
case where one TF is an activator and the other a repres-
sor, the dynamics of this circuit will depend on the specific
physical parameters of the system, as there are a variety of
possible time-dependent behaviors depending on signals
to the input TFs, predominantly including time-delayed
shut-off. All three of these behaviors are characteristic of
developmental networks in higher eukaryotes [21], and the
examples here suggest that roles may include cell-type dif-
ferentiation and morphological patterning.
We used full enumeration of all network subgraphs (as

opposed to a sampling method that yields approximate

subgraph counts) to provide the highest possible confi-
dence in our evaluation, This limited the practical motif
size for testing and comparison to three-node motifs.
With improved network subgraph sampling methods, it
will be possible to examine four-node and five-node
motifs with reasonable statistical confidence. Arabidopsis
was chosen as a model organism for robust statistical
comparison of network motif discovery algorithms,
because of its low-noise TF and miRNA target prediction
characteristics. We curated a very conservative subset of
experimentally supported Arabidopsis TF binding-
domain representations from those available in Plant
TRANSFAC, a plant TF database [31]. With continually
advancing large-scale binding-domain query technolo-
gies, such as protein binding microarrays [32], we antici-
pate a greatly increasing availability of plant PWMs in the
near future. Finally, as miRNA target prediction methods
continue to increase in sensitivity and specificity, along
with experimental technologies for large-scale investigation
of target binding, (for example, Degradome sequencing and
photoactivatable-ribonucleoside-enhanced crosslinking and
immunoprecipitation (PARCLIP) technologies), the WaRS-
wap algorithm provides a sound and practical method for
exploring network motifs in large animal networks.

Conclusion
Network motif finding is fundamentally a hypothesis-
generation method rather than an endpoint to analysis,
and as shown in bacteria and yeast networks [9,10], it
can be a valuable computational tool for biological dis-
covery on a systems-wide scale. However, if network
motif discovery is to spur follow-up laboratory explora-
tions in eukaryotic genomes, a practical and statistically
sound method, which also respects the biology in these
genomes, must be used. We have presented evidence
that WaRSwap provides such a method, and shown that
it can reveal patterns that would be difficult to ascertain
by eye or with the use existing methods that are
intended for use in much smaller genomes. This new
method allowed us to identify new over-represented
genetic sub-circuits that are specifically related to devel-
opment. The repeated use of network motifs such as the
sustained-input (or noise-damping) switch for both TFs
and miRNAs supports the idea that these themes help
to ensure correct patterning in multicellular organisms.
Our study also provides fresh evidence supporting the
hypothesis that one role of TF-miRNA interactions
within the context of developmental networks is to
canalize or buffer gene-expression changes in order to
confer a robust spatial plan despite noisy environmental
input signals [33]. Overall, the availability of reliable
methods such as WaRSwap is expected to spur future
studies as large, experimentally supported data sets
become available in other genomes.
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Software availability
We have provided our implementation of the WaRSwap
algorithm in R as publicly available open source code on
the web [34] (see Additional file 4). At this same site,
we have made available the modified command-line
versions of FANMOD that we used in running the
edge-switching randomizations in parallel, enumerating
subgraphs, and performing randomization comparisons
on small test networks. Both WaRSwap and FANMOD
parallelizations were run on Sun Grid Engine; we have
made the script sets available for others to use and
adapt under the GNU Public License (GPL). Our TF
binding-site scanning software is currently available on
the web under the GPL as the ‘Scanner Toolset’ [27].

Materials and methods
WaRSwap algorithm
WaRSwap produces random graphs from an original
graph by breaking the original into layers representing
the five possible types of interactions: TF®TF,
TF®miRNA, TF®gene, miRNA®TF, and miRNA®-
gene. Each layer is randomized using the Core Method
(Figure 2), which is the key algorithm contained within
the Complete Method described step-by-step below
(Figure 3). For a given graph layer, the Core Problem is
as follows.
Given a directed bipartite graph G with edges directed

from source nodes S1, ..., Si, ..., Sn to target nodes T1, ...,
Tj, ..., Tm, we define the sample space Sp(G) as the col-
lection of all graphs with the same in-degrees deg(S1),
..., deg(Si), ..., deg(Sn) and out-degrees deg(T1), ..., deg
(Tj), ..., deg(Tm) as G, but no double edges. Figure 2
provides a visual example.
WaRSwap addresses the Core Problem using the Core

Method, outlined as follows.
0. Sort source out nodes so that S1, ..., Si, ..., Sn are in

descending order of out-degree magnitude.
For each source node Si,:
1) Compute sampling weights: for each target Tj,

sampling weight = cap(Si)cap(Tj)
[
1− deg (Si)deg

(
Tj

)
/6m

]
.

