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Abstract

Background: Phenotypic plasticity refers to the range of phenotypes a single genotype can express as a function
of its environment. These phenotypic variations are attributable to the effect of the environment on the expression
and function of genes influencing plastic traits. We investigated phenotypic plasticity in grapevine by comparing
the berry transcriptome in a single clone of the vegetatively-propagated common grapevine species Vitis vinifera
cultivar Corvina through 3 consecutive growth years cultivated in 11 different vineyards in the Verona area of Italy.

Results: Most of the berry transcriptome clustered by year of growth rather than common environmental
conditions or viticulture practices, and transcripts related to secondary metabolism showed high sensitivity towards
different climates, as confirmed also by metabolomic data obtained from the same samples. When analyzed in 11
vineyards during 1 growth year, the environmentally-sensitive berry transcriptome comprised 5% of protein-coding
genes and 18% of the transcripts modulated during berry development. Plastic genes were particularly enriched in
ontology categories such as transcription factors, translation, transport, and secondary metabolism. Specific plastic
transcripts were associated with groups of vineyards sharing common viticulture practices or environmental
conditions, and plastic transcriptome reprogramming was more intense in the year characterized by extreme
weather conditions. We also identified a set of genes that lacked plasticity, showing either constitutive expression
or similar modulation in all berries.

Conclusions: Our data reveal candidate genes potentially responsible for the phenotypic plasticity of grapevine
and provide the first step towards the characterization of grapevine transcriptome plasticity under different
agricultural systems.
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Background
Most organisms show evidence of phenotypic plasticity,
that is, the ability of a single genotype to produce a range
of phenotypes as a function of its environment [1]. This
represents a key strategy to maximize fitness when chal-
lenged by environmental heterogeneity [2]. Moreover,
sessile organisms such as plants rely on phenotypic plas-
ticity to cope with the changing environment, so the phe-
nomenon has a significant impact on evolution, ecology
and agriculture [3-5] as well as on plant responses and
adaption in the context of rapid climate change [3].

Although phenotypic plasticity is an important ecological
phenomenon, the underlying genetic and molecular
mechanisms remain still poorly characterized [6].
Phenotypic variation between species and organism of

the same species may reflect differences in gene struc-
ture as well as differences in gene expression, but phe-
notypic plasticity among clones of the same genotype is
likely to be much more dependent on differential gene
expression in different environments [7]. The availability
of high-throughput expression profiling technologies
now makes it possible to analyze gene expression (activ-
ity and spatiotemporal characteristics) on a global scale,
so that transcriptome plasticity can be investigated
directly [7-9]. Transcriptome plasticity has recently been
described in model organisms such as the fruit fly
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Drosophila melanogaster [10], the mouse Mus musculus
[11], and the nematode Caenorhabditis elegans [12].
Other studies have considered the transcriptional basis
of phenotypic variation in non-model organisms in the
wild or under controlled environments [13-16].
Few comprehensive studies have been reported for

plants cultivated in open fields, where they are exposed to
multiple environmental stimuli that induce complex
responses in terms of gene expression, metabolic activity,
and epigenetic modifications. These studies have focused
mainly on transcriptome remodeling in response to indivi-
dual abiotic factors [17,18] or during a single developmen-
tal process [19]. Recently Richards et al. [20] analyzed the
genome-wide gene expression pattern in two accessions of
Arabidopsis thaliana and explored the correlation
between gene expression and natural environmental fluc-
tuations. This revealed that accession is an important
component of transcriptional variation among individuals
in the field.
Grapevine (Vitis spp., family Vitaceae) is the most

widely-cultivated perennial fruit crop in the world, with
67.5 million tons of berries produced in 2011 [21]. The
berries are characterized by considerable phenotypic
plasticity, with the same clone showing variability within
individual berries, among berries within a cluster,
between clusters on a vine, and among vines in the vine-
yard, according to both environmental factors and viti-
culture practices [22]. This can be considered a burden
because the berries may mature unevenly and display
large interseasonal fluctuations in quality, but it also
offers advantages such as the ability to adapt existing
cultivars to specific growing regions and to produce dif-
ferent wines from the same cultivar [23].
We investigated the extent to which phenotypic plasti-

city in grape berries reflects underlying changes in the
transcriptome by using NimbleGen microarray technology
in combination with the complete grapevine genome
sequence [24] to study global gene expression profiles in a
single clone of Vitis vinifera cv Corvina cultivated in dif-
ferent vineyards and harvested at different developmental
stages over 3 consecutive years. We monitored the tran-
scriptomic response to seasonal changes, highlighting
transcripts expressed under both normal and unusual
weather conditions. We identified the component of the
grapevine transcriptome that is plastic, allowing different
developmental responses under diverse growing condi-
tions. We studied the relationships among differential
gene expression profiles, growing conditions and ripening
parameters and identified several putative candidate genes
for the definition of berry quality traits. The large-scale
sampling procedure we used also allowed the identifica-
tion of non-plastic genes such as constitutive housekeep-
ing genes that provide useful references for quantitative

expression analysis, and developmental markers that may
be suitable for the on-field monitoring of berry ripening.

Results
Sampling strategy and seasonal climate analysis
Vitis vinifera cv Corvina clone 48 berries were harvested
from different vineyards, each located in one of the three
most important wine production macro-areas of the Ver-
ona region (Bardolino, Valpolicella, and Soave). The vine-
yards were selected on the basis of the site geographical
coordinates to maximize differences in environmental
conditions (altitude and soil type) and agricultural prac-
tices (training system, orientation of the rows, planting lay-
out, vineyard age, and rootstock type) in each of the
selected vineyards (Figure 1a; see Additional File 1, Table
S1). Berry samples were harvested from all the vineyards
on the same day and three biological replicates were taken
at each of three different developmental stages (veraison -
that is, the term used by viticulturists to indicate the onset
of ripening -, mid-ripening, and fully-ripe). A complete list
of all samples collected for this study is shown in Addi-
tional File 2, Table S2. In brief, sample names are com-
posed by vineyard abbreviations (see Additional File 1,
Table S1), followed by the indication of the harvesting
year (06, 07, or 08), by the indication of the developmental
stage (1, 2, or 3) and by the description of the biological
replicate (A, B, or C). The berry ripening stage was verified
by measuring three traditional ripening parameters (°Brix,
total anthocyanin levels, and total acidity) as well as the
ratio between quercetin-3-O-glucoside and quercetin-3-
glucoronide, reflecting the fact that ripening Corvina
berries progressively lose the former and accumulate the
latter [25] (see Additional File 3, Table S3).
The same sampling procedure was repeated over 3

consecutive growth years (2006, 2007, and 2008). In
order to obtain samples harvested at a similar phenologi-
cal phase in the 3 years, the collecting times were
advanced or delayed based on seasonal climate condi-
tions and/or agro-meteorological trends. Daily tempera-
ture recording suggested that the 2007 season
experienced a much warmer spring than the 2006 and
2008 ones (Figure 1b). In a comprehensive study of the
relationship between grapevine phenology and climate
change in the Veneto region over the period 1964 to
2009, the early spring of 2007 was noted for the highest
average temperature (with near-normal precipitation) in
the entire 45-year period. The 2007 veraison-to-harvest
period was nearly 2 weeks ahead of time compared to the
last decade average [26].
Based on the traditional and metabolic parameters dis-

cussed above, and with the appropriate inter-annual cor-
rections taken into account, the collected samples were
considered homogenously and uniformly ripe among
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different vineyards and growth years at each developmen-
tal stage (see Additional File 3, Table S3).

