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Abstract

Mapping-by-sequencing combines genetic mapping with whole-genome sequencing in order to accelerate
mutant identification. However, application of mapping-by-sequencing requires decisions on various practical
settings on the experimental design that are not intuitively answered. Following an experimentally determined
recombination landscape of Arabidopsis and next generation sequencing-specific biases, we simulated more than
400,000 mapping-by-sequencing experiments. This allowed us to evaluate a broad range of different types of
experiments and to develop general rules for mapping-by-sequencing in Arabidopsis. Most importantly, this informs
about the properties of different crossing scenarios, the number of recombinants and sequencing depth needed
for successful mapping experiments.
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Background
Forward genetic screens remain one of the major
genetic tools to uncover gene function in plants as well
as in other organisms. However, genetic mapping, the
process that links a phenotype to its causal mutation, is
tedious and time-consuming.
Recently, the combination of bulk segregant analysis

and whole-genome resequencing has proven to radically
speed up this process [1]. This speed-up was gained by
whole-genome sequencing of bulked recombinants and
a subsequent analysis for local skews in the parental
allele frequencies, which are introduced through pheno-
typic selection for mutant phenotypes. This directs the
analysis to an approximate mapping interval that can be
screened for underlying mutations using the exact same
sequencing data. Several analysis pipelines have been
introduced [1-9] and were already applied to various
model species, including plants, yeast, nematodes, mam-
mals, and invertebrates [10-12].
Different types of crossing schemes for mapping-by-

sequencing have been suggested. The very first mapping-

by-sequencing experiments were performed on pooled gen-
omes of mutant recombinants that were generated by
crossing the mutants to diverged strains followed by one
round of selfing [1,11]. Recently, several groups suggested
using backcrossed instead of outcrossed individuals as map-
ping populations, as mutagen-induced changes segregate
like natural polymorphisms. Even though there is no prior
knowledge about their distribution or location, mutagen-
induced changes can be identified within whole-genome
sequencing data and subsequently used for mapping
[5,6,13]. Similarly, direct sequencing of an individual
mutant recombinant, as suggested for Caenorhabditis ele-
gans and later for Arabidopsis thaliana (Arabidopsis), will
allow for a rough mapping of the causal mutation [14,15].
Although multiple rounds of backcrossing are usually not
sufficient to considerably minimize the size of linked
regions around causal mutations, this strategy has the
advantage to characterize the complete genome of a mutant
recombinant. Alternatively, direct sequencing of two or
more independently generated alleles of the same mutant
followed by a subsequent search for genes that carry muta-
tions in all mutant alleles is powerful enough to unambigu-
ously identify the causal mutation [16].
Irrespective of the actual strategy, application of map-

ping-by-sequencing involves decisions on the experimental
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makeup, for instance the size of the mapping population,
as well as the amount of next generation sequencing data.
Since both are directly related to time and financial effort,
it is important to optimize the setup of mapping-by-
sequencing experiments. The lack of general guidelines
describing an optimal design might lead to conservative
decisions that prime an unnecessarily high number of
individuals and sequencing coverage.
Within this study, we establish a guideline for mapping-

by-sequencing for Arabidopsis. Following an experimen-
tally established recombination landscape [17], we simu-
lated next generation sequencing of >400,000 mapping-
by-sequencing experiments to analyze the differences in
the design of mapping populations in relation to the num-
ber of candidate mutations identified in the course of such
an experiment. Furthermore, we evaluated the impact of
technical aspects, such as read length and read pairing, on
mapping-by-sequencing.
Even though our simulations were focused on Arabi-

dopsis, our simulation pipeline, called Pop-seq simulator,
is generic and can be applied to other species as well as
other mapping or sequencing strategies. In the last sec-
tion, we describe the extension of our analysis on the
experimental design of mapping-by-sequencing to two
crop model species, rice and barley, in which next gen-
eration sequencing-based mapping becomes tangible
reality.

