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Abstract

TopHat is a popular spliced aligner for RNA-sequence (RNA-seq) experiments. In this paper, we describe TopHat2,
which incorporates many significant enhancements to TopHat. TopHat2 can align reads of various lengths
produced by the latest sequencing technologies, while allowing for variable-length indels with respect to the
reference genome. In addition to de novo spliced alignment, TopHat2 can align reads across fusion breaks, which
can occur after genomic translocations. TopHat2 combines the ability to identify novel splice sites with direct
mapping to known transcripts, producing sensitive and accurate alignments, even for highly repetitive genomes or
in the presence of pseudogenes. TopHat2 is available at http://ccb.jhu.edu/software/tophat.

Background
RNA-sequencing technologies [1], which sequence the
RNA molecules being transcribed in cells, allow explora-
tion of the process of transcription in exquisite detail. One
of the primary goals of RNA-sequencing analysis software
is to reconstruct the full set of transcripts (isoforms) of
genes that were present in the original cells. In addition to
the transcript structures, experimenters need to estimate
the expression levels for all transcripts. The first step in
the analysis process is to map the RNA-sequence (RNA-
seq) reads against the reference genome, which provides
the location from which the reads originated. In contrast
to DNA-sequence alignment, RNA-seq mapping algo-
rithms have two additional challenges. First, because genes
in eukaryotic genomes contain introns, and because reads
sequenced from mature mRNA transcripts do not include
these introns, any RNA-seq alignment program must be
able to handle gapped (or spliced) alignment with very
large gaps. In mammalian genomes, introns span a very
wide range of lengths, typically from 50 to 100,000 bases,
which the alignment algorithm must accommodate. Sec-
ond, the presence of processed pseudogenes, from which
some or all introns have been removed, may cause many
exon-spanning reads to map incorrectly. This is

particularly acute for the human genome, which contains
over 14,000 pseudogenes [2].
In the most recent Ensembl GRCh37 gene annota-

tions, the average length of a mature mRNA transcript
in the human genome is 2,227 bp long, and the average
exon length is 235 bp. The average number of exons
per transcript is 9.5. Assuming that sequencing reads
are uniformly distributed along a transcript [3], we
would expect 33 to 38% of 100 bp reads from an RNA-
seq experiment to span two or more exons. Note that
this proportion increases significantly as read length
increases from 50 to 150 bp (see Additional file 1 for
more details).
More important for the alignment problem is that

around 20% of junction-spanning reads extend by 10 bp
or less into one of the exons they span. These small
‘anchors’ make it extremely difficult for alignment software
to map reads accurately, particularly if the algorithm relies
(as most do) on an initial mapping of fixed-length k-mers
to the genome. This initial mapping, using exact matches
of k-mers, is crucial for narrowing down the search space
into small local regions in which a read is likely to align. If
a read extends only a few bases into one of two adjacent
exons, then it often happens that the read will align
equally well, but incorrectly, with the sequence of the
intervening intron. For example, as illustrated in Figure 1,
suppose that read r spans exons e1 and e2, extending only
four bases into e2. Suppose also that that e2 begins with
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GTXX, and the intervening intron also begins with GTXX,
where X stands for any of A, G, C, and T. Then r might
align perfectly to e1 and the first four bases of the intron,
and the alignment algorithm will fail to find the spliced
alignment of r.
In order to handle this problem, the software TopHat2

uses a two-step procedure. First, similar to TopHat1 [4], it
detects potential splice sites for introns (detailed further in
Methods). It uses these candidate splice sites in a subse-
quent step to correctly align multiexon-spanning reads.
Some RNA-seq aligners, including GSNAP [5], RUM [6],
and STAR [7], map reads independently of the alignments
of other reads, which may explain their lower sensitivity
for these spliced reads (see Results and discussion). MapS-
plice [8] uses a two-step approach similar to TopHat2.
RNA-seq read alignment is further complicated by the

presence of processed pseudogenes in the reference
genome. Pseudogenes often have highly similar sequences

to functional, intron-containing genes. In most cases, the
pseudogene versions are not transcribed [9], although this
suggestion has recently been disputed [10]. The crucial
problem for alignment is that reads spanning multiple
exons can be mapped perfectly or near-perfectly to the
pseudogene version of a functional gene. For example,
suppose a read r spans two exons of a given gene. If the
aligner tries to align the read globally (end to end), then it
will find an alignment to the pseudogene copy (Figure 1).
If the spliced alignment phase, which usually occurs later,
does not attempt to realign r, then the pseudogene copy
will ‘absorb’ all reads spanning the splice sites for that
gene. TopHat2 can feed r into the spliced alignment phase
even when r has been aligned end to end, allowing it to
circumvent this problem (see Methods and Results and
discussion sections).
We also note that, in our analysis of RNA-seq reads