2) If deg(Si) is less than or equal to the number unsa-
turated target nodes, match source node Si with deg(Si)
target nodes Tj, using draws that are weighted propor-
tionally to sampling weights.
3) If deg(Si) is greater than the number of unsaturated

target nodes, then perform the following.

3a) Place edges from Si to each target node Tj that
has available capacity.
3b) For each unplaced edge from Si, select an unsa-
turated target node of Si, and label it Tsi. Select a
swap source S’ having at least one target Ts’ that is

NOT already targeted by Si. (Edge S’ ®Ts’ is drawn
uniformly from among all possible such edges), and
perform the swap by replacing edge S’ ® Ts’ with
edge S’ ® Tsi and placing an edge from Si to Ts’.

The WaRSwap Core Method proceeds to termination,
resulting in a valid graph (the algorithm always termi-
nates, it cannot encounter a loop state). The Pseudocode
is provided (see Additional file 1), and R code is also pro-
vided (see section on ‘Software Availability’). The WaRS-
wap Complete Method then uses the Core Method to
address graphs with multiple layers using the following
steps.
A) Break the original graph into layers representing

each type of interaction
B) For each layer, permute target in-degrees (preserves

target in-degree distribution), and apply the WaRSwap
Core Method to the layer.
Algorithms that address the Core Problem face inher-

ent tradeoffs between sampling uniformity of graph space
Sp(G) and speed; these tradeoffs are exacerbated by non-
uniform in-degree and out-degree distributions. The bal-
ance between speed and uniformity becomes extremely
important in large graphs, G, where Sp(G) is enormous
and it is therefore impossible to sample a large portion of
the space. In such cases, a practical algorithm must be
able to produce a near-uniform sample within an achiev-
able amount of computing time. How does WaRSwap
achieve fast near-uniform sampling performance, even in
the case of extreme degree distributions (Figure 4) where
the tendency of other algorithms is to grossly undersam-
ple graphs without any hub-hub edge connections [20]?
Intuitively, the WaRSwap Core Method avoids under-
sampling of hub-hub connections by updating the
source-target selection weights at each step (e.g. Step 1)
so that the strong tendency to place edges between ‘very
heavy’ sources and targets early in the process is offset by
a factor proportional to the total desired weights of the
vertices.
As shown in Figure 2, this offset factor is equal to 1

minus the product of total desired source-target vertex
weights divided by a parameter of the algorithm, 6 × m,
where m is the required number of edges in the graph
(equal to the sum of total required source weights, and
to the sum of total required target weights). It can be
shown theoretically that for the case of near-regular
undirected graphs, weight updating in this manner with
a parameter of 4 × m will produce near-uniform sam-
pling within an estimated number of attempts using the
sampling method described in [14]; however, as graphs
become highly irregular, this useful idea breaks down in
two ways. First, it can be seen from the weight selection
formula that with graphs containing highly uneven
source and vertex degrees, if the parameter p × m is too
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small, the correction factor ultimately also becomes too
small, and might even be negative (which would not
make sense as a proportionality factor that should lie
between 0 and 1). In the case of our method, we chose
6 as the smallest integer multiplier of the number of
edges m such that in the case of all of our graphs under
study, the proportionality constant is a valid factor
between 0 and 1.
However, weighted edge selection algorithms of this

general type can still get ‘stuck’ in the sense that they
reach a state where no edge can validly be placed into
the graph without creating a double edge. One solution
is to discard the graph and start again; this is the case
in the method of Bayati et al. [14]. However, the num-
ber of sampling attempts rapidly grows untenably large
with increasingly irregular degree distributions. In the
case of WaRSwap, sorting source out-degree from heavi-
est to lightest source and then distributing the source
edge weight from the heavy sources first (Step 0, Steps
1-3) serves to reduce the chance of the algorithm get-
ting ‘stuck’ in this way; but an impasse may still occur
(Figure 2B). The reverse-swap step addresses this occur-
rence by finding a resolution to the currently ‘stuck’
state and continues forward to completion. Resolving
swaps do slightly affect uniformity, but even in large
graphs with very irregular in- and out-degree distribu-
tions, only a few resolving swaps are needed. For exam-
ple, in the largest biological network in our analysis
(FNR = 0.2, dG = 60 from Table 1), over the 2,500 ran-
dom networks generated by WaRSwap, a maximum of 3
swaps and an average of 0.09 swaps per random net-
work were required. The result of this combined
approach in the Core Method was near-uniform sam-
pling within each graph layer (Figure 3), both on near-
regular graphs and on extreme graphs (Figure 4). The
overall graph uniformity implications of the choice to
preserve in-degree distribution while allowing self-loops
are provided (see Additional file 1).
The current WaRSwap implementation is formulated