Results and Discussion
In-silico mapping-by-sequencing experiments
Assessing different types of mapping-by-sequencing
experiments requires establishment and sequencing of
thousands of mapping populations, which is practically
not feasible in plants. In contrast, in-silico simulations
do allow for the generation of many experiments, with
the potential caveat that they rely on prior assumptions.
In particular, genuine simulations of mapping-by-
sequencing experiments require realistic assumptions
about mutation load, next generation sequencing, and
meiotic recombination.
The most commonly used mutagen for Arabidopsis is

ethyl-methanesulfonate (EMS), a chemical mutagen that
predominantly introduces C to T and G to A changes.
There are various reports about the frequency of EMS-
induced mutations, including one change in 112 to one
change in 171 kb [15,18], indicating a dosage dependency
of the mutation rate, which suggests that the actual fre-
quency range is likely to be much wider. In order to
explore the effects of different mutation rates, we simu-
lated low (700 changes) and high (1,400 changes) rates of
mutations that were randomly introduced into the
genome.
Similarly, realistic simulations of next generation

sequencing rely on correct assumptions about the number

of short read alignments per reference position (from here
on referred to as coverage) and sequencing errors. As we
were only interested in coverage at marker loci, we simu-
lated whole-genome sequencing by randomizing the num-
ber of read alignments at each marker. The absolute
number of alignments per marker followed a coverage dis-
tribution assessed on real resequencing experiments using
Illumina sequencing. Deriving the coverage distribution
from real sequencing experiments has the advantage that
it considers all factors that contribute to the variation in
sequence coverage. Perhaps most prominently, several dif-
ferent groups have demonstrated that local GC content is
correlated with sequence coverage (for example, [19,20]),
which is consequently also represented in our coverage
landscape. Moreover, within a recent study we rigorously
assessed the sequencing error rate of sequence reads
aligned to marker positions [7], where the actual per base
sequencing error rate was between 0.09% and 0.21% after
quality filtering. In order to avoid overly optimistic simula-
tion we assumed a sequencing error rate of 0.3% in our
simulations. Based on these assumptions each of the simu-
lated read alignments was then assigned to a parental
allele, following a multinomial distribution based on local
allele frequencies within the bulked segregants and Illu-
mina sequencing-specific error rate [21] (Materials and
methods).
Most important, however, might be realistic simulations

of recombinant genomes that greatly rely on frequency
and location of recombination. Thus, we based our simu-
lations on experimentally determined recombination fre-
quencies derived from a F2 population established by
crossing two diverged Arabidopsis accessions [17]. These
data reveals the number of recombination in single crosses
as well as their distribution over the physical range of the
chromosomes. We used the frequency of recombination
events along the chromosomes as a probability function
after which recombination location and frequency were
simulated (Materials and methods).
This method for in-silico simulation of recombination

breakpoint events can be applied to any type of crossing
regime. In this study, we focused on three different types
of mapping-by-sequencing scenarios (Figure 1). First, we
simulated F2 mapping populations generated by crossing a
mutant plant to a non-mutagenized accession with a
diverged background followed by selfing of the F1 hybrid
(as performed by [1,3,11]). We refer to these classical map-
ping populations as ‘outcross populations’. In outcross
populations, natural sequence variations along with muta-
gen-induced changes serve as genetic markers. A second
type of population was simulated by backcrossing the
mutant plant to the non-mutagenized progenitor, followed
by selfing of the hybrid (as performed by [5,6]). We refer
to these mapping populations as ‘backcross populations’,
in which only mutagen-induced changes serve as markers.
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In contrast to the previous two methods, which make
use of recombination, the third type of simulation con-
stitutes direct sequencing of individual mutant genomes
selected from the backcross populations (as performed
by [14,15]).
In the next sections, we explore the consequences of dif-

ferent crossing schemes and the effect of pool size and

coverage on the extent of the resulting mapping interval
and on the number of candidate mutations (CAMs).

Mapping-by-sequencing with outcross populations
Mapping-by-sequencing with outcross populations is
based on mutant allele frequencies assessed at large-scale
marker sets leading to the identification of mapping
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F1 

Backcross populations

Mapping population

Select mutant plants

Pooled genomesIndividual genome

Self

Self

Outcross populations

F1 

M 2Accession

Self

(I) Outcross or 
backcross?

(III) How many 
plants need to 
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(IV) How many and 
what types of 
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additional 
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Mutant (M1) Mutant (M2)

Figure 1 Overview of different strategies for mapping-by-sequencing. Establishing mutant pools or individual mutant recombinant genomes
requires decisions on different aspects of mapping-by-sequencing. Common questions are shown in red. (I) Mutants can be crossed to diverged
accessions or backcrossed to the wild-type. (II) The number of backcrosses and number of plants used as parents contribute to the outcome of
mapping-by-sequencing. (III) The number of mutant plants sampled from mapping population greatly impacts on the mapping results. (IV) Finally, the
sequencing coverage as well as type of sequencing (single-end or paired-end) affects the outcome of mapping-by-sequencing.