from multiple human samples [11,12], genes with

Figure 1 Two possible incorrect alignments of spliced reads. 1) A read extending a few bases into the flanking exon can be aligned to the
intron instead of the exon. 2) A read spanning multiple exons from genes with processed pseudogene copies can be aligned to the
pseudogene copies instead of the gene from which it originates.
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processed pseudogenes seem to be expressed at higher
levels compared with other genes (see Results and dis-
cussion). Although this observation has not been
explored thoroughly, a plausible explanation is that
genes with higher levels of expression may, over the
course of evolution, have had an increased chance of
being picked up by transposons and re-integrated into
the genome, creating pseudogene copies.
Concerning the human genome, for which there are

relatively comprehensive annotations of protein-coding
genes, the annotations can be used to map reads more
accurately by aligning the reads preferentially to real
genes rather than pseudogenes. GSNAP [5] and STAR
[7] also make use of annotation, although they use it in
a more limited fashion in order to detect splice sites.
TopHat2 can use the full-length transcripts defined by
annotations during its initial mapping phase, which pro-
duces significant gains in sensitivity and accuracy (see
Results and discussion).
Transcripts from a target genome may differ substan-

tially from the reference genome, possibly containing
insertions, deletions, and other structural variations
[13,14]. For such regions, previous spliced alignment pro-
grams (including the original TopHat) sometimes fail to
find a proper alignment. In TopHat2, we implemented
new procedures to ensure that reads are aligned with true
insertions and deletions (indels). Indels due to sequencing
errors will be discovered by Bowtie2 [15], the underlying
mapping engine of TopHat2, which can detect short indels
very efficiently. In addition, very large deletions, inversions
on the same chromosome, and translocations involving
different chromosomes are detected by the TopHat-Fusion
algorithms [16], which are now incorporated into
TopHat2 and available by a simple command-line switch.
TopHat2 also includes new algorithms to handle more

diverse types of sequencing data. This includes the abil-
ity to handle reads generated by ABI SOLiD technology
(Life Technologies, Carlsbad, CA, USA) using its ‘color
space’ representation. To accomplish this, TopHat2 uses
a reference genome translated entirely into color space
in order to take advantage of the error-correction cap-
ability of that format. TopHat2 also handles datasets in
which the reads have variable lengths, allowing the
experimenter to merge datasets from multiple sequen-
cing runs with different lengths.

Results and discussion
TopHat2 can use either Bowtie [17] or Bowtie2 [15] as
its core read-alignment engine. TopHat2 has its own
indel-finding algorithm, which enhances indel-finding
ability of Bowtie2 in the context of spliced alignments.
In order to evaluate TopHat2 and compare it with other
methods, we ran multiple computational experiments
using both real and simulated RNA-seq data.

For the simulations, we created multiple sets of
40,000,000 paired-end reads, 100 bp in length, from the
entire human genome (release GRCh37). Instead of try-
ing to precisely mimic real RNA-seq experiments, which
may not be possible in any practical sense, we generated
data with relatively simple settings and expression levels,
calculated using a model from the Flux Simulator sys-
tem [18], as follows. For the first test set, we generated
reads from the known transcripts on the entire human
genome without introducing any mismatches or indels.
We then generated additional datasets, in which we
included 1) insertions and deletions into the known
transcripts at random locations, and 2) insertions and
deletions in the reads themselves to mimic sequencing
errors (see Additional file 1). Each of these experimental
errors was introduced to test different capabilities of
TopHat2 and other RNA-seq aligners. Following the
simulations, we evaluated the programs using a recent,
real RNA-seq dataset.

Alignments of simulated reads (error-free)
We generated 40,000,000 paired-end reads and per-
formed two sets of experiments, using: 1) 20,000,000
‘left’ reads from the paired-end dataset (Table 1) and 2)
20,000,000 pairs of reads (Table 2). Reads spanning mul-
tiple exons are called junction reads, and our single-end
data contained 6,862,278 such reads (34.3%). The most
challenging alignments are those for which a junction
read extends by 10 bp or less into one of the exons,
which we call short-anchored reads; 1,448,022 of the
single-end reads (7.2%) fell into this category. We report
the accuracy junction reads and short-anchored reads
separately (Table 1, Table 2).
We also tested 20,000,000 read pairs (40,000,000