The impact of season climate on the berry transcriptome
We used the NimbleGen 090918_Vitus_exp_HX12 micro-
array to investigate the Corvina berry transcriptome at
three developmental stages harvested during the 2006-
2008 period from four vineyards (AM, CS, MN, and PSP)
chosen to maximize climatic and agricultural differences
(see Additional File 1, Table S1 and Additional File 2,

Table S2). The vineyards therefore represented all three of
the macro-areas we considered (Bardolino, Valpolicella,
and Soave) and a range of diverse environmental and agri-
cultural parameters including three rootstock types, two
altitudes, two vineyard training systems, and rows facing
in different directions.
The 108-sample dataset (four vineyards, three devel-

opmental stages, three biological replicates, 3 years) was
further dissected into three stage-specific 36-sample
datasets (four vineyards, one developmental stage, three

Figure 1 Sampling macro-areas and temperature trends in the Verona region, Veneto, Italy. (a) Sampling locations of Vitis vinifera cv
Corvina clone 48 berries near Verona, Italy. We chose 11 different vineyards from the three most important wine production macro-areas of the
region: Bardolino, Valpolicella, and Soave. (b) Average annual temperature trends. Temperature measurements were averaged from three
recording stations located near each macro-area. The start and end point of sampling are indicated for each year.

Dal Santo et al. Genome Biology 2013, 14:R54
http://genomebiology.com/2013/14/6/R54

Page 3 of 18



biological replicates, 3 years). We generated a Pearson’s
distance correlation matrix for each dataset to compare
the transcriptome from each sample. These values were
converted into distance coefficients to define the height
of a dendrogram.
Berry samples collected at veraison clearly clustered in

relation to the growth year and not in relation to the
growing sites (Figure 2a). The 2006 and 2008 seasons
correlated more closely than either did to the 2007 sea-
son, indicating that the high spring temperatures in
2007 had an impact on berry development. To gain
insight into the physiological and molecular factors
underlying this separation between samples, we carried
out a three-group Kruskal-Wallis non-parametric analy-
sis of variance (P <0.01) on the complete first-stage
dataset. Hierarchical clustering (HCL) analysis on the
resulting 625 genes, whose expression profiles showed a
significant difference in modulation in at least 1 year,
revealed four major groups (Figure 2b; see Additional
File 4, Dataset S1).
Cluster 1 included 373 genes showing higher expres-

sion levels in 2008 compared to low levels in 2007. Most
of these genes represented the ‘DNA/RNA metabolic
process’ functional category, including several encoding
histones, pentatricopeptide proteins, DNA replication
proteins, mRNA cap guanidine methyltransferases, and
RNA-binding proteins. The ‘Transcription’ functional
category was also strongly represented, including genes
encoding bHLH, MYB, bZIP2, and zinc finger transcrip-
tion factors. The strong representation of these genes
suggested a profound remodeling of the transcriptome
between the growth years. We also identified stress
response genes encoding two thaumatins, a metallothio-
nein [27], and at least four senescence-associated
proteins.
Cluster 2 contained 47 genes that were expressed at

high levels in 2006 but at low levels in 2008. This
included six genes related to hormone metabolism, four
of which involved in the response to abscissic acid
(ABA), which plays a pivotal role in development, adap-
tation to dehydration stress [28] and the production of
reactive oxygen species (ROS). Given the presence of an
early response to dehydration (ERD) protein and of two
nudix hydrolases, which have recently been shown to
maintain redox homeostasis [29], it is likely that the
2006 season was exposed to greater dehydration stress
than the 2008 one.
Cluster 3 comprised 39 genes that were expressed at

significantly higher levels in 2006 than 2007. These
included genes encoding three expansin proteins directly
involved in cell wall expansion [30], and a xyloglucan
endotransglucosylase/hydrolase (XTH), which modifies
hemicellulose during wall expansion and fruit softening
and therefore suggests a direct influence of the growth

year condition on cell wall metabolism [31]. Cluster 3
also included four genes related to carbohydrate synth-
esis, encoding sucrose synthase 2, a transketolase, a
phosphomannomutase, and a galactokinase.
Finally, cluster 4 comprised 168 genes expressed at

significantly higher levels in 2007 than in 2008. Interest-
ingly, this group included genes encoding at least 10 dis-
ease-resistance proteins and heat shock factors. We also
identified genes involved in the oxidative burst (two
monooxygenases and a respiratory burst oxidative pro-
tein B) as well as two alcohol dehydrogenases involved
in fermentative metabolism. The upregulation of these
genes confirms that severe stress was imposed upon
developing berries during the 2007 growing season.
Whereas the veraison berry dendrogram showed predo-

minantly year-specific clustering, the ripening berry den-
drograms were organized in a different manner (see
Additional File 5, Figure S1a and S1b). Year-specific
modulated genes in these samples were identified by nor-
malizing the microarray fluorescence intensity values
against the corresponding veraison values, resulting in a
dendrogram showing samples clustered according to the
growth year (Figure 2c). This indicated that the mid-ripen-
ing and late-ripening datasets could be also screened for
year-specific modulated transcripts.
To explore the transcriptomic differences between the

mid-ripening and late-ripening samples when comparing
average climate growth year (2006/2008) and the 2007 sea-
son characterized by an exceptionally warm spring, we car-
ried out a paired two-group t-test analysis which revealed
4,775 genes showing significant (P <0.01) differential tran-
scription in one of the two groups (see Additional File 6,
Dataset S2). After averaging the fluorescence intensity of
all the samples within one group, we used MapMan [32] to
visualize genes that were induced either specifically in the
2006/2008 seasons or specifically in 2007 (Figure 2d). We
noted that enzymes involved in cell wall structural modifi-
cations (especially cellulose synthases, pectinesterases, and
xyloglucan endotransglucosylase/hydrolases) were repre-
sented to a great extent in the 2006/2008 group, as pre-
viously observed in cluster 3 (Figure 2b), suggesting that
the expression of these genes is affected by the different
season climate. Genes with a role in amino acid metabo-
lism were also induced in 2006/2008, indicating that the
management of nitrogen-base substances is impaired
under extreme temperatures. However, the major differ-
ence between the growth years involved secondary metabo-
lism (Figure 2d), particularly the biosynthesis of
phenylpropanoid derivatives in the 2006 and 2008 berries.
This was indicated by the induction of genes encoding sev-
eral phenylpropanoid-related enzymes (for example, phe-
nylalanine ammonia lyase, PAL, and cinnamyl alcohol
dehydrogenase (CAD), including a high number of stilbene
synthases (STSs), controlling the key step for the synthesis
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Figure 2 Transcriptomic reprogramming in different climatic seasons. (a) Cluster dendrogram of the first developmental stage dataset
using the average expression value of the three biological replicates. Pearson’s correlation values were converted into distance coefficients to
define the height of the dendrogram. Sample names are composed by vineyard abbreviation followed by the indication of the harvesting year
(06, 07, or 08) and by the indication of the developmental stage (1). Blue, green, and red indicate samples harvested in 2006, in 2008, and in
2007, respectively. Data are the average of the three biological replicates. (b) Hierarchical clustering analysis of transcripts that were differentially
modulated among different seasons in first-stage samples. Kruskal-Wallis analysis of variance (P <0.01, three groups) was used to define
transcripts whose expression is modulated in at least one growing season. Pearson’s correlation distance was used as the metric to create the
transcriptional profile dendrogram. Sample names are composed by vineyard abbreviation followed by the indication of the harvesting year (06,
07, or 08) and by the indication of the developmental stage (1). Data are the average of the three biological replicates. (c) Cluster dendrogram
of the second and the third developmental stage datasets using the average expression value of the three biological replicates. Pearson’s
correlation values were converted into distance coefficients to define the height of the dendrogram. Sample names are composed by vineyard
abbreviation followed by the indication of the harvesting year (06, 07, or 08) and by the indication of the developmental stages (2 or 3). Blue,
green, and red indicate samples harvested in 2006, in 2008, and in 2007, respectively. Data are the average of the three biological replicates.
MapMan software (v. 3.5) was used to visualize ripe berry genes specifically expressed in the 2006/2008 (white) and 2007 (red) growing seasons
in an overview of metabolism (d) and focusing on the phenylpropanoid pathway (e).
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of stilbene compounds (Figure 2e). LC-ESI-MS metabolo-
mic analysis of the same samples used for RNA extraction
confirmed that phenylpropanoid-derived compounds such
as stilbenes, viniferins, hydroxycinnamic acids, and the fla-
vonoid catechins and epicatechins were less abundant in
the 2007 season compared to the 2006/2008 seasons,
strongly supporting the transcriptomic data (see Additional
File 7, Figure S2). This suggests that the profound repro-
gramming of the berry transcriptome under diverse
meteorological conditions includes metabolic pathways
contributing to ripe berry qualitative traits, thus influencing
the commercial value of the grapes.

