
Introduction
Th e human capacity for complex spoken language is 
unique [1]. Speech endows us with the ability to verbally 
express our ideas, opinions and feelings, using rapid 
precise control of the oral motor structures (larynx, 
mouth, tongue) to convert our thoughts into streams of 
sound that can be decoded by others. While vocal 
communi cation in other species sometimes exploits 
simple mappings between sound and meaning, the reach 
of human language extends far beyond this, most notably 
through its extraordinary generative power. A discrete 
number of individual units of language can be combined 
into a limitless number of utterances, giving us the 
potential to express and comprehend an infi nite array of 
concepts. Moreover, when growing up in a language-rich 
environment, any normal human infant becomes highly 
profi cient in his or her native language with astonishing 
ease, and without the need for explicit teaching.

It has been argued for many years that inherited factors 
must make a key contribution to the acquisition of 
spoken language [2]. It is only in the past decade or so, 
with the rise of molecular genetics, that biologists have 
been able to provide the fi rst robust empirical evidence 

regarding this issue. To begin investigating the pathways 
involved, research has focused on the roles of genes, 
proteins and cellular machinery in the etiology of 
language impairments, in which people mysteriously fail 
to develop normal skills despite adequate linguistic input 
and opportunity [3]. Th ere is a diverse array of these 
language-related disorders, which usually appear in early 
childhood and often persist into later life, and they are 
common enough to have a major impact on modern 
society. Language problems are frequently observed co-
occurring with other developmental disorders, such as 
autism and epilepsy [4,5].

Prior to the advent of molecular studies of language 
disorders, the importance of the genome was already 
evident from epidemiological analyses. Th ese disorders 
typically cluster in families [6-9] and monozygotic twins 
display substantially higher rates of concordance than 
dizygotic twins [10-12]. Clearly, acquisition of fl uent 
spoken language is also infl uenced by the environment 
and its interaction with our genes. However, beyond the 
obvious eff ects of impoverished language input (for 
example, due to hearing problems) there is little known 
regarding specifi c environmental risk factors that may 
disturb linguistic development [13].

Initial clues to the molecular bases of speech and 
language impairments came from low-density linkage 
screens [14], followed by targeted association studies of 
particular chromosome regions and/or focused mutation 
screens of candidate genes [15]. In addition, studies of 
chromosomal abnormalities are contributing to our 
understanding of such disorders, and genome-wide asso-
ciation scans using hundreds of thousands of single 
nucleotide polymorphisms (SNPs) are underway in 
several cohorts. However, it is evident that the future of 
gene discovery in language-related traits, as for many 
other complex phenotypes, lies in large-scale DNA 
sequencing of entire human genomes.

Traditional sequencing methods are slow, laborious 
and expensive; the original human genome sequencing 
project cost more than US$3 billion and took more than 
a decade to fi nish [16]. Dramatic technological advances 
have transformed the ability to analyze our genetic make-
up at single nucleotide resolution and commercialization 

Abstract
Next-generation sequencing is set to transform the 
discovery of genes underlying neurodevelopmental 
disorders, and so off er important insights into the 
biological bases of spoken language. Success will 
depend on functional assessments in neuronal cell 
lines, animal models and humans themselves.

Keywords exome, genome, FOXP2, functional 
validation, language, next-generation sequencing, 
neurodevelopmental disorders, speech

© 2010 BioMed Central Ltd

Neurogenomics of speech and language disorders: 
the road ahead
Pelagia Deriziotis1 and Simon E Fisher1,2*

R E V I E W

*Correspondence: simon.fi sher@mpi.nl
1Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
Full list of author information is available at the end of the article

Deriziotis and Fisher Genome Biology 2013, 14:204 
http://genomebiology.com/2013/14/4/204

© 2013 BioMed Central Ltd



of these ‘next-generation’ platforms is growing fast. At 
the time of writing, a human genome can be entirely 
sequenced in a matter of days for only a few thousand 
dollars, and costs continue to fall at a remarkable rate. 
Nevertheless, excitement over the enormous potential of 
the new technologies must be tempered by acknowledg
ing the associated analytical challenges. Already, our 
capacity to rapidly generate large swathes of sequence 
data from many individuals outstrips our capacity to 
infer the underlying biology of a trait using such 
information.