reads), of which 9,491,394 (47.5%) had at least one read
spanning multiple exons; 2,702,624 of these pairs
(13.5%) had at least one short-anchored read that
extended by10 bp or less into one of its exons. Table 2
shows the results of mapping these reads with TopHat2
and other programs.
As shown in Table 1, TopHat2 correctly aligned more

than 98% of the reads, which was higher than with any
of the other methods, whose accuracy ranged from 88
to 97%. The difference was more pronounced for junc-
tion reads, with TopHat2 being able to align more than
94% of the reads, whereas the other methods ranged in
accuracy from 65 to 92%. GSNAP, RUM, and STAR had
particular difficulty aligning short-anchored reads, align-
ing only 26%, 8.6%, and 3.5%, respectively, while MapS-
plice performed considerably better, aligning 75.6% of
these reads. By contrast, using Bowtie1 as its main
aligner, TopHat2 aligned 93.7% of the short-anchored
reads (Table 1). Both TopHat2 and MapSplice use a
two-step algorithm, first detecting potential splice sites,
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and then using these sites to map reads. This two-step
method may explain their superior performance at map-
ping reads with short anchors.
The results for the paired reads (Table 2) were similar

to those for the unpaired reads. TopHat2 aligned the
highest percentage of reads (96.7%), followed by MapS-
plice (92%), with the other methods ranging from 79 to
88%. The difference widened again for junction reads,
with TopHat2 aligning 93%, followed by MapSplice
(86%), GSNAP (76%), STAR (69%), and RUM (56%).
Most striking of all was the performance on short-
anchored reads, which most of the methods had great
difficulty aligning correctly; TopHat2 aligned 90% of
these, MapSplice aligned 72%, and the other methods
aligned only 3 to 22%.
We assessed alignment rates for reads, junction reads,

and junction reads with small anchors for a variety of
read lengths (50, 100, 150, and 200 bp) (see Additional
file 1, Figure S1). TopHat2 consistently outperformed all
the other aligners for each read length. Comparing the
alignment performance for junction reads with one to

three mismatches, TopHat2 and MapSplice showed the
highest recall rates (see Additional file 1, Table S2).

Alignments of simulated reads with short indels
We tested the spliced alignment programs using reads
with small indels (1 to 3 bp), using two sets of simulated
reads: (1) true indels, in which the transcripts were
modified by inserting or deleting one to three bases at
random locations; and (2) indels caused by sequencing
errors, in which indels are randomly inserted into the
reads. As before, all transcripts were simulated from
known genes from the entire human genome. We inten-
tionally used a relatively high rate of indels to test the
mapping capabilities of the programs in the presence of
these types of mutations.
For single-end reads, RUM, GSNAP, and TopHat2 per-

formed similarly, with 69 to 82% accuracy (recall) rates for
true indels and 62 to 83% for reads with indel-sequencing
errors (Table 3, Table 4). STAR and MapSplice showed
relatively lower recall rates for both datasets. Note that
when used with the original Bowtie program (a non-

Table 2 Performance of TopHat2 and other spliced aligners on a set of 20 million pairs of 100-bp reads, simulated
based on transcripts from the entire human genome.

Program No. of mapped
pairs

Correctly mapped
pairs, %

Incorrectly mapped
pairs, %

Unmapped
pairs, %

Correct junction
pairs, %a

Correct short-anchored
pairs, %b

TopHat2 +
Bowtie1

19,683,426 96.70 1.72 1.58 93.31 90.09

TopHat2 +
Bowtie2

19,686,006 96.19 2.24 1.57 92.03 85.88

TopHat1.14 19,219,055 89.57 6.53 3.90 78.36 40.39

GSNAP 19,999,867 88.84 11.16 0.00 76.55 22.87

RUM 19,869,579 79.07 20.28 0.65 56.28 8.42

MapSplice 19,342,087 92.03 4.68 3.29 86.53 72.48

STAR 19,951,620 85.21 14.55 0.24 68.94 3.16
aThere were 9,491,394 pairs of reads classified as junction pairs.
bThere were 2,702,624 pairs containing short-anchored reads.

Table 1 Performance of TopHat2 and other spliced aligners on a set of 20 million 100-bp, single-end reads, simulated
based on transcripts from the entire human genome.