using the R language with the igraph package [35] for
the purpose of being clear, modular, and easy to extend
as opposed to being coded for maximum runtime effi-
ciency in a compiled language such as C. Thus, run
times on a given computer processor are not compar-
able with FANMOD in a direct sense, yet the WaRSwap
graph randomization time is well under the time
required for subgraph enumeration, and therefore
importantly is not a rate-limiting step. For example, in
the biological networks associated with dG = 70 from
Table 1, the mean WaRSwap randomization times were
4, 8, 17, and 30 seconds for FN = 0.8, 0.6, 0.4, and 0.2,
respectively; mean subgraph enumeration times for
these same networks were 1, 8, 43, and 109 minutes,
respectively (means are taken over the 2,500 subgraphs

computed on a variety of processors in our parallel
computing cluster). FANMOD code was used for sub-
graph counting in all cases, using full subgraph enu-
meration as opposed to subgraph sampling estimates, in
order to provide fully accurate subgraph counts for ana-
lysis and comparison. The FANMOD subgraph enu-
meration code was modified to output subgraph counts
as opposed to frequencies, in order to eliminate the loss
of numerical accuracy in the case of rarely observed
subgraphs. SDs of the number of counts, z-scores, and
P-values were then calculated directly from counts.
Graph randomizations (and subsequent subgraph enu-
meration) were run in parallel with a Sun Grid Engine
computing cluster, with each randomization using a
pre-selected seed for the random-number generator
(seeds drawn uniformly over the range of all possible
seed choices) so as to be reproducible and unbiased by
the system clock.
Enumeration of subgraphs from WaRSwap randomiza-

tions included not only three-node subgraphs but also
two-loops and self-loops. Two-loop counting was per-
formed using FANMOD with motif size set to 2 (none
of the two-loops found significant), and the code was
modified to perform self-loop counts. Decorated three-
node motif analysis was performed by treating a self-
loop decorated node as a fourth color. Thus, there is a
difference between the analysis of subgraphs performed
when the enumeration method ignores self-loops (for
example, the unchanged version of FANMOD subgraph
enumeration used for comparing WaRSwap output
directly with FANMOD output), and when the TF
nodes that have self-loops are considered as distinct
from the TF nodes that do not have self-loops. For
example, when self-loop decorated nodes are considered,
the miRNA-mediated FFL targeting a TF is not a single
subgraph but instead is associated with four unique sub-
graphs: one entirely undecorated, one in which both
TFs have self-loops, and two in which a single TF has a
self-loop. We have made both types of WaRSwap output
(self-loops ignored, self-loops considered) available (see
Additional file 5).

Stability analysis
To determine the number of random graph samples that
was sufficient to provide a stable WaRSwap P-value over
all three-node subgraphs for the networks under exami-
nation, we performed the following evaluation. For each
of the four TAIR10 (The Arabidopsis Information
Resource, version 10) Arabidopsis networks constructed
with a miRNA target stringency of dG = 60, 10,000 ran-
dom networks were generated using WaRSwap by seed-
ing a random-number generator according to 10,000
uniform draws over the interval of all possible seeds.
From this selection, the P-values were determined for all
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three-node motifs for subgraphs 1 to 500, 1 to 1,000, 1
to 1,500, ..., 1 to 10,000. For each group of (500, 1,000,
1,500, ..., n ,..., 10,000) random networks, for each three-
node subgraph, the absolute value of the difference
between the P-value computed with n random networks
and the P-value computed with 10,000 random net-
works was recorded. These P-value differences were
plotted for each subset of n networks as a box plot (see
Additional file 1, Figure S4). The P-value difference dis-
tributions narrowed rapidly at first and then leveled off.
Thus at 2,500 random networks, this distribution of
P-value differences over all three-node subgraphs fell
entirely below 0.02 for all four networks examined. That
is, the maximum difference between the P-value for any
three-node subgraph at 2,500 random networks gener-
ated and 10,000 random networks generated is 0.02.
Mean differences in P-value at this level are negligible.
We thus considered 2,500 random networks to be more
than sufficient for stable outcomes over the networks in
our study.