Adaptation of the berry transcriptome to different
environments and growing conditions
We focused on the impact of different environments and
growing conditions by analyzing berries from the 2008
season, which appeared to be less influenced by the cli-
mate than the other growth years (see Additional File 8,
Figure S3). We extended the analysis to include all 11
vineyards (see Additional File 2, Table S2). The resulting
99-sample dataset (11 vineyards, three developmental
stages, three biological replicates, 1 year) showed a bimo-
dal distribution of fluorescence intensity agreeing with the
results of previous investigations [33]. To achieve a unim-
odal distribution from the whole dataset, we used k-means
clustering of the log2 fluorescence intensities (see Addi-
tional File 9, Figure S4) applying increasing values of
k until only a single cluster displayed bimodal distribution
(k = 10) with a low mean expression level. We then
grouped the nine unimodal clusters with high mean
expression levels, allowing us to select genes providing a
unimodal distribution without cutting off low-value
expression data (for example, cluster 1, see Additional File
9, Figure S4). We identified 13,752 genes with a unimodal
distribution of the fluorescence signal (see Additional File
10, Dataset S3). We carried out a Kruskal-Wallis test (P <
0.01) on the reduced dataset from each vineyard to deter-
mine the number of genes that were differentially
expressed during ripening and found the average number
over the 11 vineyards was 8,381. Plastic genes modulated
in at least one vineyard during ripening were identified by
applying 11-group Kruskal-Wallis analysis to Dataset S3
(Additional File 10), resulting in a reduced set of 1,478
transcripts (P <0.01) (see Additional File 11, Dataset S4).
The number of plastic genes appeared remarkably high
(approximately 18% of the average number of modulated
genes), suggesting that the ripening of Corvina berries can
be modified extensively by the growing conditions. This also
indicated that approximately 5% of the transcripts repre-
sented on the microarray correspond to plastic genes whose
expression can vary under diverse growing conditions.
The analysis of transcript functional categories revealed

that 21% of the plastic genes were unrecognized (‘No Hit’)

or uncharacterized (’Unknown Protein’) suggesting that
much remains to be learned about the genes expressed
during berry development (Figure 3a). Overall, the 1,478
plastic transcripts were particularly enriched in the func-
tional categories ‘Translation’, ‘Nucleobase, nucleoside,
nucleotide and nucleic acid metabolic process’, ‘Regulation
of gene expression, epigenetic’, and ‘Transport’ (see Addi-
tional File 12, Figure S5). In particular, at least 86 riboso-
mal proteins were found in the DNA/RNA metabolic
process category (Figure 3b), suggesting that transcrip-
tome reprogramming during ripening involves a shift in
protein synthesis. ‘Transcription factor activity’ function is
also well represented, for example, 30 zinc finger genes,
including C(2)H(2)-type proteins that regulate stress and
hormone response pathways [34] and many C3HC4-type
RING zinc fingers that also play a role in abiotic stress
responses [35,36]. We also identified at least eight mem-
bers of the MYB transcription factor family (see the heat
map in Figure 3c, which shows the expression profiles
among vineyards and during ripening). Some members of
the MYB family have been shown to regulate secondary
metabolism in grape berries [37,38] as well as drought,
salinity, and cold stress in Arabidopsis and rice [35,39].
Genes representing the ‘Transport’ functional category

included those encoding ATP-binding cassette (ABC) pro-
teins (Figure 3c). This is one of the largest and most
diverse protein families in plants, and is responsible for
transporting many different substances across membranes
[40,41], suggesting a broad reprogramming of intracellular
and intercellular transport as a component of phenotypic
plasticity in Corvina berries. The glutathione S-transferase
(GST) family was also well represented among the plastic
genes, with at least 11 tau-class GSTs showing different
expression patterns among the 11 vineyards (Figure 3c).
Although the function of tau-class GSTs remains poorly
understood, they may be involved in stress tolerance and
secondary metabolism as well as the detoxification of her-
bicides [42]. It is noteworthy that many of the ‘Response
to stress’ transcripts we identified are involved in ROS
scavenging, such as two glutaredoxins, four ascorbate per-
oxidases, a nudix hydrolase, two peroxiredoxins, and three
superoxide dismutases. Together with the many GSTs that
reduce peroxides by controlling the balance between the
oxidized and reduced forms of glutathione, the presence
of these transcripts suggests that the oxidative burst
observed in Pinot Noir berries at veraison [43] could also
occur in Corvina and is part of the complex transcriptional
rearrangement during berry plasticity. Finally, several of
the Corvina plastic transcripts belonged to the ‘Develop-
mental process’ category, including several homologs of
Arabidopsis genes involved in floral transition and flower
organ identity, that is, EARLY FLOWERING, CONSTANS,
FRIGIDA, and SEPALLATA (see Additional File 11, Data-
set S4).
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We also investigated whether it is possible to identify
groups of vineyards sharing specific pools of plastic
transcripts. Principal component analysis (PCA) was

applied to the 1,478 plastic genes and we identified five
principal components explaining 67.4% of the variability.
The resulting dendrogram highlighted four principal