Program No. of mapped
reads

Correctly mapped
reads, %

Incorrectly mapped
reads, %

Unmapped
reads, %

Correct junction
reads, %a

Correct short-anchored
reads, %b

TopHat2 +
Bowtie1

19,826,638 98.31 0.82 0.87 95.28 93.69

TopHat2 +
Bowtie2

19,826,673 98.03 1.10 0.87 94.28 89.67

TopHat1.14 19,616,874 94.64 3.45 1.91 84.44 44.08

GSNAP 19,997,255 94.21 5.77 0.02 83.15 26.01

RUM 19,555,823 88.11 9.67 2.22 65.35 8.59

MapSplice 19,872,372 97.28 2.08 0.64 92.09 75.57

STAR 19,087,508 92.14 3.30 4.56 77.17 3.54
aThere were 6,862,278 reads spanning one or more splice junctions; the alignment accuracy of junction reads refers to this set.
bThere were 1,448,022 reads extending 10 bp or less into one exon; the alignment accuracy of the short-anchored reads is based on these alignments.
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gapped aligner), TopHat2 was able to map ‘true’ indel
reads using its own indel-finding algorithms.
For paired-end reads with indels, GSNAP had the

highest rate of correct alignments (77%), followed by
TopHat2 (60 to 69%), RUM (60 to 61%), and STAR (53
to 54%). MapSplice showed the lowest accuracy for both
single-end and paired-end reads.
We defined boundary indels as those within 25 bp of a

splice site. We separately computed the accuracy on all
reads with boundary indels (Table 3, Table 4).

Alignment of a large set of real RNA-seq reads
Any test of alignment algorithms should use real data to
provide a measure of the likely performance in practice.
For these experiments, we used a recently released set
of RNA-seq reads gathered across a time-course experi-
ment reported by Chen et al. ([11]; GEO accession
number: GSM818582). These data comprise 130,705,578
million paired-end reads in 65,352,789 pairs. All reads
are 101 bp in length.

Because we did not know the true alignments for this
RNA-seq dataset, we used the following objective cri-
teria to evaluate each program: 1) the cumulative num-
ber of alignments with edit distances of 0, 1, 2, and 3
for each read; and 2) the cumulative number of spliced
alignments that agree with the annotation for the corre-
sponding human genes, taken from the Ensembl
GRCh37 release of the human genome.
For each program, we aligned the paired-end reads

with and without the known gene annotations, where
possible. RUM is designed to run with these annota-
tions, whereas MapSplice maps strictly without them.
We then evaluated the mapping results in terms of the
number of read or paired-read mappings.
TopHat2 consists of three mapping steps: 1) transcrip-

tome mapping, which is used only when annotation is
provided; 2) genome mapping; and 3) spliced mapping
(see Methods for details). TopHat2 uses a remapping edit
distance threshold t, specified by the user, as follows. If a
read aligns to the transcriptome in step 1) with an edit

Table 3 Performance of TopHat2 and other spliced aligners on single-end reads containing insertions and deletions
(indels) of 1 to 3 bp.

Reads with true indels (1,428,499)a Reads with sequencing-error indels (1,525,657)a

Program Accuracy,
%

Accuracy on 351,465 reads with boundary indels,
%b

Accuracy,
%

Accuracy on 357,334 reads with boundary
indels, %b

TopHat2
+
Bowtie1

70.9 16.8 12.1 2.8

TopHat2
+
Bowtie2

63.7 25.2 62.6 21.2

GSNAP 82.7 71.9 83.1 71.8

RUM 69.4 43.0 70.3 45.4

MapSplice 27.3 3.7 27.5 3.8

STAR 46.6 16.9 47.7 17.1
aThe number of reads containing each type of error is indicated in the column header. bBoundary indels occur within 25 bp of an exon boundary. Percentages
refer only to the reads of each type, not to the entire dataset.

Table 4 Performance of TopHat2 and other spliced aligners on paired reads in which at least one of the reads
contained insertions and deletions (indels) of 1 to 3 bp.

Pairs with true indels (2,754,313)a Pairs with sequencing-error indels (2,934,043)a

Program Accuracy,
%

Accuracy on 685,937 pairs with boundary
indels, %b

Accuracy,
%

Accuracy on 695,771 pairs with boundary
indels, %b

TopHat2
+ Bowtie1

69.8 16.3 14.0 3.1

TopHat2 +
Bowtie2

62.3 24.0 60.8 19.8

GSNAP 77.0 63.8 77.8 64.8

RUM 60.3 34.3 61.3 36.0

MapSplice 25.5 3.4 25.0 3.2

STAR 53.4 19.2 54.9 21.4
aThe number of pairs containing each type of error is indicated in the column header.
bBoundary indels occur within 25 bp of an exon boundary. Percentages refer only to the pairs of each type, not to the entire dataset.
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distance of less than t, TopHat2 will not remap the read in
subsequent steps. Otherwise, TopHat2 will try to realign
the read in steps 2) and 3), and then, depending on the
resulting edit distance, it will use the read to detect novel
splice sites. A setting of t = 0 means that TopHat2 will rea-
lign every read in all three steps. When we used t = 0
(Figure 2: ‘TopHat2 realignment 0’) on the real data, we
consistently obtained better mapping results in terms of
edit distance and the number of alignments corresponding
to known splice sites (Figures 2; Figure 3; see Additional
file 1, Figures S3-S4) for read and pair alignments,
respectively (see Additional file 1, Tables S5-S6 and Tables
S10-S11).
Figure 2 shows the alignment performance for each