James et al. Genome Biology 2013, 14:R61
http://genomebiology.com/2013/14/6/R61

Page 3 of 13



intervals. Such regions can then be screened for novel
mutagen-induced changes using the same whole-genome
sequencing data (see (I) in Figure 1). Usually a rough
identification of linked regions suffices, as even in larger
regions sequencing data can easily be screened for
CAMs. In order to evaluate this process we used the
mapping-by-sequencing analysis pipeline SHOREmap,
which implements a likelihood ratio test statistics that
converts mapping-by-sequencing data into confidence-
mapping intervals [7]. These mapping intervals represent
the region, in which causal candidates reside at a given
confidence level P (here P=0.99). As we assume that
mutations are randomly introduced into the genome, the
number of CAMs is linearly correlated with the length of
mapping intervals, which we used to quantify the out-
come of a mapping-by-sequencing experiment. Though
marker density positively impacts on mapping resolution,
inclusion of markers that cannot be accessed with the
actual sequencing methods or that have been falsely
included can have severe local effects on the precise
determination of mapping intervals [7]. The marker set
we used consisted of 291,973 markers, after discarding
closely linked polymorphisms and those in repetitive
regions from the complete set of differences between
Arabidopsis accessions Columbia (Col-0) and Landsberg
erecta (Ler) [21] (Material and methods).
Interplay of pool size and genome-wide coverage
Outcross populations were simulated with 40 to 400
mutant genomes. Next generation sequencing was simu-
lated at various genome-wide coverage levels ranging
from 5x to 200x. Each combination of pool size and cov-
erage was independently repeated for 500 times. For each
dataset we performed a SHOREmap analysis and assessed
the size of the final mapping intervals (Figure 2). Overall,
the sizes of the mapping intervals were remarkably vari-
able. This variation was lower for pools with more
recombinants as compared to pools with fewer recombi-
nants. As expected, the number of recombinants also
strongly influenced mapping resolution. For example, at
an average genome-wide coverage level of 15x, pools
with 200 recombinants yielded an average interval size of
381 (± 222) kb, whereas pools with 50 recombinants gen-
erated interval sizes of 783 (± 567) kb on average. Like in
conventional mapping experiments, the decrease in the
size of the mapping interval was not linear. The first indi-
cation of saturation was observed at a sequencing cover-
age of 5x to 15x, where increasing the pool size beyond
350 recombinants did not improve the interval size.
In contrast to pool size, coverage alone had only a small

effect on size and variation of mapping intervals. Pools of
100 recombinants, which were sequenced at 15x, yielded
an average interval size of around 500 (± 310) kb, as com-
pared to 419 (± 298) kb at a coverage of 200x. The reason

for the weak impact of coverage on the size of the map-
ping interval is the large number of markers, which are
distributed throughout the genome and allow for an accu-
rate assessment of allele frequencies even at low coverage
levels.
Assuming 1,400 mutagen-induced mutations per gen-

ome, the average number of CAMs was around five for
pools of >100 recombinants sequenced at an average
genome-wide coverage of 25x. In practical application,
additional prioritization by functional annotation and
location of mutations in the interval has the potential to
reduce this low number of CAMs to one outstanding
candidate only [1].

Mapping-by-sequencing with backcross populations
Conventional genetic mapping requires a cross of the
mutant to a diverged genome. In addition to genetic
variation, this introduces phenotypic variation, which
can interfere with the recognition of subtle phenotypes.
Moreover, if the mutagenesis was performed in a com-
plex (transgenic or otherwise mutagenized background)
this background needs to be introgressed into the
diverged genome, if tedious genotyping for the presence
of first site mutations within all recombinants is to be
avoided.
In order to bypass these obstacles, it has been sug-