Here, we begin by summarizing approaches previously 
applied to identify and study the first genes implicated in 
speech and language disorders (Table  1). We go on to 
discuss the promise of next-generation sequencing (NGS) 
for uncovering the key genomic changes that affect our 
speech and language abilities, not only in relevant 
disorders, but also in the general population. We argue 
that it is essential to be able to assess the functional 
significance of identified variants if we are to understand 
their biological impact and elucidate their contributions 
to the human traits of interest. The success of such efforts 
will depend on synergies between diverse research 
techniques, including bioinformatics and experimental 
analyses using model systems, as well as integration of 
human genome sequences and functional gene network 
datasets (Figure 1).

Gene mapping in speech and language disorders
Speech apraxia
The first gene to be clearly implicated in a speech and 
language disorder was FOXP2. Disruptions of this gene 
cause a monogenic form of developmental verbal dys
praxia (DVD), also known as childhood apraxia of speech 
(CAS) [17], characterized by problems with the learning 
and execution of coordinated movement sequences of 
the mouth, tongue, lips and soft palate [18,19]. FOXP2 
was discovered through molecular studies of a large 
three-generational pedigree (the KE family) in which half 
the members have CAS, accompanied by wide-ranging 
deficits in both oral and written language, affecting not 
only production but also comprehension [17]. Linkage 
mapping in this family identified a region on 
chromosome 7q31 that co-segregated perfectly with the 
disorder [20]. An unrelated child with similar speech and 
language deficits was found to carry a de novo balanced 
translocation involving the same interval, which directly 
interrupted the coding region of a novel gene, FOXP2 
[17,21]. Screening of FOXP2 in the KE family revealed 
that all affected members had inherited a heterozygous 
point mutation yielding an amino acid substitution at a 
key residue of the encoded protein [17]. Subsequent 
studies identified additional etiological FOXP2 variants 
(nonsense mutations, translocations, deletions) in 

individuals and families with speech and language prob
lems, typically including CAS as a core feature (reviewed 
by Fisher and Scharff [22]). Although etiological muta
tions of FOXP2 are rare [23,24], the gene provides a 
valuable molecular window into neurogenetic mecha
nisms contributing to human spoken language, as 
detailed elsewhere in this article.

Beyond FOXP2, additional loci that may contribute to 
CAS have emerged from cases of chromosomal abnor
malities, identified using cytogenetic screening and/or 
comparative genomic hybridization (CGH). One report 
described a family in which three affected siblings all 
carry an unbalanced 4q;16q translocation [25]. Another 
study defined a small region on 12p13.3, containing the 
ELKS/ERC1 gene, commonly deleted in nine unrelated 
patients with delayed speech development, most of 
whom had a formal diagnosis of CAS [26]. Interestingly, a 
key isoform encoded by ELKS/ERC1 appears to be 
expressed specifically in the brain, where it binds to RIM 
proteins. In neurons, RIMs act within the presynaptic 
active zone, a site that integrates synaptic vesicle exo/
endocytosis with intracellular signaling in the nerve 
terminal [27]. Certain copy number variant (CNV) 
syndromes with complex variable phenotypes have been 
linked to increased risk of CAS, including 16p11.2 micro
deletions [28,29] and 7q11.23 microduplications [30]. 
The rare metabolic disorder, galactosemia, is also asso
ciated with elevated incidence of CAS [31].

Specific language impairment
When a child is delayed or impaired in acquiring language, 
without any obvious physical or neurological cause (cleft 
lip/palate, intellectual disability (ID), autism, deafness, 
and so on) he or she is usually diagnosed with specific 
language impairment (SLI). Since it is defined using 
exclusionary criteria, SLI encompasses a range of differ
ent cognitive and behavioral profiles. The most common 
forms involve deficits in expressive language, either in 
isolation or accompanied by receptive problems.