program both with and without using annotations,
where all the programs were configured to report align-
ments with edit distances of up to 3 (and more in some
programs). We compared the de novo alignments of
reads for edit distances of 0, 1, 2, and 3. As expected, all
programs found more alignments as the maximum per-
missible edit distance increased. For an edit distance of
0, which allows only perfect matches, TopHat2 mapped
noticeably fewer reads without its new realignment
function than it did with the function. This occurs
because TopHat2 first aligns reads end to end with
Bowtie2 before trying spliced alignments. Thus if a read
is aligned end to end with, for example, one to three
mismatches, then without the realignment function,
TopHat2 accepts that alignment and may miss a spliced
alignment with fewer mismatches.
By contrast, TopHat2 with t = 0 mapped the largest

number of reads for all edit distances, followed in most
cases by GSNAP. Note that for alignments with an edit
distance of up to 3, TopHat2 without realignment dis-
covered almost as many alignments as GSNAP.
When alignment methods were run with the assistance

of gene annotations (Figure 2, right panel), the results
were somewhat better than the de novo alignments.
TopHat2 with or without realignment produced the high-
est number of mappings, followed by GSNAP, RUM, and
STAR. The realignment procedure gave a much smaller
advantage to TopHat2 in these experiments.
One way to estimate the accuracy of mappings is to

compare alignments to known splice sites. We compared
all aligners on only those reads that required splitting,
counting how many known (Figure 3, left) and known
plus novel (Figure 3, right) splice sites they identified. For
de novo alignment, TopHat2 with realignment had the
highest sensitivity, followed by MapSplice. Consistent with
our tests on simulated reads, GSNAP and STAR showed
relatively lower alignment rates. When using annotation,
TopHat2 without realignment showed the highest map-
ping rate, slightly outperforming TopHat2 with realign-
ment. GSNAP and STAR, which performed less well, map

reads against substrings containing splice sites rather than
whole transcripts. Direct mapping against whole tran-
scripts, as TopHat2 does, worked well, especially when
mapping reads spanning small exons, where a single read
might span more than two exons.
Based on these results, we suggest two alternative strate-

gies for alignment with TopHat2. First, if gene annotations
are available, as they are for the human genome and some
model organisms, then these annotations should be used
with TopHat2, even without realignment. Alternatively, if
annotations are unavailable or incomplete, then we recom-
mend using TopHat2 with its realignment algorithm to
produce the most complete set of alignments.
The run time and the peak memory usage of the

programs used in this study varied greatly. We compared
performance on all programs using the Chen et al. data
[11] of 130 million reads (see Additional file 1, Table S8).
Overall, STAR is much faster (32 minutes) than the other
programs, which required from 8 to 55 hours. However,
STAR requires a large amount of real memory, at least 28
GB, whereas most of the other programs required less
than 8 GB.

Effects of pseudogenes on RNA-seq mapping
The Ensembl gene annotations (release 66) contain
32,439 genes, including non-coding RNA genes, and
over 14,000 pseudogenes. Of the real genes, we found
that 872 (2.7%) genes had pseudogene copies; that is, at
least one transcript (or isoform) can be aligned to a
pseudogene with at least 80% identity across the full
length of the transcript. Using data from the Chen et al.
study [11] and from the Illumina Body Map project
[12], we found that genes with pseudogene copies seem
to have higher expression levels than those without
pseudogene copies. Table 5 shows the proportion of
reads mapping to genes with pseudogenes, using both
the raw count and a normalized count divided by the
length of the transcript. Although only 2.7% of genes
have pseudogene copies, these genes account for 22.5%
(non-normalized) or 26.9% (normalized) of the RNA-seq
reads in the Chen et al. data. In the RNA-seq experi-
ments from the Illumina Body Map (the white blood
sample only), we saw 19.1% (normalized) of reads map-
ping to genes with pseudogenes (see Additional file 1;
Table S12). From both RNA-seq experiments, we noted
that genes with multiple pseudogene copies were more
abundantly expressed than those with a single pseudo-
gene copy. We ran a similar analysis looking only at the
20,417 protein-coding genes in Ensembl, with similar
results: 22% of read pairs (26 times the number
expected) mapped to genes with processed pseudogenes
(see Additional file 1; Table S13).
Figure 4 shows various mapping results from TopHat2

with and without realignments at various edit distances.
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As we allowed TopHat2 to realign more reads, it found
the spliced alignments that were otherwise hidden by
pseudogene alignments. This in turn substantially
increased its mapping rates for known splice sites.