Figure 3 Grapevine transcripts showing plasticity during berry development. (a) Functional category distribution of the 1,478 (P <0.01)
plastic grapevine genes. Transcripts were grouped into the 18 most represented functional categories, based on Plant GO Slim classification of
biological processes. (b) Plant GO Slim classification of biological processes and functions for 280 transcripts in the ‘DNA/RNA Metabolic Process’
category. (c) Plastic members of the ABC transporter, glutathione-S-transferase, and MYB transcription factor gene families. The heat map of
transcriptional profiles was generated with TMeV 4.8 using the average expression value of the three biological replicates. Sample names are
composed by vineyard abbreviation followed by the indication of the harvesting year (08) and by the indication of the developmental stages
(1, 2, or 3). (d) Principal component analysis using Simca P+ 12.0 (Umetrics). The PCA dendrogram was calculated using the average expression
value of the three biological replicates. The dendrogram was designed using Ward’s method and horizontally sorted by cluster size. Sample
names are composed by vineyard abbreviation followed by the indication of the harvesting year (08) and by the indication of the
developmental stages (1, 2, or 3). (e) Variables and scores three-dimensional scatter plot of the O2PLS-DA model (3+2+0, UV, R2X = 0.673, Q2 =
0.775) applied to the 1,478 plastic transcripts dataset and colored according to the four-group partition as in the PCA analysis shown in (d). The
model was created using Simca P+ (12.0). Components 3 and 2 represent the predictive and orthogonal components identified by the model,
whereas 0 represents the background variation. UV: Unit variance scaling method.
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clusters of vineyards (Figure 3d). Samples from the same
vineyard but from different developmental stages gener-
ally clustered in the same group, with the exception of
five samples. FA081 and CS081 were outliers possibly
because of the significant changes from veraison to later
developmental stages. Samples from the GIV vineyard
were also outliers, indicating a unique gene expression
profile under these particular micro-environmental con-
ditions. Plastic transcripts contributing to the definition
of each statistical class were defined by applying a four-
class orthogonal projections to latent structures discri-
minant analysis (O2PLS-DA) model to a 28-sample
reduced dataset lacking the outlier samples (Figure 3e).
The robustness of the model was tested by calculating
the degree of overfitting (100 permutations) of the cor-
responding three-class PLS-DA model (see Additional
File 13, Figure S6). We identified 53, 30, 33, and 29
transcripts specific for each cluster. Remarkably, the
vineyards in cluster 1 were all characterized by the
intensive transcription of genes encoding ribosomal pro-
teins (almost half of the all the cluster-specific tran-
scripts) (see Additional File 14, Dataset S5).
We next tested whether it was possible to associate spe-

cific transcripts to groups of vineyards sharing certain
environmental attributes or using specific agricultural
practices. We applied the Kruskal-Wallis approach (P
<0.01) to the 13,752-unimodal-profiling-transcript dataset
(see Additional File 10, Dataset S3) using in each case the
appropriate number of groups (for example, two groups
for the direction of rows, four groups for the rootstock
type). Among all the combinations we tested, only the
‘Trelling System’ and the ‘Geographical Area’ categories
gave statistically-validated results (see Additional File 15,
Figure S7a and S7b). This indicated that the contribution
of the four different rootstock genotypes have only a mar-
ginal impact on the plastic gene expression of berries com-
pared to the other agricultural parameters and is not
appreciable from our experimental design. We found that
373 transcripts (false discovery rate (FDR), 0.25%) were
differentially-modulated between vineyards using a repla-
cement cane Guyot system or a parral system. Interest-
ingly, several transcripts encoding heat shock proteins and
proteins that maintain membrane integrity were induced
among vineyards using the Guyot system but not those
using the parral system (see Additional File 15, Figure S7a,
and see Additional File 16, Dataset S6). Transcripts asso-
ciated with the macro-areas had more complex expression
profiles. Of the 534 transcripts (FDR, 0.42%) found signifi-
cant in the statistical test, only the absence of particular
transcripts could be specifically assigned to the Soave,
Bardolino, or Valpolicella areas (see Additional File 15,
Figure S7b, and see Additional File 17, Dataset S7). Thus,
the absence of these transcripts in one geographical area
(and their presence in the other two) appears to be more

important in the definition of transcriptomic plasticity
among different cultivation areas.

Transcriptomic grouping at harvest
We next focused on berry harvesting in 2008 because this
was the most important from an agronomic perspective
and allowed the relationship between transcriptome plasti-
city and cultivation micro-environment to be investigated
in detail. We built a dataset from the fluorescence inten-
sity values of 33 samples (11 vineyards, one developmental
stage, three biological replicates, and 1 year) and carried
out significance analysis of microarray (SAM) using a FDR
of 0.1%. This revealed 11,323 significantly modulated tran-
scripts. We focused on transcripts displaying a ≥2-fold
change in at least one vineyard-to-vineyard comparison,
narrowing the number of significant transcripts to 8,250
(see Additional File 18, Dataset S8). In order to determine
inner dataset dynamics, a cluster dendrogram was built
using Pearson’s correlation values comparing the tran-
scriptome from each sample, revealing two-cluster parti-
tioning (see Additional File 19, Figure S8a). We then used
t-test analysis (a = 0.05) to confirm the transcriptional
separation between the two vineyards groups (see Addi-
tional File 19, Figure S8b). Functional category distribution
analysis uncovered a profound difference in metabolism.
Gene expression in the first group of vineyards (VM, GIV,
CC, PM, AM, and FA) clearly depicted ripe berry samples
(for example, a large number of transcripts related to sec-
ondary metabolism) whereas in the second group of vine-
yards (CS, PSP, BA, BM, and MN) photosynthesis-related
genes were still actively transcribed (see Additional File 19,
Figure S8c). This metabolic difference, confirmed also by
classical berry maturation indexes (total acidity and °Brix/
total acidity, see Additional File 19, Figure S8d) strongly
indicates a disparity in the degree of ripening at
harvesting.
We applied PCA to the 8,250 differentially-modulated

transcripts, and the first component, explaining 27.9% of
the total dataset variability, was attributed to differences
in ripening status as anticipated (Figure 4). This indicated
that the plasticity of the berry transcriptome affected the
entire berry ripening program, resulting in a diverse
range of ripening characteristics at harvest. Overall, these
data confirm that the phenotypic variation of grape berry
responsible of the diverse qualitative traits a single clone
can express in different growing sites reflects a deep plas-
ticity of the berry transcriptome at harvest.

Non-plastic berry genes
The datasets also yielded developmental stage-specific but
non-plastic transcripts, that is, those whose expression
increases (positive markers) or declines (negative markers)
with a constant profile during berry development regard-
less of the vineyard. This was achieved by applying SAM
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multiclass analysis (FDR, 0.1%, three groups) to the 99-
sample dataset (11 vineyards, three developmental stages,
three biological replicates, year 2008 only), revealing
18,190 transcripts that were differentially expressed
among the three berry developmental stages but to the
same extent in all 11 vineyards. These genes were likewise
analyzed by one-way ANOVA (a = 0.01, three groups,
standard Bonferroni correction) and the resulting 11,532
genes were grouped into eight k-means clusters of gene
expression (Pearson’s correlation). The clusters defined by
a continuous increase or decline during ripening were
further screened for genes with the largest fold change
(95th percentile) between the first and last stages, to select
those that were more strongly modulated. This yielded
115 upregulated genes (Figure 5a; see Additional File 20,
Dataset S9) and 90 downregulated genes (Figure 5b; see
Additional File 20, Dataset S9).
The non-plastic upregulated genes included those encod-

ing pathogenesis related (PR) proteins and biotic stress fac-
tors such as thaumatins and osmotins, as previously
reported [27,43-45]. The PR10 gene VIT_05s0077g01530
and two PR1 genes (VIT_03s0088g00710 and VIT_

03s0088g00690) were previously shown to be differentially
modulated during the last stages of berry development
stages in Chardonnay grapes [46]. PR proteins are the most
abundant proteins in wine and they are expressed across
all stages of berry development [47]. The identification of
PR-related transcripts as non-plastic developmental mar-
kers suggests that they represent a fundamental grapevine
disease-prevention strategy that could help to avoid berry
infections. We also identified eight non-plastic genes
encoding germacrene-D-synthases and seven encoding
stilbene synthases (see Additional File 20, Dataset S9) con-
firming previous reports that the terpene and phenylpropa-
noid pathways are under strict transcriptional control
during ripening [48-50].
The non-plastic downregulated genes included many

involved in photosynthesis, which occurs in the early
berry until veraison [43,44,49]. We identified seven
photosynthesis-related transcripts (mainly encoding poly-
phenol oxidases and photosystem II subunits) showing
that the shutting down of photosynthesis can be used to
monitor the progress of berry development regardless of
the vineyard. Other non-plastic downregulated genes