The estimated prevalence of SLI is up to 7% in 
kindergarten children [32] and it shows familial cluster
ing; twin studies consistently indicate high heritability 
[10,11,33]. In contrast to the rare cases of monogenic 
CAS discussed above, typical forms of SLI have a 
complex multifactorial basis [34]. Genome-wide linkage 
mapping in families with SLI have suggested the existence 
of multiple risk loci, on chromosomes 16q and 19q 
[35‑38], as well as 2p and 13q [39,40]. Targeted analysis of 
16q identified variants in two genes, ATP2C2 and CMIP, 
associated with deficits on a non-word repetition task, 
considered to be an index of impaired phonological 
short-term memory [15,41]. The ATP2C2 gene encodes a 
single subunit integral membrane P-type ATPase that 
catalyzes the ATP-driven transport of cytosolic calcium 
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and manganese into the Golgi lumen [42]. This cellular 
role makes it a plausible candidate for SLI susceptibility, 
since intracellular calcium levels are intimately linked to 

multiple diverse aspects of neuronal function, ranging 
from migration to plasticity, while manganese dysregu
lation has been linked to neurodegenerative phenotypes. 

Table 1. Neurogenomics of speech and language: summary of key genes discussed in the article

Chromosome	 Candidate	 Protein	 Neurodevelopmental	 Functional studies of  
region	 gene	 function	 disorders	 specific risk variants

3p14 FOXP1 Forkhead-box transcriptional 
repressor [78]; can form heterodimers 
with FOXP2 protein

Rare point mutations, deletions and 
translocations reported in intellectual 
disability (ID) and autism spectrum 
disorder (ASD), accompanied 
by severe speech and language 
problems [68,100-102]

Cell-based analyses support a two-hit 
mechanism in a severely affected ASD case 
with two rare coding mutations; one in 
FOXP1, the other in CNTNAP2, disturbing a 
shared functional pathway [68]; reporter 
gene assays described for another FOXP1 
variant, implicated in ID and ASD [100] 

7q31 FOXP2 Forkhead-box transcriptional 
repressor [77]; can form heterodimers 
with FOXP1 protein

Rare point mutations, deletions and 
translocations reported in families 
and cases of developmental verbal 
dyspraxia (DVD)/childhood apraxia of 
speech (CAS) [17,22,24]

Known etiological point mutations disrupt 
function in cellular models [77,83,84] and 
mutant mice [82,117-120]; the latter studies 
suggested effects of risk variants on neurite 
outgrowth [82], neural plasticity and 
acquisition of motor skills [117,118], and 
auditory-motor association learning [120]

7q35 CNTNAP2 Transmembrane scaffolding protein; 
member of neurexin superfamily; 
clusters K+ channels at nodes of 
Ranvier; implicated in neuronal 
migration, dendritic arborization and 
spine development [86-88]

Homozygous loss-of-function 
mutations cause cortical dysplasia 
with focal epilepsy [88]; common 
non-coding variants associated 
with various neuro-developmental 
disorders, for example, ASD [89-91], 
specific language impairment (SLI) 
[44], selective mutism [93]; also 
reports of links to schizophrenia [92] 
and Tourette syndrome [94]

Coding variants identified in ASD show 
impaired cellular trafficking [140]; 
neuroimaging genetics has suggested 
that common non-coding risk alleles 
have effects on brain structure/function 
in the general population (for example, 
[133-135]), although sample sizes were 
small and findings have been inconsistent 
between studies

12p13 ELKS/ERC1 Member of family of RIM-
binding proteins; RIMs are active 
zone proteins that regulate 
neurotransmitter release [27] 

Rare deletions reported in cases of 
DVD/CAS [26]

None reported to date

12q23 GNPTAB Alpha and beta subunits of GlcNAc-
phosphotransferase; catalyzes 
addition of mannose 6-phosphate 
tag to hydrolytic enzymes, allowing 
lysosomal targeting

Rare coding variants reported in 
cases of persistent stuttering [57]