The completeness of human gene annotations
Using the de novo mapping mode in TopHat2, GSNAP,
MapSplice, and STAR, we looked at how many spliced
alignments were found in the Ensembl annotations. The
proportions of spliced mappings to known splice sites
were 88 to 90%, 97%, 96%, and 83 to 93% in TopHat2,
GSNAP, STAR, and MapSplice, respectively (Figure 5).
Although this analysis considered only the RNA-seq data
from Chen et al. [11], the TopHat2 result suggests that
many additional spliced alignments, up to 12%, might
remain to be discovered. Most of the novel splicing events
in these alignments were supported by 10 or more reads
that extended for 50 or more bases on each side.

Conclusions
Discovery of new genes and transcripts is a major objec-
tive in many RNA-seq experiments. Deep RNA-seq
experiments continue to uncover previously unseen ele-
ments of the transcriptome, even in well-studied organ-
isms. Mapping reads to the genome is a core step in such
screens, and the accuracy of mapping software can deter-
mine the accuracy of downstream steps such as gene and
transcript discovery or expression quantification.
We have described TopHat2, which provides major

accuracy improvements over previous versions and over
other RNA-seq mapping tools. Because TopHat2 is built
around Bowtie2, it can now align reads across small indels
with high accuracy, a feature crucial for studies assessing
the effects of genetic mutations on gene and transcript
expression. TopHat2 is engineered to work well with a
wide range of RNA-seq experimental designs, and it is

optimized for the widely available long paired-end reads.
These reads pose new challenges because they can span
multiple splice sites rather than just one or two; we esti-
mate that nearly half of reads 150 bp long will span two or
more human exons. The algorithmic improvements in
TopHat2 address this challenge, maintaining both accu-
racy and speed. Other refinements to the algorithm
increase accuracy for reads that span a junction with only
a small (≤ 10 bp) overhang, reducing errors in downstream
transcript assembly using tools such as Cufflinks. TopHat2
also makes powerful use of available gene annotations,
which allow it to avoid erroneously mapping reads to
pseudogenes, and generally improve its overall alignment
accuracy. Annotation also allows TopHat2 to better align
reads that cover microexons, non-canonical splice sites,
and other ‘unusual’ features of eukaryotic transcriptomes.
We have shown that TopHat2 performs well over a

wide range of read lengths, making it a good fit for
most RNA-seq experimental designs. This scalability
suggests that as read lengths grow, TopHat2 will con-
tinue to report accurate, sensitive alignment results and
allow for robust downstream analysis. We believe that
TopHat2 reports more accurate alignments than com-
peting tools, using fewer computational resources. RNA-
seq experiments are becoming increasingly common and
are now routinely used by many biologists. We expect
that TopHat2 will provide these scientists with accurate
results for use with expression analysis, gene discovery,
and many other applications.

Methods
Given RNA-seq reads as input, TopHat2 begins by map-
ping reads against the known transcriptome, if an anno-
tation file is provided. This transcriptome mapping
improves the overall sensitivity and accuracy of the
mapping. It also gives the whole pipeline a significant

Table 5 Expression levels of genes with pseudogene copies from Chen et al. [11].a

Number of pseudogene copiesb Gene with pseudogene copies (%)c Pair
count, %d

Ratioe Normalized count, %f Normalized ratiof

1 553 (1.7%) 6.85 × 4.02 9.37 × 5.49

2 113 (0.4) 5.15 × 14.79 5.20 × 14.93

3 49 (0.2) 1.27 × 8.38 1.96 × 12.99

4 27 (0.1) 2.27 × 27.32 2.28 × 27.35

≥ 5 130 (0.4) 6.91 × 17.24 8.08 × 20.16

Total (≥ 1) 872/32,439 (2.7) 22.45 × 8.35 26.88 × 10.00
aUsing Bowtie2, we aligned RNA-seq paired-end reads to 32,439 annotated genes.
bNumber of pseudogene copies of a gene. The first row shows genes that have just one pseudogene, followed by rows for genes with two, three, four, and at
least five pseudogene copies.
cNumber of genes with the specified number of pseudogene copies; for example, 553 genes (1.7% of all genes) have one pseudogene copy.
dPercentage of read pairs that were mapped to genes with pseudogene copies.
eRatio of columns 3 and 2.
fThese two columns were similarly defined using a normalized count, where the number of reads mapping to each gene was normalized to account for gene
length.
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speed increase, owing to the much smaller size of the
transcriptome compared with that of the genome (see
Figure 6).
After the transcriptome-mapping step, some reads