Figure 4 Grapevine transcripts showing plasticity at harvest. Principal component analysis of the whole third-stage dataset. The variables
and scores scatter plot of the PCA model (nine components, R2X (cumulative) = 0.84, Q2 (cumulative) = 0.602) was generated using Simca P+
13.0 and colored according to the disparity in the degree of ripening, as illustrated in Figure S7C (Additional File 15). Different vineyards are
indicated by different symbols. Sample names are composed by vineyard abbreviation, followed by the indication of the harvesting year (08), by
the indication of the developmental stage (3), and by the description of the biological replicate (A, B, or C).
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were involved in cell wall structural modifications,
including transcripts for expansin A, xyloglucan endo-
transglucosylase/hydrolase (XTH), and b-D-xylosidase,
agreeing with previous investigations of Chardonnay,
Cabernet, and Corvina berries [43,44,46].
Finally, we identified a number of transcripts that

were neither plastic (no variation among the 11 vine-
yards) nor developmentally modulated (no variation
among the three developmental stages) using SAM mul-
ticlass analysis (FDR = 0.1%, 11 groups) of three stage-
specific datasets, each comprising 33 samples (11 vine-
yards, one developmental stage, three biological

replicates, 2008 season only). The constitutive and non-
plastic transcripts were further analyzed by one-way
ANOVA (a = 0.01, 11 groups). The 15,841, 14,342, and
13,286 transcripts that were constitutively expressed
during veraison, mid-ripening, and ripening, respectively
(see Additional File 21, Figure S9), were compared to
identify 6,927 transcripts shared among all three devel-
opmental stages. These were screened for the lowest
(last 99th percentile) standard deviation among samples,
resulting in a set of 76 non-plastic genes constitutively
expressed during berry development (Figure 5c; see
Additional File 22, Dataset S10).

Figure 5 Non-plastic grapevine genes. Grape berry development markers. Box plots of the 115 most strongly upregulated (a) and the 90
most strongly downregulated genes (b) showing similar expression profiles in all vineyards. Box plots were created using Expander 6.0 [85]. The
central line and outside edge of each box indicate the 50th, 25th, and 75th percentiles of expression data, respectively. Vertical lines on the two
sides of the box represent the minimum and the maximum of all data, respectively. (c) Non-plastic constitutive genes. Genes with constant
expression levels throughout berry development in all 11 different vineyards were ranked according to the lowest standard deviation among
samples. The average expression value of the three biological replicates is indicated. The first 26 genes are shown (SD = 0.050-0.100).
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Transcripts scoring the lowest standard deviations
included those encoding proteins related to intracellular
transport (ADP-ribosylation factor, ABC transporter F
member 2 and vacuolar sorting-associated protein),
plant cell wall metabolism (xyloglucan endotransgluco-
sylase/hydrolase), DNA and RNA binding and editing
(zinc finger A20, AN1 domain-containing stress-asso-
ciated protein 2 and oligouridylate-binding protein), and
cellular metabolism (S-adenosylmethionine synthetase,
inorganic pyrophosphatase, and ubiquitin-specific pro-
tease). Remarkably, five transcripts with different expres-
sion levels and different standard deviations showed
constitutive expression also in the transcriptome of all
grapevine organs (see Additional File 23, Figure S10), as
confirmed in the recent grape gene expression atlas
[33]. These 76 non-plastic constitutive genes are candi-
date reference genes for quantitative gene expression
analysis.

Discussion
The biological material at our disposal offered a unique
opportunity to compare the same grapevine berry phe-
nological phases in different vineyards and growth years,
allowing us to correlate changes in the transcriptome
with distinct growing conditions.
Our data suggest that veraison is a critical period during

which the seasonal climate has its greatest effect whereas
the microenvironment and agronomic practices had only a
marginal impact (Figure 2a). The direct influence of cli-
mate on berry quality has been demonstrated, particularly
the additive effects of temperature and water availability
[51,52]. Many genes were differentially expressed among
the years at veraison, with the greatest difference observed
between the 2007 and 2008 seasons (Figure 2b). 2007 is
characterized by the specific upregulation of genes related
to disease resistance, abiotic stress adaptation and the oxi-
dative burst, reflecting the severe stress imposed on this
growth year by the high spring temperatures. The 2008
season is characterized by the significant upregulation of
genes involved in DNA/RNA metabolic processes and
transcription. The basis of this transcriptome reprogram-
ming is hard to define since the climate was similar in the
2006 and 2008 seasons, but it may reflect a compensatory
adaptation following the unusual 2007 season.
The strong effect of growth year on sample correlation

faded during berry ripening (see Additional File 5, Figure
S1a and S1b) suggesting that the impact of agronomic
practices and environmental conditions on the berry tran-
scriptome becomes more important at this stage. Never-
theless, we were still able to identify season-specific
modulated genes at mid-ripening and at harvest. The
major difference between the growth years involved
secondary metabolism, particularly the broad expression
of phenylpropanoid-related genes in 2006 and 2008

compared to 2007 berries. Indeed, we observed the induc-
tion of at least 13 phenylalanine ammonia lyases, (PALs),
43 stilbene synthases (STSs), 9 cinnamyl alcohol dehydro-
genases (CADs), two cinnamoyl-CoA reductases (CCRs),
and two caffeate 3-O-methyltransferases (COMTs) (Figure
2e; see Additional File 6, Dataset S2).
The synthesis of resveratrol and its derivatives in berries

by STSs is stimulated by stress factors such as fungal
infection (mainly Botrytis cinerea), wounding, and UV
light [53,54]. However, it is becoming clear that higher
levels of stilbenoid compounds and STS expression are
also associated with the normal course of berry ripening in
healthy and unstressed grapes [55-57]. Our data confirm
that the increase in STS gene expression is likely to be a
normal feature of grape ripening and distinguishes the
ripening Corvina berries in typical climates from the unu-
sual temperature in 2007 growing season. The same hold
true for the expression behavior of PAL genes which are
likely co-regulated with STSs during the biosynthesis of
stilbenes, as previously reported [56,58].
The differential expression of genes (CAD, CCR, and

COMT) involved in the metabolism of hydroxycinnamic
acids, precursors of many volatile odor compounds, sup-
ports the idea that the aromatic profile of ripe berry is
strongly influenced by the temperature condition during
the growing season [51,59,60]. Our conclusion is sup-
ported by the lower amount of stilbenes like resveratrol
and its derivatives (viniferins) and hydroxycinnamic com-
pounds detected in 2007 berries compared to the other
years (see Additional File 7, Figure S2).
The 2008 season showed the least plasticity of gene

expression among different vineyards (see Additional File
8, Figure S3). We therefore used this year to broaden the
analysis to 11 different vineyards, and we found that
approximately 5% of transcripts on the microarray were
modulated when Corvina berries were ripened under dif-
ferent environmental conditions and using different agro-
nomical practices (see Additional File 11, Dataset S4). The
limited number of available studies comprehensively
describing transcriptome plasticity in plants makes it diffi-
cult to evaluate the percentage of plastic genes in the Cor-
vina transcriptome accurately, but based on our datasets
we found that plastic genes represented approximately
18% of genes modulated during ripening in the 11 vine-
yards, suggesting that the environment and agricultural
practices can have a profound impact on the berry tran-
scriptome, in turn affecting ripe berry and wine quality
traits. Interestingly, approximately 27% of the plastic tran-
scripts were ‘commonly expressed’ (that is, expressed in all
organs and tissues in the plant) in the recent grapevine
transcriptomic atlas [33] whereas approximately 73% were
expressed in >30 plant organs/tissues and none were spe-
cifically expressed in berry tissues, suggesting that the
plasticity of gene expression in grapevine is a broad
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phenomenon and that data representing the berry pericarp
could also be used to study plasticity in other organs.
Many of the plastic genes (for example, ribosomal