Comparison with the FANMOD implementation of edge
switching
The FANMOD implementation of the edge-switching
algorithm was modified to provide the ability to execute
one network randomization at a time, thus allowing many
subgraph randomizations to run in parallel using Sun Grid
Engine. Just as with WaRSwap, the random-number gen-
erator used in FANMOD was seeded with a uniformly
drawn selection of seeds from the full range of possible
seed values to avoid any bias due to the system clock in
parallel runs. Enumeration was performed in all cases to
provide a full count of all three-node subgraphs for each
randomization. Subgraph counts, SDs, and P-values were
then calculated from these counts in exactly the same way
as for WaRSwap. We compared WaRSwap and FANMOD
over the grid of networks displayed in Table 1 below, para-
meterized according to TF binding-site stringency and
miRNA target-binding stringency (discussed in detail in
the ‘Datasets’ section). Two problems were readily appar-
ent with the FANMOD output: the large percentage of
failed edge switches (Figure 1B), and the relatively small
SDs of subgraph counts on average. Allowing FANMOD
to make an increasingly large number of edge-switch
attempts did not result in changed percentages of failed
swaps per run, but only in increased run times.
We explored the reasons for these observed problems,

and discovered that a theoretical basis for these difficul-
ties had already been noted in previous studies (see Intro-
duction). For a simple intuitive explanation, notice that
edge switching begins from a particular given network
and moves away from it in a series of edge switches. This
strategy is in contrast to strategies in algorithms such as
WaRSwap, which ‘seek’ into the space of all possible

network randomizations with the given in-degree and
out-degree requirements, and produce a valid instance.
In ‘moving away’ in a series of edge-switching steps, sub-
graph topologies are created and broken, and it may take
a long time to reach certain valid graphs.
Suppose that a limited number of possible random

graphs is strongly favored by such searches, because the
total space cannot be thoroughly explored in a reason-
able number of swapping steps. Even over many rando-
mization attempts, this may produce a distribution of
certain subgraph counts which is narrow in range (small
SD) and unrepresentative of all possible outcomes.
When this happens, it is easy to observe a spurious
P-value because the subgraph count value from the ori-
ginal network appears to be highly unusual compared
with this narrow range of values from the ‘randomized’
graph collection.

Datasets
TFs, TF binding sites, and TF target regions
Transcription factors and their binding profiles were
derived from Plant TRANSFAC [31], a literature-curated
database containing 115 PWM representations of plant TF
binding domains. We first divided this collection into a
conservative Arabidopsis-only set, in which one or more
literature-supported binding observations from Arabidop-
sis was used in the TRANSFAC construction of the PWM,
and a ‘Comprehensive’ set. To be included in the Compre-
hensive set, a PWM was required to be associated with at
least one TF having an identifiable Arabidopsis ortholog
within the Gramene Database [36] or PlantTFDB (Plant
Transcription Factor Database) [37]. Finally, PWMs were
filtered to remove binding profiles with low-information
content given the AT-rich promoter background of
Arabidopsis (that is, PWMs having too much overlap with
background sequence content were removed). Specifically,
the distribution of log-likelihood scores of sequences
drawn from the background (all TAIR protein-coding
gene upstream sequences of length 1,000) was computed,
along with the distribution of log-likelihood scores from
the PWM itself (see Additional file 1; see Additional file 6;
see Additional file 7). PWMs were eliminated from the
set if the distribution overlap was such that the 10% left
tail of the PWM score distribution corresponded to a
false-positive rate (FPR) of 0.005 or greater. Receiver oper-
ating characteristic (ROC) curves for all PWMs are pro-
vided (see Additional file 8; see Additional file 9).
The filtered Arabidopsis-only set contained a total of 41