remain unmapped because they are derived from
unknown transcripts not present in the annotation, or
because they contain many miscalled bases. In addition,
there may be poorly aligned reads that have been mapped
to the wrong location. TopHat2 aligns these unmapped or

potentially misaligned reads against the genome (Figure 6,
step 2). Any reads contained entirely within exons will be
mapped, whereas other spanning introns may not be.
Using unmapped reads from step 2, TopHat2 tries to

find novel splice sites that are based on known junction
signals (GT-AG, GC-AG, and AT-AC). TopHat2 also pro-
vides an option to allow users to remap some of the
mapped reads, depending on the edit distance values of
these reads; that is, those reads whose edit distance is
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greater than or equal to a user-provided threshold will be
treated as unmapped reads. To accomplish this, the
unmapped reads (and previously mapped reads with low
alignment scores) are split into smaller non-overlapping
segments (25 bp each by default) which are then aligned
against the genome (Figure 6, step 3). Tophat2 examines
any cases in which the left and right segments of the same
read are mapped within a user-defined maximum intron
size (usually between 50 and 100,000 bp). When this pat-
tern is detected, TopHat2 re-aligns the entire read
sequence to that genomic region in order to identify the
most likely locations of the splice sites (Figure 6). Using a

similar approach, indels and fusion breakpoints are also
detected in this step.
The genomic sequences flanking these splice sites are

concatenated, and the resulting spliced sequences are
collected as a set of potential transcript fragments. Any
reads not mapped in the previous stages (or mapped
very poorly) are then re-aligned with Bowtie2 [15]
against this novel transcriptome.
After these steps, some of the reads may have been

aligned incorrectly by extending an exonic alignment a
few bases into the adjacent intron (Figure 1; Figure 6,
steps 3 to 5). TopHat2 checks if such alignments extend

Figure 6 TopHat2 pipeline. Details are given in the main text.
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into the introns identified in the split-alignment phase; if
so, it can realign these reads to the adjacent exons instead.
In the final stage, TopHat2 divides the reads into

those with unique alignments and those with multiple
alignments. For the multi-mapped reads, TopHat2 gath-
ers statistical information (for example, the number of
supporting reads) about the relevant splice junctions,
insertions, and deletions, which it uses to recalculate the
alignment score for each read. Based on these new
alignment scores, TopHat2 reports the most likely align-
ment locations for such multi-mapped reads.
For paired-end reads, TopHat2 processes the two

reads separately through the same mapping stages
described above. In the final stage, the independently
aligned reads are analyzed together to produce paired
alignments, taking into consideration additional factors
including fragment length and orientation.
For the experiments described in this study, the pro-

gram version numbers were: TopHat2 2.0.8, TopHat1
1.1.4, GSNAP 2013-01-23, RUM 1.12_01, MapSplice
1.15.2, and STAR 2.3.0e. For the specific parameters for
each program, see Additional file 1, Table S9, and for
the source code of TopHat 2.0.8, see Additional file 2.

Additional material

Additional File 1: Supplementary material.

Additional File 2: TopHat2 source code.

Abbreviations
bp: Base pair; indel: Insertion or deletion; RNA-seq: RNA sequence;

Authors’ contributions
DK, SLS, GP, and CT performed the analysis and discussed the results of
TopHat2. DK, GP, and CT were mainly responsible for implementing
TopHat2. HP implemented the transcriptome-mapping algorithms, with help
from GP and DK. RK implemented the indel-alignment algorithms, with help
from DK. DK, SLS, GP, and CT wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
We thank Lior Patcher and Adam Roberts for their invaluable contributions
to our discussions on the TopHat2 pipeline. This work is supported in part
by the National Human Genome Research Institute (NIH) under grants R01-
HG006102 and R01-HG006677.

Author details
1Center for Bioinformatics and Computational Biology, University of
Maryland, College Park, MD, 20742, USA. 2Department of Computer Science,
University of Maryland, College Park, MD 20742, USA. 3Center for
Computational Biology, McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore,
MD, 21205, USA. 4Department of Biostatistics, Bloomberg School of Public
Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205,
USA. 5Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge,
MA, 02142, USA. 6Department of Stem Cell and Regenerative Biology,
Harvard University, 7 Divinity Ave., Cambridge, MA, 02142, USA. 7Department
of Electrical Engineering and Computer Science, University of California, 101
Sproul Hall, Berkeley, CA, 94720, USA. 8Illumina Inc., 5200 Illumina Way, San
Diego, CA, 92122, USA.