proteins and many other DNA/RNA metabolic process-
related genes) we identified are worthy of further investi-
gation to determine their specific impact on berry ripening
parameters, for example, the modulation of ribosomal pro-
teins suggests that transcriptome reprogramming during
ripening involves a shift in protein synthesis (Figure 3a, b;
see Additional File 11, Dataset S4 and Additional File 12,
Figure S5). Although the regulation of ribosomal proteins
in plants under different conditions has not been studied
in detail, their modulation has been reported in response
to various forms of abiotic stress including UV-B radiation
[61], low temperatures [62,63], wounding [64], ozone
radiation [65], and salinity [66]. Other genes in the DNA/
RNA metabolic process category were related to stress
responses and recovery, which often affects the transcrip-
tion and translation of genes encoding ribosomal proteins
and translation factors [67]. Our data strongly suggest that
transcriptomic plasticity in developing Corvina berries is
exerted predominantly by the broad reprogramming of
genes that control the transcription and the rate of transla-
tion to remodel the cellular protein set.
Interestingly, we also identified several plastic tran-

scripts putatively involved in floral transition and flower
organ identity. These included transcripts encoding two
EARLY FLOWERING homologs, a CONSTANS protein,
and transcription factors such as FRIGIDA-LIKE 2, SUP-
PRESSOR OF FRIGIDA 4, and SEPALLATA 3 (see Addi-
tional File 11, Dataset S4). Although most of these genes
are believed to be functionally conserved in grapevine
[68-70], their precise roles remain to be determined
because the grapevine latent bud develops continuously
and is therefore distinct from both the herbaceous flow-
ers of Arabidopsis and rice and the woody perennial
model of poplar. Many floral development genes are
photoperiod-dependent in grapevine and may also play a
role in bud dormancy [71]. The MADS box transcrip-
tional factor SEPALLATA 3, and the grapevine homologs
of CONSTANS and EARLY FLOWERING 4, are posi-
tively regulated during berry development [68] and may
help to determine berry weight [23]. Because fruits repre-
sent the continued growth of the ovary, we propose that
these floral regulators play a critical role in berry devel-
opment and plasticity.
Our analysis allowed us to define groups of vineyards

sharing the expression profiles of common plastic genes
(Figure 3d, e). Moreover, in some cases it was possible to
link sets of differentially-expressed transcripts to particular
environmental attributes or specific agronomical para-
meters (see Additional File 15, Figure S7a and S7b). Sev-
eral heat-shock proteins have been found more expressed
in Guyot-trained vines compared to the parral system.

These genes have been detected as highly responsive to
the microclimate changes around clusters [72]. Our data
suggest that parrals are better shelters for berry clusters
than replacement cane systems. Nevertheless, the inevita-
ble absence of all possible combinations of environmental
and agricultural parameters for plants cultivated in the
open field means that our investigation could only provide
an exploratory perspective rather than predictive
interpretation.
Differential gene expression in fully-ripe Corvina berries

highlighted a deep metabolic difference among samples
harvested in different locations (Figure 4; see Additional
File 19, Figure S8). We found a positive correlation
between transcriptomic data and ripening parameters (see
Additional File 19, Figure S8d) confirming that plasticity
affects the entire maturation process, therefore candidate
genes representing such plasticity (that is, photosynthesis-
related and secondary metabolism-related genes) could
eventually be used for on-field monitoring.
The large scale of our sampling procedure also allowed

the identification of genes that were not plastic, that is,
genes that were either constitutive or developmentally
regulated but whose expression profiles were constant
over the different vineyards and cultivation environments.
Developmentally regulated but non-plastic genes (see
Additional File 20, Dataset S9) included several positive
and negative markers that have previously been identified
as differentially-modulated transcripts during berry devel-
opment in other seasons (2003 to 2006) and in other vari-
eties (Chardonnay, Cabernet Sauvignon, and Pinot Noir)
[43,44,46]. These could be developed into universal mar-
kers suitable for the monitoring of grape ripening in the
field, regardless of cultivar and environment. The constitu-
tive non-plastic genes we identified (see Additional File 22,
Dataset S10) add to the list of constitutive housekeeping
that can be used as references during quantitative gene
expression analysis, and have been validated by compari-
son with the recent grapevine atlas of gene expression
[33].

Conclusions
Climate change is expected to significantly impact agricul-
ture in the near future and poses serious threats, especially
to those specialty crops, as grapevine, that are more valued
for their secondary metabolites rather than for high yield.
Phenotypic plasticity is believed to effectively buffer envir-
onmental extremes and maintain homeostasis of primary
metabolism.
Overall, we have used the grapevine genome sequence

[24] and the NimbleGen microarray platform to map the
Corvina berry transcriptome and determine which genes
are plastic (modulated in response to different environ-
ments) and which are non-plastic (regulated in the same
manner regardless of the environment). This is the first
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major and comprehensive study to chart the plastic tran-
scriptome in a woody perennial plant and our data there-
fore provide a reference model to explore genotype per
environment interactions in fruit crops.
These new findings, together with the earlier transcrip-

tomic, proteomic, and metabolomic studies focusing on
the Corvina cultivar [25,33,45,49,50,57,73], provide a
valuable platform to study the molecular processes
underlying the complex development of grape berries
and to identify environmentally-dependent and agricultu-
rally-important traits which are essential for breeding
new cultivars with improved adaptation to the environ-
ment. The methods used to establish our model provide
a framework for the analysis of transcriptome plasticity
in other crops as they respond to diverse environments
and agricultural practices.

Materials and methods
Plant material
Vitis vinifera cv Corvina clone 48 berries were harvested
from 11 different vineyards near Verona, Italy. We har-
vested 30 clusters from different positions along two vine
rows and from random heights and locations on the
plant to ensure the entire vineyard was represented. Sam-
ples of berries were harvested at three developmental
stages (veraison, mid-ripening, and harvesting time)
within 1 day in all 11 vineyards we investigated. Three
berries were randomly selected from each cluster, avoid-
ing those with visible damage and/or signs of pathogen
infection. The berries were frozen immediately in liquid
nitrogen. The °Brix of the must was determined using a
digital DBR35 refractometer (Giorgio Bormac, Italy).

Meteorological data
Meteorological data were kindly provided by the Veneto
Regional Agency for Prevention and Protection (ARPAV).
Temperature measurements were obtained from three
recording stations in the macro-areas studied in this pro-
ject (Illasi - Soave, Marano di Valpolicella - Valpolicella,
Villafranca di Verona - Bardolino). Average daily tempera-
ture measurements were used to define average monthly
temperatures and seasonal temperature trends. No signifi-
cant differences were found among the three locations and
averaged values were therefore used for Figure 1b.

RNA extraction
Total RNA was extracted from approximately 400 mg of
berry pericarp tissue (entire berries without seeds)
ground in liquid nitrogen, using the Spectrum™ Plant
Total RNA kit (Sigma-Aldrich, St. Louis, MO, USA) with
some modifications [33]. RNA quality and quantity were
determined using a Nanodrop 2000 spectrophotometer
(Thermo Scientific, Wilmington, DE, USA) and a

Bioanalyzer Chip RNA 7500 series II (Agilent, Santa
Clara, CA, USA).