None reported to date

16p13 GNPTG Gamma subunits of GlcNAc-
phosphotransferase (see above)

Rare coding variants reported in 
cases of persistent stuttering [57]

None reported to date

16p13 NAGPA ‘Uncovering enzyme’; catalyzes 
second step in tagging hydrolytic 
enzymes for lysosomal targeting 
[103]

Rare coding variants reported in 
cases of persistent stuttering [57]

Coding mutations found to affect 
enzymatic activity, protein folding and 
proteasomal degradation in cell-based 
assays [103]

16q23 CMIP Cytoskeletal adaptor protein; 
interacts with filamin A and RelA [43]

Common non-coding variants 
associated with non-word repetition 
deficits in families with SLI [41]

None reported to date

16q24 ATP2C2 Integral membrane P-type ATPase; 
catalyzes Ca2+/Mn2+ transport into 
Golgi lumen [42]

Common non-coding variants 
associated with non-word repetition 
deficits in families with SLI [41]

None reported to date

18q12 SETBP1 Interacts with SET, an oncogene 
involved in DNA replication [64-66]

Haploinsufficiency reported 
in cases of expressive speech/
language impairment (for example, 
[65]); dominant gain-of-function 
point mutations cause a distinct 
reproductively lethal disorder, 
Schinzel-Giedion syndrome [64]

None reported to date
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Th e product of CMIP contains pleckstrin homology and 
leucine-rich repeat domains, and is hypothesized to be 
an adaptor protein of the actin cytoskeleton, interacting 
with fi lamin A and RelA (an NF-kappaB subunit) [43]. 

Although little is known about CMIP at this stage, it is 
again a credible candidate for involvement in nervous 
system function, since cytoskeletal reorganization makes 
essential contributions to processes like neuronal 

Figure 1. Neurogenomics of speech and language disorders. Next-generation sequencing will yield large datasets of genomic variants with 
potential relevance for speech and language. Identifi cation of key variants is critically dependent on multidisciplinary studies of function in 
cell lines, animal models and humans, along with integration of data on neurogenetic networks, as detailed in the text. The image under ‘Next-
generation sequencing’ comes from istockphoto.com (DNA code; File #9614920), the boxshade plot under ‘In silico analyses’ is a subpart taken from 
Figure 4 of [17], the lefthand bottom panel of ‘Cellular assays’ is a subpart taken from Supplementary Figure 5c of [68], the ‘Neurogenetic networks’ 
image is taken from Figure 4b of [82] and the Zebrafi nch image is reproduced with permission from Geoff rey Dabb and Canberra Ornithologists 
Group.
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migration and synapse formation/modifi cation. Other 
candidate genes (such as CNTNAP2) have been impli-
cated in SLI susceptibility through functional approaches 
[44], as highlighted elsewhere in this article.

Studies of isolated founder populations may also help 
pinpoint new genes contributing to language disorders. A 
notable example is Robinson Crusoe Island - an island of 
633 residents lying west of Chile, South America - which 
was most recently colonized in the late 19th century [45]. 
Th irty-fi ve percent of the colonizing children satisfy 
criteria for a diagnosis of SLI, substantially higher than 
the 4% prevalence rate for mainland Chile [45]. Initial 
molecular investigations identifi ed several genomic 
regions of interest (on chromosomes 6, 7, 12, 13 and 17), 
but no specifi c risk genes have yet been discovered [46].

SLI has connections with another heritable neuro-
develop mental trait, dyslexia, defi ned as specifi c signi fi -
cant impairments in reading and/or spelling that are not 
attributed to intelligence, visual acuity problems or 
inadequate learning opportunities. Although they do not 
display overt diffi  culties with speech or language, people 
with dyslexia often have subtle underlying defi cits with 
aspects of linguistic processing [47]. Th us, genetic studies 
of dyslexia may be informative for understanding lan-
guage pathways. We do not have space to discuss this 
here, and refer readers to other recent reviews [48,49].