PWMs corresponding to 44 TAIR-identifiable TFs,
whereas the filtered Comprehensive set contained 81
PWMs corresponding to 138 TAIR-identifiable TFs.
Given the weaker link between the binding domains in the
Comprehensive set and the specific Arabidopsis TFs, we
chose to focus our primary TAIR10 analysis and results
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on networks constructed from the Arabidopsis-only set.
However, we have made available all constructed networks
and motif outcomes for the Comprehensive PWMs in our
TAIR9 dataset described below. In the network construc-
tions described in our Results section, the TAIR10 Arabi-
dopsis-only PWM set was scanned over the upstream
regions of TFs, miRNAs, and non-TF protein-coding
genes using log-likelihood scanning [38,39] and a first-
order Markov background model (which accounts for
dinucleotide sequence content). PWM-specific thresholds
were computed for four separate binding-match stringen-
cies, namely, FN rates of 20%, 40%, 60%, and 80% (lowest
to highest stringency). FN rates correspond to the percen-
tage of potential binding sites that could have been drawn
from the PWM scoring distribution, but that did not pass
the threshold as a sufficiently strong match to be consid-
ered a binding site. We used FN rates because we required
that only PWMs with high information content could be
used. The FP rates are therefore very close to zero at these
values, yet we still wish to narrow the accepted quality of
binding matches (see Additional file 1 for a diagram, along
with average hit rates per kilobase of sequence and ROC
curves for all PWMs).
TF target regions were taken as the upstream regions of

TFs, miRNAs, and non-TF protein-coding genes as fol-
lows. For each entity, an approximate TSS was determined
(using either the TAIR10 annotation or, in the case of
miRNAs, additional experimental evidence, as described
below). A region of up to 3,000 nt upstream of this TSS
was then extracted as the target region; if an upstream
gene on either strand intervened in this 3,000 nt region,
then the region was shortened to include only the
sequence between the TSS and the neighboring gene. In
general, Arabidopsis has short intergenic regions (around
2,500 nt on average when considering genes on both
strands), making the determination of putative binding
sites substantially easier than in many other organisms,
because of the reduced search space. Additionally, it has
been shown that 3,000 nt of upstream sequence is enough
to recapitulate the expression patterns of approximately
80% of Arabidopsis genes in a large set of transcriptional
fusion experiments [40].

miRNAs and miRNA targets
We performed our TAIR10 analysis using a curated set
consisting of of miRBase (version 18.0) miRNAs along
with a small additional set of the latest published Arabi-
dopsis miRNAs [41]. Intronic miRNAs were removed
from the set because it remains uncertain whether these
would necessarily be transcribed along with their host
genes in all cases. The miRNA ath-miR169g* was cor-
rected to its proper mature sequence, and ath-miR406 was
removed from the set [41]. The remaining miRNA precur-

sors and their reported mature sequences were used for
determining the miRNA promoter regions and target
genes as follows. In cases where one or more experimen-
tally supported TSS was reported for a miRNA [42], the
most upstream part of these sites was used as the TSS. In
the remaining cases, the upstream end of the precursor
was taken as the approximate TSS.
Several sets of miRNA target sites were determined as

follows. Predicted binding sites were determined using
the WMD3 Target Search software package [43], which
was selected for this project because it is the only Arabi-
dopsis miRNA target prediction tool implemented based
on rules that were determined directly from both in vivo
and in vitro binding observations [44,45]. The WMD3
tool was locally installed, and targets were determined
for three different binding energy requirements: dG =
60, dG = 70, and dG = 80, with 80 being the most strin-
gent requirement (other WMD3 settings were left at the
defaults except for the ‘Show Only One Isoform’ option,
which was set to false so that all target transcripts could
be identified). The sets were nested, that is, the most
liberal binding requirement of dG = 60 contained all
targets that are predicted to bind under the requirement
that dG is at least 60. These sets were then filtered to
remove any target marked by the program as a ‘possible
candidate’, that is, a target that does not strictly satisfy
all binding rules observed for endogenous miRNAs.
It should be noted that the networks generated using

these data sets in our study are not independent; in fact,
they depend on each other in a complex way because of
the TF binding site and miRNA target stringency cutoffs
(for example, miRNA targets with a dG requirement of at
least 80 are a subset of those targets with a dG require-
ment of at least 60). It is not clear in this situation how to
apply multiple hypothesis testing, and we did not do so, as
the purpose was to analyze the output of the WaRSwap
method relative to alternatives. We invite future analyses
using the WaRSwap method with other datasets.