gested to use F2 populations derived from backcrossing
the mutant plant to the non-mutagenized progenitor as
mapping populations [5,6,13]. Within backcross popula-
tions all mutagen-induced mutations segregate, except
for the causal and closely linked mutations, which are
fixed in the mutant pool by selecting for the mutant
phenotype. Thus, selection for fixed differences between
the mutant pool and its genetic background reduces the
number of putative causal changes considerably. To
quantify results of each simulation, we used the number
of homozygous differences between the mutant pool
and the background. However, the absolute number of
homozygous mutations greatly depends on the definition
and settings of parameters used for their identification.
As sequencing errors can introduce wild-type alleles at
otherwise homozygous loci, selecting only those posi-
tions without reads that support the wild-type allele
excludes some of the real homozygous mutations. On
the other hand, including positions with support for
wild-type alleles will introduce false positives. In order
to allow comparisons across samples, we defined and
applied thresholds, which are adjusted to pool size and
sequencing coverage (Materials and methods). Back-
crossing was simulated by crossing a single mutant
plant to its isogenic parent followed by one generation
of inbreeding to establish a BC1F2 mapping population
(see (I) in Figure 1).
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The interplay of pool size and genome-wide coverage in
BC1F2 populations
We simulated BC1F2 populations with 3 to 70 mutants
for high and low mutation rates separately. Sequencing
was simulated at different coverage levels, ranging from
5x to 200x. For each combination of pool size and cover-
age level, we simulated 500 independent mapping popu-
lations and scored the number of homozygous mutations
(Figure 3). Mutations that are not fixed, but are close to
fixation have a high probability to appear as fixed in the
sequencing data. This effect becomes stronger at low
coverage levels, where the reduced number of reads does
not allow identifying low frequencies of wild-type alleles.
As expected, more recombinants reduced the average
number of homozygous candidate mutations. Sequencing
pools with 30 recombinants at coverage of 25x revealed
43 (± 18) CAMs on average. Like for outcross popula-
tions, the variation of CAMs was high in pools with few
recombinants, but got reduced in larger pools.
In great contrast to outcross populations, we observed

immediate saturation of the number of CAMs while
increasing pool size. For example, pools with 20 mutants
sequenced at a coverage level of 20x revealed 56 (± 22)
CAMS on average. Pools with 70 mutants, which were
sequenced with the same sequencing effort, revealed

almost the same number. In general, for coverage levels
of <25x, we observed no reduction in the number of
CAMs when increasing the pools beyond 20 recombi-
nants. This suggests that low-fold sequencing lacks the
power to make use of the compliment of recombination
in the pool and more sequencing is required to exploit all
recombination events. In agreement, we still observed a
decrease in CAMs for deeply sequenced samples (200x)
when increasing pool size from 60 to 70. This illustrates
the mutual importance of both pool size and coverage.
This trend was also observed when introducing a low
mutation load (Figure S1 in Additional file 1).
Effects of successive backcrossing
In a series of simulations, we increased the number of
backcross generations up to three before establishing a
mapping population (see (II) in Figure 1). In total, map-
ping-by-sequencing of 81,000 BC2F2 and BC3F2 popula-
tions were compared to the prior analysis of BC1F2 pools.
As expected, additional backcrosses reduced the variation
of CAMs in pools with a few plants (Figure 4). In particu-
lar, when genome-wide coverage or the number of mutants
was limited, additional rounds of backcrossing helped to
reduce the number of CAMs. However, pools with a rea-
sonable number of recombinants sequenced with sufficient
coverage did not improve with additional backcrosses.
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Figure 2 Results of mapping-by-sequencing with outcross populations. Pools of 40 to 400 individuals (colored blocks) were sequenced
with increasing coverage ranging from 5x to 200x. For each combination of pool size and coverage we simulated 500 independent populations
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Backcross populations are usually derived from one
single mutant plant and its isogenic parent. However,
generation of a backcross population based on multiple
mutant siblings, all of which are crossed to their iso-
genic parent, introduces additional variation around the
causal locus. Here, we simulated the generation of back-
cross populations with three mutant siblings and com-
pared the mapping outcome to our previous results,

which were based on one mutant parent only (Figure S2
in Additional file 1). The improvement in mapping reso-
lution was very limited and restricted to pools with few
mutants only.
Effects of mis-scored plants
Phenotyping complex or subtle phenotypes can lead to
mis-scored plants. Such plants introduce wild-type
alleles at the causal candidate locus and severely
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Figure 3 Results of mapping-by-sequencing with backcross populations. (A) Pools of 3 to 70 BC1F2 individuals (colored blocks) were
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interfere with genetic mapping. In order to study the
effect of mis-scored recombinants, we simulated differ-
ent rates of mis-scored plants ranging from 1% to 6%
within a population of 50 BC1F2 mutants sequenced at
50x (Materials and methods). Compared to previous
results, pools with 1% to 2% false scored plants yielded
82% and 145% more CAMs, respectively (Figure S3 in
Additional file 1). This illustrates that even small errors

in the phenotype can have severe effect on mapping-by-
sequencing based on backcross populations.