Stuttering
Stuttering is a neurodevelopmental disorder that disturbs 
the fl ow of speech [50]. People who stutter are aff ected by 
uncontrollable repetitions and prolongations of syllables, 
and by involuntary silent pauses while speaking; these 
diffi  culties begin in childhood, persisting in about 20% of 
case referrals [51]. Most people who suff er from persis-
tent stuttering nevertheless display normal linguistic 
profi ciency [52]. Stuttering is thought to have a strong 
genetic basis [53]. Th us far, most genome-wide investi-
gations of persistent familial stuttering have revealed 
only suggestive evidence of linkage, with loci distributed 
across at least ten chromosomes, and little overlap 
between diff erent studies, indicating that this is a 
complex multifactorial trait [53-55].

One of the few reports of signifi cant linkage focused on 
46 consanguineous families from Pakistan, and high-
lighted chromosome 12q as a site of interest [56]. Sub-
sequent analyses of the largest family from that study 
found that most aff ected relatives carried a coding variant 
in the 12q23.2 gene GNPTAB, which encodes two 
subunits of GlcNAc-phosphotransferase (GNPT) [57]. 
Th is putative risk variant (Q1200K), which altered a 
conserved residue of the protein, was identifi ed in a 
number of other Pakistani cases, at higher frequency 
than Pakistani controls. GNPT is involved in addition of 
a mannose 6-phosphate tag to hydrolytic enzymes, 

allowing them to be targeted to lysosomes. Further 
screening of GNPTAB, as well as GNPTG and NAGPA, 
two closely related genes in this metabolic pathway, 
identifi ed several diff erent coding variants that were only 
present in cases and not controls [57]. Th e proposed risk 
variants are rare even among people who stutter, so it is 
likely that there are other unknown genes involved in 
stuttering.

The next generation: uncovering novel risk variants
While it is clear that exciting progress has been made, 
many of the genetic risk factors underlying speech and 
language disorders and/or normal linguistic variation 
remain to be discovered. At the time of writing, no study 
had yet reported the use of NGS methodologies to 
specifi cally investigate language-related traits. However, 
the advent of NGS has transformed the identifi cation of 
genetic variants in other important neurodevelopmental 
phenotypes that co-occur with language defi cits, such as 
ID and autism spectrum disorders (ASDs). Th us far, most 
such research has focused on sequencing protein-coding 
regions of the genome (the exome) to detect de novo 
variants in rare and common forms of these disorders 
[58-60]. Since de novo mutations have highly deleterious 
eff ects and are subject to strong negative selection, it is 
hypothesized that they might be important explanations 
of sporadic occurrences of disorder.

Whole-exome sequencing fi rst proved eff ective in 
detecting causal de novo variants in rare reproductively 
lethal neurodevelopmental disorders, such as Kabuki 
syndrome [61], Bohring-Opitz syndrome [62] and KBG 
syndrome [63]. Th e study that pioneered this approach 
assessed 13 cases of Schinzel-Giedion syndrome, which 
is characterized by severe ID and typical facial features, 
and revealed de novo gain-of-function mutations inde-
pen dently occurring in a single gene, SETBP1 [64]. 
Interestingly, haploinsuffi  ciency of SETBP1 has been 
identifi ed in some cases of expressive speech impairment 
[65]. SETBP1 encodes a widely expressed nuclear protein 
that interacts with SET, an oncogene involved in DNA 
replication. Recent studies have shown that SET binding 
protein 1 (SETBP1) also includes three highly conserved 
AT-hooks (motifs that bind AT-rich DNA in a non-
sequence-specifi c manner) and that it can act as a 
transcription factor, directly activating targets such as 
Hoxa9 and Hoxa10 [66]. Functional links between 
SETBP1 and brain development have yet to be explored.

NGS techniques are also shedding light on the roles of 
de novo changes in common non-syndromic disorders 
[59]. A pilot study of whole-exome sequencing in sporadic 
cases of non-syndromic ID and their parents (parent-
child trios) reported nine non-synonymous de novo 
muta tions in diff erent genes in seven of ten probands 
[67]. Since then, multiple investigations have employed 
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similar approaches to screen trios or quads (trio plus 
unaffected siblings), including four large-scale whole-
exome sequencing efforts across about 1,000 ASD 
families [68-72] (reviewed by Buxbaum et al. [60]). One 
conclusion of this work was that the rate of de novo 
mutations was higher in ASD probands than controls, 
and it pointed to six genes of particular interest that had 
recurrent loss-of-function mutations.