Non-TF protein-coding gene set
We curated the complete publically available TAIR10
gene set TAIR10_GFF3_genes.gff by restricting it only
to genes identified in the gene descriptor field as a ‘pro-
tein_coding_gene’, for a remaining total of 27,416 genes
(see Additional file 10). All genes considered as TFs in
our Plant TRANSFAC TF sets detailed above were then
labeled as TFs rather than genes in our use of this set
for TFBS scanning and motif finding. We recognize that
this set would still have contained a small proportion of
genes that are in fact TFs but are not labeled as such,
because there is no currently available corresponding
PWM in Plant TRANSFAC. TSSs were taken as the
TAIR10 annotated sites for all genes in this set.
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TAIR10 versus TAIR9 assembly datasets
For the analysis that is the main focus of our results and
discussion above, we used the TAIR10 Arabidopsis gen-
ome annotation, which includes miRNAs corresponding
to miRBase version 18.0 along with the most recently
discovered Arabidopsis miRNAs [41] discussed in detail
above (see section on ‘miRNAs and miRNA targets’).
We have also provided network motif outcomes from
the TAIR9 annotation (see Additional file 1), which
includes only miRNAs corresponding to an older miR-
Base (version 14.0). We refer to these studies in the text
as the TAIR10 and TAIR9 sets, respectively, and the
network motif outcomes from each are nearly identical.
The TAIR10 and TAIR9 Arabidopsis annotations are
based on precisely the same genome assembly; only the
annotation and coordinates have been updated in
TAIR10.
We used the TAIR9 set for several preliminary studies

prior to the release of TAIR10, including for the analysis
of network motif outcomes when different upstream
region lengths of TFs and miRNAs were considered for
TF targeting. Network motifs were compared for pro-
moter region sets of 3,000 nt, 2,000 nt, and 1,000 nt for
both WaRSwap and FANMOD, and in all cases, the
WaRSwap results for three-node three-edge motifs were
a nested subset of the FANMOD results (see Additional
file 1, Figure S2). WaRSwap gave similar outcomes
across all three types of regions, whereas FANMOD
reported an increasing number of motifs as the promo-
ter region size actually decreased. We believe this may
be due to the fact that edge switching is more suscepti-
ble to dataset noise, as discussed above in the Results
section.

Drosophila and human networks
We used the TF-miRNA-gene network provided in the
data file DataS9_pRN_network.txt of the modENCODE
Drosophila study [28]. That study applied FANMOD to
the network to report eight motifs, and our application
of FANMOD also produced eight motifs. However, only
seven of the eight motifs in both studies agree, This var-
iation in reporting is probably due to our generation of
2,500 background networks versus the 100 background
networks reported to have been used by the modEN-
CODE study [28]. We used the human TF-miRNA-gene
network in the combination of data files tfmir.txt,
mirgene.txt, and proxraw.txt provided by Gerstein et al
[29]. The publication [29] applied FANMOD to a
network that was not explicitly provided, and did not
provide a direct report of miRNA-TF-gene motifs, thus
we were unable to confirm that the network we used
was identical to that of the study. However, although
the study reported the number of miRNA-mediated
FFLs in the network, it did not report this circuit to be

statistically over-represented, and we also did not find
that either FANMOD or WaRSwap reported any
miRNA-mediated FFLs as motifs.

Additional material

Additional file 1: Main Supplement. Main supplement, contains table
of contents for this and all additional files, and detailed description of all
additional files. Contains supplementary figures and text.

Additional file 2: Tissue Co-expressed Motif Instances. Specific motif
instances having the property that entity involved in the circuit has
experimental support for gene expression within the same Arabidopsis
root cell type.

Additional file 3: GoStat Analysis Output. Complete output from
GoStat analysis described in the main text.

Additional file 4: WaRSwap Code. Zipped folder containing README, R
code, and sample Bash calling script.

Additional file 5: HTML Browsable Motif Output. Zipped folder
containing all WaRSwap and FANMOD motif output, viewable in a web
browser.

Additional file 6: PWM Log-likelihood Score Distributions,
Arabidopsis Only Set. Zipped pdf file containing plots of foreground
and background log-likelihood scoring distributions for each PWM in the
Arabidopsis Only set.

Additional file 7: PWM Log-likelihood Score Distributions,
Comprehensive Set. Zipped pdf file containing plots of foreground and
background log-likelihood scoring distributions for each PWM in the
Comprehensive set.

Additional file 8: PWM ROC Curves, Arabidopsis Only Set. Zipped
pdf file containing ROC curve plots for each PWM in the Arabidopsis
Only set.

Additional file 9: PWM ROC Curves, Comprehensive Set. Zipped pdf
file containing ROC curve plots for each PWM in the Comprehensive set.

Additional file 10: TAIR10 Protein Coding Gene Set. Zipped gff file
containing the curated TAIR10 gene set used in our analysis. The
publically available file TAIR10_GFF3_genes.gff was filtered by restricting
it only to genes identified in the gene descriptor field as a
“protein_coding_gene”, for a remaining total of 27,416 genes.
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