Direct sequencing of mutant genomes
As an alternative to bulk segregant analysis, individual
mutant genomes can be sequenced directly (see (III) in
Figure 1). However, the large number of background
mutations interferes with the unambiguous identification
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of causal mutations. Backcrossing removes some of
these background mutations [14,15]. Here, we analyzed
mutant genomes after one to three rounds of backcross-
ing. Mutants that are selected from backcross popula-
tions will generally yield fewer CAMs. The theoretical
fraction of the recurrent parental genome after n rounds

of backcrossing is 2
n+1 − 1
2n+1

[22]. Our simulated popula-

tions closely followed the expected percentage and
showed an average reduction of foreground genome by
12.8% and 6.8% in BC2 and BC3, respectively. As
expected, direct sequencing yielded more CAMs than in
our bulk segregant analyses. For example, across all cov-
erage levels, pools with no more than three BC1F2
mutant individuals showed less than half of the CAMs
as compared to direct sequencing of BC1F2 individuals,
illustrating the power of bulk segregant analysis.

Paired-end versus single-end sequencing
Many of the new sequencing technologies allow sequen-
cing of one or both ends of DNA clones. Paired-end
sequencing enables access to (the borders of) repetitive
sequences, which increases the number of markers and
mutations that can be analyzed. Even though single-end
sequence reads might not be able to explore the same
genomic space as paired-end sequence reads, they are
independent of each other. In bulk segregant sequen-
cing, independent reads are counted to estimate allele
frequencies (see (IV) in Figure 1). If both reads of a pair
align to different markers, they cannot contribute twice
to the estimation of allele frequencies as they carry the
same genetic background (ignoring the very rare cases,
where read pairs span recombination events). If two sin-
gle-end reads overlap with markers, both contribute to
the estimation of allele frequencies as they have been
sampled independently. It is thus not obvious whether
paired-end or single-end sequencing is advantageous for
mapping-by-sequencing.
We have compared the efficiency of single and paired-

end reads by counting the number of randomly gener-
ated read or read pair alignments that overlap with pre-
defined marker and CAMs sets. A read, respectively a
pair, was scored as informative if it was uniquely aligned
to at least one or more markers. The lengths of the
simulated reads ranged from 50 bp to 750 bp to cover a
wide range of next generation sequencing read lengths
(Figure 5). Reads, which align equally well to multiple
regions in the genome, are excluded for further analysis.
Increased read length span some of the short repeats
and thus allows aligning more reads uniquely [23,24].
For the analysis of mapping-by-sequencing with out-

cross populations, we defined two sets with 291,973 and
281,668 markers for single-end and paired-end sequen-
cing, respectively, in order to take the different mapping

properties into account. Depending on the read length,
paired-end sequencing featured between 25% and 78%
more informative read pairs. Consequently, it would
require between 25% and 78% more single-end reads in
order to end up with the same number of informative
reads. This calculation allows for a cost comparison of
mapping-by-sequencing for single and paired-end
sequencing based on actual sequencing costs. However,
as paired-end sequencing enables the analysis of parts of
the otherwise inaccessible DNA, it might be advanta-
geous to sequence both ends, even if this would be
more expensive. In particular if combined with mutation
identification, paired-end sequencing has a higher
chance not to miss the causal mutation. We repeated
this exercise for mapping-by-sequencing based on back-
cross populations that were simulated with 1,400 muta-
tions in the genome. Here, paired-end sequencing
featured between 95% and 119% more informative read
pairs.

Application of mapping-by-sequencing simulations to
model crop species
Mapping-by-sequencing has already been successfully
applied to crop species, like rice and polyploid wheat
[5,16,25]. As the size of some of the crop genomes can
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sequencing read lengths and types. Reads or read pairs,
respectively, can only contribute to mapping-by-sequencing if their
alignments overlap with at least one marker or mutations
(informative reads). The number of informative reads from single-
end and paired-end sequencing are shown in purple and blue,
respectively. The lower graphs refer to a mutation density, which is
typical for backcross populations (here, 1,400 mutations per mutant
genome). The upper graphs refer to the number of marker in
outcross populations (281,668 and 291,973 for single-end and
paired-end sequencing).
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be as large as multiple Gb, an informed decision on the
experimental design of mapping-by-sequencing seams
even more important for such species. Here, we
explored the power of Pop-seq simulator to address
questions about the experimental design of mapping-by-
sequencing experiments in rice and barley, where map-
ping-by-sequencing starts to become part of standard
molecular toolbox.
Mapping-by-sequencing in the crop model species rice
First, we estimated the recombination frequency and land-
scape of rice by combining two publically available rice
RIL populations [26,27]. Further, we selected a publically
available set of 139,244 marker for the simulation of out-
cross populations markers [28]. Similarly to Arabidopsis,
we randomly introduced 2,222 mutations (1 every 171 kb),
of which one was selected to be causal. Based on this, we
simulated mapping-by-sequencing using both outcross
and BC1F2 backcross populations with 50 to 400 and 10 to
80 mutant genomes, respectively. Sequencing of these
pooled genomes was simulated at various genome-wide
coverage levels ranging from 10x to 100x. Each combina-
tion of pool size and coverage was simulated for 300 times.
Overall, we observed very similar trends for mapping-by-