A major advantage of focusing on de novo mutations is 
that it dramatically reduces the search space for potential 
causative variants; it is estimated that an average of 
approximately one de novo coding variant arises per 
genome per generation [59]. Interpretation of NGS data 
becomes more difficult when the search criteria are 
broadened to encompass all potential etiological coding 
variants that a proband carries, and it is even more 
challenging if one also considers non-exonic variations 
throughout the entire genome. It is not currently known 
if the genetic architecture underlying specific speech and 
language disorders includes a significant role for de novo 
mutations. Thus, it will be important to develop alter
native study designs and analytic strategies (for example, 
Yu et al. [73] and Lim et al. [74]) for pinpointing causative 
mutations in NGS data from cases and families with 
language impairments.

Bridging the gap from genetic variants to biology
In the near future, NGS methods will become standard 
tools in molecular studies of speech and language 
disorders. As noted above, gene discovery strategies will 
need to move beyond the de novo paradigms that have 
been so successful for ID and ASD. Researchers will be 
faced with the major challenge of discerning which of the 
many plausibly causal variants carried by each affected 
person are physiologically relevant to their speech and/or 
language impairments. Fortunately, distinct fields com
bining computational and experimental methods can 
help ascertain the biological roles of detected variants 
and ultimately highlight genes important for our unique 
capacity for spoken language.

When focusing on protein-coding sequences, after 
initial filtering of identified variants from NGS data, it is 
possible to use predictive algorithms such as SIFT [75] 
and PolyPhen2 [76] to flag the most promising mutations 
for subsequent analyses. Computational methods such as 
these use known information on protein sequence and 
evolutionary history to rank them as benign, possibly 
damaging or probably damaging. Nonetheless, as cellular 
pathways harbor some degree of redundancy, not all loss-
of-function mutations will contribute to a given disorder 
and such predictions should be treated with caution. For 
example, sequencing of FOXP2 in a cohort of CAS/DVD 
cases revealed a non-synonymous substitution near the 
N-terminus of the protein (Q17L) in one of the probands 

[24], a variant that is predicted to be damaging by both 
SIFT and PolyPhen2. However, follow-up functional 
experiments of the Q17L substitution using cell models 
did not find adverse effects on protein characteristics, in 
contrast to observations for other proband mutations 
[77]. Together with the fact that the Q17L proband has 
an affected sibling who does not carry the substitution, it 
seems unlikely that this particular change is etiological. 
Thus, although bioinformatic approaches help narrow 
down the list of variants from ongoing high-throughput 
genetic screens of speech and language phenotypes, 
experimental analyses in model systems are often crucial 
for determining causality, as well as offering deeper 
insights into mechanisms.

The value of functional approaches is particularly 
apparent from studies of how FOXP2 mutations lead to 
speech and language disorder [22]. FOXP2 encodes a 
forkhead-box transcription factor. Following homo- or 
hetero-dimerization with other forkhead box P (FOXP) 
family members [78], the protein binds DNA and 
represses transcription of its target genes [79]. Human 
neuron-like cells have been used to assess two different 
mutant FOXP2 proteins that co-segregate with disorder 
in CAS/DVD families: pFOXP2.R553H [17] and pFOXP2.
R328X [24]. The functional assays demonstrated that 
these mutations severely disrupt nuclear localization, 
DNA-binding ability and transactivation potential of the 
protein [77]. Investigations into downstream targets of 
FOXP2 highlighted several neuronal pathways that it 
regulates. Independent high-throughput studies of pro
moter occupancy in cells and human fetal brain reported 
that FOXP2 directly regulates genes involved in neurite 
outgrowth, synaptic plasticity and axon guidance [80, 
81]. More recently, following genome-wide analyses of 
neural targets in vivo in mouse models, it has been shown 
that Foxp2 mutations can alter neurite outgrowth and 
branching in primary neurons [82].