Microarray analysis
We hybridized 10 μg of total RNA per sample to a Nim-
bleGen microarray 090818_Vitus_exp_HX12 chip (Roche,
NimbleGen Inc., Madison, WI, USA), which contains
probes representing 29,549 predicted grapevine genes [74]
covering approximately 98.6% of the genes predicted in
the V1 annotation of the 12X grapevine genome [75].
Each microarray was scanned using an Axon GenePix
4400A (Molecular Devices, Sunnyvale, CA, USA) at 532
nm (Cy3 absorption peak) and GenePix Pro7 software
(Molecular Devices) according to the manufacturer’s
instructions. Images were analyzed using NimbleScan v2.5
software (Roche), which produces Pair Files containing the
raw signal intensity data for each probe and Calls Files
with normalized expression data derived from the average
of the intensities of the four probes for each gene. In the
case of gene families and paralog genes, the specificity of
the probe set for each single gene was assessed to exclude
the possibility of cross-hybridization signals [33]. All
microarray expression data are available at GEO under the
series entry GSE41633 [76].

Statistical analysis
Correlation matrixes were prepared using R software and
Pearson’s correlation coefficient as the statistical metric to
compare the values of the whole transcriptome in all ana-
lyzed samples using the average value of the three biologi-
cal replicates (29,549 genes). Correlation values were
converted into distance coefficients to define the height
scale of the dendrogram.
Hierarchical cluster analysis (HCL) and k-means cluster

(KMC) analysis was applied using Pearson’s correlation
distance (TMeV 4.8 [77]).
The choice between parametric (t-test and ANOVA)

and non-parametric (Kruskall-Wallis) analysis was made
according to the unimodal or bimodal distribution of
fluorescence intensities in each particular dataset (TMeV
4.8 [77]).

Functional category distribution and GO enrichment
analysis
All transcripts were annotated against the V1 version of
the 12X draft annotation of the grapevine genome [78]
allowing 70% of the genes to be identified. This was veri-
fied manually and integrated using Gene Ontology (GO)
classifications. Transcripts were then grouped into the 15
highly-represented functional categories (GO:0009987,
Cellular Processes; GO:0051090, Transcription Factor
Activity; GO:0009725, Response to Hormone Stimulus;
GO:0019725, Cellular Homeostasis; GO:0007165, Signal
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Transduction; GO:0006950, Response to Stress; GO:003-
2502, Developmental Process; GO:0006810, Transport;
GO:0006091, Generation of Energy; GO:0090304, DNA/
RNA Metabolic Process; GO:0044036, Cell Wall Metabo-
lism; GO:0019748, Secondary Metabolic Process; GO:000-
6629, Lipid Metabolic Process; GO:0006520, Cellular
Amino Acids and Derivative Metabolic Process; GO:000-
5975, Carbohydrate Metabolic Process), based on GO bio-
logical processes. Genes encoding pentatricopeptide (PPR)
repeat-containing proteins and genes with unknown func-
tions or with ‘No Hit’ annotations were also included.
GO enrichment analysis was applied to the 1,478 plastic

genes using the BiNGO 2.3 plug-in tool in Cytoscape ver-
sion 2.6 with PlantGOslim categories, as described by
Maere et al. [79]. Over-represented PlantGOslim cate-
gories were identified using a hypergeometric test with a
significance threshold of 0.1.

Visualization of grapevine transcriptomics data using
MapMan software
Information from the Nimblegen microarray platform
was integrated using MapMan software [32] as described
for the Array Ready Oligo Set Vitis vinifera (grape), the
AROS V1.0 Oligo Set (Operon, Qiagen), and the Gene-
Chip® Vitis vinifera Genome Array (Affymetrix) [80].

Principal component analysis (PCA) and orthogonal
partial least squares (O2PLS) discriminant analysis
Principal component analysis (PCA) was carried out using
SIMCA P+ 12 software (Umetrics, USA). O2PLS-DA was
used to find relationships between two transcriptome data-
sets (X and Y) by decomposing the systematic variation in
the X-block or Y-block into two model parts (a predictive
part, which models the joint X-Y correlated variation, and
an orthogonal part, which is not related to Y or X). The
latent structures of the joint X-Y correlated variation were
used to identify small groups of correlated variables belong-
ing to the two different blocks by evaluating the similarity
between each variable and the predictive latent components
of the X-Y O2PLS model by means of their correlation. In
order to set the significance threshold for the similarity, a
permutation test was carried out, and data integration was
performed on each small group of X-Y variables with sig-
nificant correlation. O2PLS-DA allowed the identification
of latent variables that were able to yield a parsimonious
and efficient representation of the process. In order to
define the number of latent components for OPLS-DA
models, we applied partial cross-validation and a permuta-
tion test to reveal overfitting. Multivariate data analysis was
performed by using SIMCA P+ 12 (Umetrics, USA).

Metabolomics analysis
The same powdered samples used for RNA extraction
were extracted in three volumes (w/v) of methanol

acidified with 0.1 % of formic acid (v/v) in an ultrasonic
bath at room temperature and 40 kHz for 15 min.
HPLC-ESI-MS was carried out using a Beckman Coulter

Gold 127 HPLC system (Beckman Coulter, Fullerton, CA,
USA) equipped with a System Gold 508 Beckman Coulter
autosampler (Beckman Coulter, Fullerton, CA, USA).
Metabolites were separated on an analytical Alltima HP
RP-C18 column (150 × 2.1 mm, particle size 3 μm)
equipped with a C18 guard column (7.5 × 2.1 mm) both
purchased from Alltech (Alltech Associates Inc, Derfield,
IL, USA). Two solvents were used: solvent A (5% (v/v)
acetonitrile, 5% (v/v) formic acid in water), and solvent B
(100% acetonitrile). The linear gradient, at a constant flow
rate of 0.2 mL/min, was established from 0 to 10% B in
5 min, from 10 to 20% B in 20 min, from 20 to 25% B in
5 min, and from 25 to 70% B in 15 min. Each sample was
analyzed in duplicate, with a 30 μL injection volume and
20-min re-equilibration between each analysis.
Mass spectra were acquired using a Bruker ion mass

spectrometer Esquire 6000 (Bruker Daltonik GmbH, Bre-
men, Germany) equipped with an electrospray ionization
source. Alternate negative and positive ion spectra were
recorded in the range 50 m/z to 1,500 m/z (full scan
mode, 13,000 m/z s-1). For metabolite identification, MS/
MS and MS3 spectra were recorded in negative or positive
mode in the range 50 m/z to 1500 m/z with a fragmenta-
tion amplitude of 1 V. Nitrogen was used as the nebulizing
gas (50 psi, 350°C) and drying gas (10 L/min). Helium was
used as the collision gas. The vacuum pressure was 1.4 ×
10-5 mbar. Additional parameters were: capillary source,
+4,000 V; end plate offset, -500 V; skimmer, -40 V; cap
exit, -121 V; Oct 1 DC, -12 V; Oct 2 DC, -1.70 V; lens 1, 5
V; lens 2, 60 V; ICC for positive ionization mode, 20,000;
ICC for negative ionization mode; 7,000.
MS data were collected using the Bruker Daltonics

Esquire 5.2-Esquire Control 5.2 software, and processed
using the Bruker Daltonics Esquire 5.2-Data Analysis 3.2
software (Bruker Daltonik GmbH, Bremen, Germany).
Metabolites were identified by comparison of m/z values,
fragmentation patterns (MS/MS and MS3), and retention
times of each signal with those of available commercial
standards and by comparison of data previously published
by our group [25,49]. Matrix effect did not affect relative
quantification under these analysis conditions (data not
shown) as previously demonstrated [25].
All metabolomics data are available in the Metabo-

lights database under the series entry MTBLS39 [81].