sequencing in rice as compared to Arabidopsis (Figure S4
and S5). Changes in the genome-wide coverage affected
the outcome of backcross populations more than outcross
populations and pools with very low number of recombi-
nants drastically suffered from the lack of recombination.
Outcross populations with 150 mutant recombinants
sequenced with not more than 20x featured <3 CAMs on
average in our simulations. In contrast, backcross popula-
tions consisting of 50 mutants, which were sequenced at a
genome-wide coverage of 50 yielded around 10 CAMs on
average.
In general, the greater genome size of rice as compared

to Arabidopsis, was counteracted by an enriched recom-
bination frequency allowing for similar conclusions on
the experimental design in rice as in Arabidopsis.
Mapping-by-sequencing based on targeted enrichment
sequencing
As-of-today, the large genome sizes of crop species like
the one of Hordeum vulgare (barley) make whole-gen-
ome resequencing as part of mapping-by-sequencing an
expensive and risky approach. To address this general
problem genome-complexity reduction methods, like
transcriptome sequencing, restriction site associated
DNA sequencing, or targeted enrichment sequencing,
have been proposed [29-32]. For example, targeted
enrichment sequencing has been proven to be suitable
for mapping-by-sequencing already [7].
Here, we simulated targeted enrichment sequencing of

approximately 60 Mb of the barley genome. This includes
the simulation of deep sequencing at selected regions of
the genome, but at the same time the simulation excludes

the rest of the genome from sequencing. Even though
enrichment sequencing has a high chance to exclude the
causal mutation from the actual sequencing data, map-
ping-by-sequencing based on enrichment sequencing will
guide subsequent fine-mapping efforts.
The design of the enrichment reduced the set of gen-

ome-wide marker as defined between the two cultivars
Morex and Barke from 11,371,643 to 164,492 markers,
which are accessible through our enrichment sequencing
[33]. Mapping populations were simulated with 50 to 600
mutant plants selected from F2 outcross populations and
were based on the recombination frequency and land-
scape for barley as observed in the Oregon Wolfe Barley
mapping population [34]. Sequencing was simulated at
coverage levels of 100x to 1,000x reflecting the high cov-
erage gained in enriched regions. Each combination of
pool size and coverage was simulated for 300 times.
Overall, the reduced recombination frequency in barley

as compared to the other species resulted in large map-
ping intervals (Figure S6). Similarly to the observations
for the other two species, increased coverage had only a
minor effect on the results of outcross population-based
mapping-by-sequencing, but an increase in the number
of mutants can have a strong effect on the size of the
mapping interval. Simulation of mapping populations
with 400 mutants that were sequenced with an average
coverage 200x at the enriched regions resulted in map-
ping intervals with an average size of 3.2 Mb.

Conclusions
Identification of a wide range of mutagen-induced pheno-
types founded the basis of genetic research in Arabidopsis
in the last century [35]. Next generation sequencing now
revived and accelerated this successful concept of forward
genetics as it allows for instant identification of CAMs.
This speed-up in genetic mapping now opens new avenues
even for more complex phenotypes. We have addressed
several questions about the design of mapping-by-sequen-
cing in a large simulation study and summarize our sugges-
tions for reasonable and successful experiments (Table 1).
In-silico simulations have the tendency to be too optimis-

tic in their predictions, as simulations only consider known
variables, but additional noise, which is common to real
data, might not be simulated appropriately. Differences
between real mapping-by-sequencing experiments and our
simulations include differences in the number of recombi-
nation and mutations. As recombination events can be
influenced by changes in the environment as well as the
genetic background, our empirical data, which was based
on limited environments and genetic backgrounds, will not
always fit the real recombination landscape [36]. However,
variation in recombination is subtle, and our results are in
agreement with published mapping-by-sequencing experi-
ments [1,3].
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We have analyzed the effect of genome-wide coverage
and recombinants on the performance of mapping-by-
sequencing. Our results revealed that coverage and
recombinants are interconnected and rely on the crossing
scheme. Mapping-by-sequencing with backcross popula-
tions requires higher coverage for optimal mapping
results as compared to outcross populations. This differ-
ence comes from the drastic difference in the number of
markers (or mutations) between these two types of popu-
lations. Outcross populations contain hundreds of thou-
sands of natural markers, which are much denser than
the expected recombination frequency. Thus, sliding-
window-like approaches can combine the information
from neighboring markers, and establish precise allele
frequency estimates. Even though the average coverage
for sliding-window-based methods can be low, subse-
quent identification of mutations limits the minimal cov-
erage required of such experiments. In order to avoid the
risk of missing the causal mutation, it is not recom-
mended to target coverage levels of <25x for mapping-
by-sequencing experiments.
As a consequence of the reduced analysis power, map-