Received: 15 November 2012 Revised: 5 April 2013
Accepted: 25 April 2013 Published: 25 April 2013

References
1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5:621-628.

2. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R,
Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ,
Harrow J, Gerstein MB: The GENCODE pseudogene resource. Genome Biol
2012, 13:R51.

3. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving RNA-Seq
expression estimates by correcting for fragment bias. Genome Biol 2011,
12:R22.

4. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25:1105-1111.

5. Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 2010, 26:873-881.

6. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP,
Stoeckert CJ, Hogenesch JB, Pierce EA: Comparative analysis of RNA-Seq
alignment algorithms and the RNA-Seq unified mapper (RUM).
Bioinformatics 2011, 27:2518-2528.

7. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR: STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 2013, 29:15-21.

8. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X,
Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF,
Liu J: MapSplice: accurate mapping of RNA-seq reads for splice junction
discovery. Nucleic Acids Res 2010, 38:e178.

9. Zhang Z, Harrison PM, Liu Y, Gerstein M: Millions of years of evolution
preserved: a comprehensive catalog of the processed pseudogenes in
the human genome. Genome Res 2003, 13:2541-2558.

10. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM,
Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, Iyer MK, Barrette T,
Shanmugam A, Dhanasekaran SM, Palanisamy N, Chinnaiyan AM: Expressed
pseudogenes in the transcriptional landscape of human cancers. Cell
2012, 149:1622-1634.

11. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Miriami E, Karczewski KJ,
Hariharan M, Dewey FE, Cheng Y, Clark MJ, Im H, Habegger L,
Balasubramanian S, O’Huallachain M, Dudley JT, Hillenmeyer S,
Haraksingh R, Sharon D, Euskirchen G, Lacroute P, Bettinger K, Boyle AP,
Kasowski M, Grubert F, Seki S, Garcia M, Whirl-Carrillo M, Gallardo M,
Blasco MA, et al: Personal omics profiling reveals dynamic molecular and
medical phenotypes. Cell 2012, 148:1293-1307.

12. The Illumina Body Map 2.0 data.. [http://www.ebi.ac.uk/arrayexpress/
browse.html?keywords=E-MTAB-513&expandefo=on].

13. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF,
Levy S, Batzer MA, Jorde LB: Mobile elements create structural variation:
analysis of a complete human genome. Genome Res 2009, 19:1516-1526.

14. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N,
Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M,
Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA,
Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J,
Rogers YH, Frazier ME, Scherer SW, Strausberg RL, et al: The diploid
genome sequence of an individual human. PLoS Biol 2007, 5:e254.

15. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat
Methods 2012, 9:357-359.

16. Kim D, Salzberg SL: TopHat-Fusion: an algorithm for discovery of novel
fusion transcripts. Genome Biol 2011, 12:R72.

17. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 2009, 10:R25.

18. Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigo R, Sammeth M:
Modelling and simulating generic RNA-Seq experiments with the flux
simulator. Nucleic acids Res 2012.

doi:10.1186/gb-2013-14-4-r36
Cite this article as: Kim et al.: TopHat2: accurate alignment of
transcriptomes in the presence of insertions, deletions and gene
fusions. Genome Biology 2013 14:R36.

Kim et al. Genome Biology 2013, 14:R36
http://genomebiology.com/2013/14/4/R36

Page 13 of 13

http://www.biomedcentral.com/content/supplementary/gb-2013-14-4-r36-S1.DOCX
http://www.biomedcentral.com/content/supplementary/gb-2013-14-4-r36-S2.GZ
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22951037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21410973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21410973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21775302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21775302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23104886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20802226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20802226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14656962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14656962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14656962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22726445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22726445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22424236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22424236?dopt=Abstract
http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-MTAB-513&expandefo=on
http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-MTAB-513&expandefo=on
http://www.ncbi.nlm.nih.gov/pubmed/19439515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17803354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17803354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22388286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21835007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21835007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract

	Abstract
	Background
	Results and discussion
	Alignments of simulated reads (error-free)
	Alignments of simulated reads with short indels
	Alignment of a large set of real RNA-seq reads
	Effects of pseudogenes on RNA-seq mapping
	The completeness of human gene annotations

	Conclusions
	Methods
	Abbreviations
	Authors’ contributions
	Acknowledgements
	Author details
	References