Enological analyses
Three replicates of 20 berry samples were crushed and
the resulting must was clarified by centrifugation. Total
acidity (expressed in g/L of tartaric acid) was quantified
according to the Compendium of international methods
of Wine and Must analysis - Office International de la
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Vigne et du vin [82]. Another three replicates of the 20
berry samples were crushed and analyzed according to
the Glories method [83] to determine total anthocyanin
levels.

Additional material

Additional File 1: Table S1. Description of Corvina clone 48 grape
collection sites, listing geographical parameters, farming, and agricultural
practices. a.s.l: above sea level.

Additional File 2: Table S2. Description of sample names sorted by
year of harvesting. Names are composed by vineyard abbreviations,
followed by the indication of the harvesting year (06, 07, or 08), by the
indication of the developmental stage (1, 2, or 3) and by the description
of the biological replicate (A, B, or C). When the biological replicate is
not indicated, names are referred to the average of the three replicates.

Additional File 3: Table S3. Maturation parameters of samples used for
microarray analysis sorted by year of harvesting. Values represent mean ±
standard deviation of three biological replicates. Total acidity is expressed
in g/L of tartaric acid. For metabolic parameters, values are expressed as
mean peak area ± standard deviation of three biological replicates.

Additional File 4: Dataset S1. Four clusters of genes differentially
modulated among the 2006, 2007, and 2008 seasons at veraison.
Expression was measured as the average log2 intensity of each biological
triplicate. Each value has been normalized on the median value of each
row/gene.

Additional File 5: Figure S1. Cluster dendrogram of (a) the second
developmental stage and (b) the third developmental stage datasets
using the average expression value of the three biological replicates. The
Pearson’s correlation values were converted into distance coefficients to
define the height of the dendrograms. Blue, green, and red indicate
samples harvested in 2006, in 2008, and in 2007, respectively.

Additional File 6: Dataset S2. Genes that are differentially expressed
between average climate seasons (2006 to 2008) and an exceptionally
warm spring (2007) in second and third ripening time point samples.
Transcripts modulated also at veraison (Dataset S1) are highlighted in the
column ‘Cluster Figure 2B’. Expression was measured as the average log2
intensity of each biological triplicate. Each value has been normalized on
the median value of each row/gene.

Additional File 7: Figure S2. Differential accumulation of metabolites
between the 2006/2008 and 2007 vintages. Values were calculated as
mean peak area ± standard deviation of three biological replicates and are
expressed as fold-change of vintages 2006 to 2008 compared to 2007.

Additional File 8: Figure S3. Plastic and vintage-specific transcripts.
Kruskal-Wallis non-parametric variance analysis was carried out three
times (P <0.05, four groups) on each vintage-specific dataset to obtain
differentially-modulated genes among the four vineyards studied in each
year. The Venn diagram was constructed using Venn [84] and redrawn.

Additional File 9: Figure S4. k-means clustering of fluorescence log2
intensities. Increasing values of k were used until only one cluster displayed
bimodal distribution (k = 10) with a low expression level mean value.

Additional File 10: Dataset S3. Set of 13,752 transcripts with a
unimodal expression profile in the 2008-harvested samples. Expression
was measured as the average log2 intensity in all developmental stages
and in all biological triplicates.

Additional File 11: Dataset S4. Functional categories and expression
values of 1478 plastic transcripts in 2008. The Kruskal-Wallis Statistic (H)
and P value are indicated for each transcript. Expression was measured
as the average intensity of each biological triplicate.

Additional File 12: Figure S5. Enriched GO terms for the 1,478 plastic
genes listed in Dataset S4. The network graphs show BiNGO
visualizations of the overrepresented GO terms. Categories in
GoSlimPlants [79] were used to simplify this analysis. Non-colored nodes
are not over-represented, but they may be the parents of
overrepresented terms. Node size is positively correlated with the

number of genes belonging to the category. Colored nodes represent
GO terms that are significantly over-represented (P value <0.1), with the
shade indicating significance as shown in the color bar.

Additional File 13: Figure S6. Validation of O2PLS-DA model. The
three-latent-component O2PLS-DA model in Figure 3E was partially
cross-validated and a permutation test (100 permutations) was used to
highlight putative overfitting.

Additional File 14: Dataset S5. Functional categories of specific
transcripts from each of four O2PLS-DA clusters. Pq(corr) values are
indicated for each direction.

Additional File 15: Figure S7. Hierarchical clustering analysis of
environment-specific differentially expressed genes in (a) vineyards using
parral or Guyot replacement cane trelling systems and (b) vineyards
located in one of the three macro-areas we investigated. Pearson’s
correlation distance was used as the metric. The heat map of
transcriptional profiles was generated with TMeV 4.8 using the average
expression value of the three biological replicates per each
developmental stage.

Additional File 16: Dataset S6. Differentially-expressed genes in the
‘Trelling System’ category. Expression was measured as the average log2
intensity of each biological triplicate. Each value has been normalized on
the median value of each row/gene.

Additional File 17: Dataset S7. Differentially-expressed genes in the
‘Geographical Area’ category. Expression was measured as the average
log2 intensity of each biological triplicate. Each value has been
normalized on the median value of each row/gene.

Additional File 18: Dataset S8. Plastic transcripts from the grape berry
transcriptome at harvesting in 2008.

Additional File 19: Figure S8. Differentially modulated genes at
harvesting. (a) Cluster dendrogram of the third developmental stage
dataset using the average expression value of the three biological
replicates. Pearson’s correlation values were converted into distance
coefficients to define the height of the dendrogram. Different colors
indicate the disparity in the degree of ripening as analyzed in (c). (b)
Differentially-expressed genes between the two groups of vineyards
highlighted in (a). A t-test (a = 0.05) was performed between the two
groups of vineyards, and a k-means analysis was computed using
Pearson’s distance to generate the line plots. (c) Functional category
distribution of the differentially-modulated genes between the two
groups of vineyards during harvesting. Transcripts were grouped into the
18 most represented functional categories, based on Plant GO Slim
classification of biological processes. Sample VM083, GIV083, CC083,
PM083, AM083, and FA083 category distribution is depicted in purple,
while sample CS083, PSP083, BA083, BM083, and MN083 category
distribution is depicted in light green. (d) Total acidity, expressed in g/L
of tartaric acid and °Brix/total acidity of samples from the third
developmental stage. Values represent mean ± standard deviation of
three biological replicates. Different colors indicate the disparity in the
degree of ripening as shown in (a) and in (c).

Additional File 20: Dataset S9. Markers for grape berry development.
Markers also showing significance in other vintages are labeled accordingly.

Additional File 21: Figure S9. Non-plastic genes. Stage-specific datasets
were analyzed by SAM multiclass analysis and one-way ANOVA (11
groups). Transcripts not shown to be significant in either analysis (that is,
not differentially modulated) were tested for stage-specificity. The Venn
diagram was calculated using Venn [84] and redrawn.

Additional File 22: Dataset S10. Non-plastic and constitutive transcripts.
Expression was measured as the average log2 intensity of each biological
triplicate.

Additional File 23: Figure S10. Expression profile of five non-plastic
constitutive genes in the whole grapevine expression atlas [33].
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