ping-by-sequencing with backcross populations cannot
make use of the full complement of recombination. In
contrast to outcross populations, coverage has a large
impact on the final number of CAMs.
In order to prioritize the final set of CAMs, their

putative effects on genes can be examined. An attractive,
additional way to further filter the final set of CAMs is
generating more sequencing data. Hartwig et al. sug-
gested deep sequencing of PCR amplicons (or deep can-
didate resequencing, dCARE) to locally increase the read
coverage up to multiple thousands of reads [6]. This has
the advantage of avoiding expensive whole-genome
sequencing, while providing an exact count on allele fre-
quencies at each CAM. If dCARE is considered, pooling
many recombinants, even more than the whole-genome
sequencing can resolve, is recommended.
Irrespective of the demands in coverage and number

of mutants, decisions on the experimental setup should
consider the phenotype. Complex phenotypes, which
can be affected by the presence of natural variation will
benefit from isogenic mapping strategies, as mis-scored
phenotypes can have severe effects on the mapping
result.

As an alternative to bulk segregant analysis, we also
analyzed direct sequencing of individual genomes of
backcross populations. Each successive backcross reduces
the foreground genome and the number of CAMs. How-
ever, it requires multiple backcross generations before
the number of CAMs is as low as in bulk segregant ana-
lyses and still tedious rough mapping may be required
[15]. Our study suggests that multiple rounds of back-
crosses can be avoided by pooling multiple genomes.
The genome-wide mutation rate of radiation mutants

is reported to be significantly lower as compared to che-
mically induced mutants [37]. Direct sequencing of
mutants with fewer, but putatively more severe muta-
tions can simplify the interpretation of whole-genome
analysis of directly sequenced mutant genomes.
Another way to reduce the number of CAMs is sequen-

cing multiple independent alleles of the same mutant,
which was shown recently for the first time [16]. This strat-
egy does not reduce the number of CAMs in individual
genomes, but most of the CAMs can be ignored as they
affect genes only in one of the alleles. The chance of finding
unrelated genes with mutations in different alleles is very
low [16].
We have extended our analysis on the design of map-

ping-by-sequencing experiments to rice and barley, which
involved the simulation of targeted enrichment sequencing.
While the larger genome of rice as compared with Arabi-
dopsis was counteracted by an elevated recombination fre-
quency, the interval sizes for barley were drastically
increased, which is in agreement with its large genome size.
The outcome of the simulations relies in large parts

on the recombination frequency and hotspots and differ-
ent varieties might feature different recombination land-
scapes. Thus, in order to study mapping-by-sequencing
in different species or other crossing schemes, we pro-
pose to repeat the simulations with the appropriate
recombination frequency and landscape. Our Pop-seq
simulator is available for download and will ease such
an application (see Materials and methods).

Materials and methods
Simulation of recombined individuals and mapping
populations
Simulation of in-silico mutant genomes started by creat-
ing an initial mutant genome with 700 or 1,400 randomly

Table 1 Suggestions for the design of mapping-by-sequencing experiments

Outcross populations Backcross populations Direct sequencing Deep candidate resequencing (dCARE)

Generation F2 BC1F2 BC1-3F2
a n/a

Mutants (n) Approximately 150 Approximately 50 1 As many as possible

Optimal coverage >25 Approximately 50 >25 n/a

Sequencing type Paired-end Paired-end Paired-end Single-end
aDepending on mutation rate.
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placed, homozygous mutations, respectively. One of
those was randomly selected as causal mutation. Wild-
type genomes were simulated without any mutation. In
order to simulate offspring genomes, we combined
recombined haploid genomes from one or two virtual
parents. Offspring genomes were used as parents for
further crosses. The actual number of recombination per
meiosis for each chromosome was randomized based on
the distribution of recombination events in Arabidopsis,
these empirical determined recombination frequencies
were derived from a cross between Arabidopsis Col-0
and Fei-0 [17]. It was calculated by

X ∼ Trinomial(n, [p1, p2, p3]),

where p1, p2 and p3 are the observed frequencies of
none, one, and two or more recombination per chromo-
some per meiosis. The location of each recombination
was selected after the observed frequencies over each
marker along the chromosome and placed in between
two adjacent markers. The probability of a recombina-
tion at position xij between two adjacent markers was
calculated by

{
2, 3, .., k

}
p(xji) =

p (mi)

li
, i = , ji = {1, 2, .., li} ,

where i, j, k, and l are the marker, base pair, total
number of markers, and length between adjacent mar-
kers, respectively.p(mi) is the observed probability of
recombination in between marker mi and mi-1. The
location of additional recombination events was mod-
eled after a gamma distribution in order to take crossing
over interference into account. Both gamma distribution
parameters scale and shape were chosen such that the
resulting distribution followed the empirical data. Plants
with homozygous causal mutations were labeled as
mutant phenotypes.

Simulation of whole-genome sequencing
Accurate simulation of whole-genome sequencing of
bulks and individual genomes needs to consider the
total number of alignments per marker, the parental
allele frequencies, and sequencing errors. To incorporate
the variation in the number of alignments per marker,
we assigned a prior normalization n value to each mar-
ker position based on the observed coverage in real
resequencing experiments of Arabidopsis wild-type [21].
The value describes the ratio of observed coverage at
single marker in relation to the genome-wide average.
Actual number of reads at each marker position ci per
sequencing simulation was then calculated by

ci ∼ Multinomial(m, [n1,n2, ..nk]),

where m, n, and k are the total number of reads, nor-
malized coverage probability per marker, and the total
number of markers, respectively. Then, we used the
allele frequency a1, and a2 within the population under
investigation and assigned each read ri to one of the
parental alleles by

ri ∼ Trinomial(ci, [a1, a2, s]),

where a1, a2 and s are the allele frequency of mutant,
allele frequency of wild-type and sequencing error. We
used a constant sequencing error rate of 0.3% [7]. The fre-
quency of different types of sequencing errors in Illumina
sequencing is non-randomly distributed [19], however as
this would have a limited impact on our simulations, we
did not address this fact here.

Selection of homozygous mutations
Predictions of homozygous mutations are affected by pool
size and coverage. In order to define a uniform threshold
for the detection of homozygous mutations across all dee-
ply and shallowly sequenced pools with a few or many
plants, we introduced two thresholds respecting pool size
and sequencing coverage. First, we calculated the mutant
allele frequency at loci where one single wild-type chro-
mosome is present, defined as

gf = 1 −
(
[m ∗ 2] + 1

n ∗ 2

)
,

where m and n are the number of mis-scored and
total mutants in the pool, respectively. For the second
threshold, we calculated the mutant allele frequency as
estimated by the short read alignments, where one
alignment is sampled from a non-mutant chromosome,
defined as

rf = 1 −
(⌈

cp ∗ e
⌉
+ 1

cp

)
,

where cp is the actual coverage at position p and e is
the estimated sequencing error frequency of 0.3% [7].
Only mutations with mutant allele frequencies greater
than gf and rf have been considered as homozygous
mutations.

High quality marker selection
For all simulations based on outcross populations we
defined a high quality marker set based on resequencing
data of Arabidopsis Ler [21]. All SNPs with a resequen-
cing quality score <25 were discarded, as well as SNPs
that overlap with regions with different copy number
between the parents as predicted by the resequencing.
Further we iteratively removed SNPs, which were closer
than 50 bp. This yielded 291,973 high quality markers.
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Comparison of single-end and paired-end sequencing
Single and paired-end sequencing was simulated with
reads ranging from 50 bp to 750 bp in length. Insert
length for paired-end sequencing was simulated with
three times the read length. For each combination of
read length and sequencing type 100,000 random align-
ments locations were chosen. The read length defined
the end of the alignment. The actual location of the
read pair was defined by read length and insert site. If
the simulated alignments overlapped with one or more
markers the alignment was scored as informative.

Implementation of simulation pipeline
Our pipeline for simulating recombinant genomes and
their sequencing, Pop-seq simulator, is available at sour-
ceforge [38]. Recombination frequency and landscape
are specified by configuration files, which we provide for
all simulations performed in this study.

Additional data files
The following additional data are available with the
online version of this article. Additional file 1 describes
supplementary figures.
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