A subset of FOXP2 targets are implicated in neuro
developmental disorders that often co-occur with 
language deficits, such as the sushi repeat-containing 
protein X-linked 2 (SRPX2)-plasminogen activator recep
tor, urokinase-type (uPAR) complex in epilepsy and 
speech apraxia [83], DISC1 in schizophrenia [84] and 
MET in ASD [85]. The most rigorously studied FOXP2 
target is CNTNAP2, encoding contactin-associated 
protein-like 2 (CASPR2), a transmembrane scaffolding 
protein that clusters K+ channels in myelinated axons 
[86]. CASPR2 is a member of the neurexin superfamily 
and, in addition to its role in mature neurons, it has been 
implicated in neuronal migration, dendritic arborization 
and spine development [87]. Homozygous loss-of-
function CNTNAP2 mutations cause infant-onset epi
lepsy, learning deficits and language regression [88]. 
FOXP2 binds directly within the first intron of CNTNAP2 

Deriziotis and Fisher Genome Biology 2013, 14:204 
http://genomebiology.com/2013/14/4/204

Page 6 of 12



and is able to downregulate its expression [44]. Asso
ciation analyses of quantitative phenotype data in 184 
small SLI families identified a cluster of common intronic 
SNPs in CNTNAP2 that correlated significantly with 
reduced performance on linguistic tests, most strongly 
for the non-word repetition endophenotype [44]. The 
identity of the precise functional variant(s) in this region 
is not yet determined, but it is hypothesized that they 
affect the way that CNTNAP2 is regulated. Rare and 
common CNTNAP2 variants have also been implicated 
independently in ASDs [89-91], consistent with prior 
hypotheses that SLI and ASDs may involve some degree 
of shared genetic etiology. Beyond SLI, ASD and epilepsy, 
contributions of CNTNAP2 have been suggested for a 
range of other neurodevelopmental phenotypes, includ
ing schizophrenia [92], selective mutism [93] and 
Tourette syndrome [94].

A recent study of sporadic ASD demonstrates how the 
combination of NGS screens with functional experiments 
can shed light on language-related gene networks [68]. 
Whole-exome sequencing of parent-child trios identified 
a de novo frameshift mutation in an ASD proband, 
introducing a premature stop codon in FOXP1 [68]. The 
child was severely affected, with regression and language 
delays. FOXP1 is the most closely related gene to FOXP2 
in the human genome and they can act synergistically to 
regulate shared targets in regions of co-expression 
[78,95,96]. Remarkably, the proband with the FOXP1 
mutation also carried an extremely rare CNTNAP2 
missense variant, inherited from his unaffected mother 
[68]. In cell-based functional analyses, the aberrant 
FOXP1 protein mislocalized to the cytoplasm and lost its 
transcriptional repressor properties; expression of the 
mutant FOXP1 isoform in cells elevated CNTNAP2 
levels, unlike wild-type FOXP1 [68]. These data were 
consistent with a two-hit mechanism in which abnormal 
FOXP1 results in higher CNTNAP2 levels, amplifying 
any potentially deleterious effects of the missense 
CNTNAP2 variant of the proband [68]. Similar findings 
regarding multiple-hit mechanisms have emerged from 
independent studies of ASDs and other neurodevelop
mental syndromes (for example, Leblond et al. [97]), 
suggesting that this may be an important model for 
genetic etiology of such disorders [98].

Previous screening of 49 children diagnosed with CAS/
DVD did not detect any obviously etiological FOXP1 
mutations [99]. However, studies of patients with mild to 
moderate ID and language impairment have detected 
rare de novo deletions and a nonsense FOXP1 variant 
[100,101]. High-throughput sequencing of balanced chro
mosomal abnormalities in neurodevelopmental disorders 
identified disruptions at the FOXP1 locus [102].

There has been little reported to date on functional 
analyses of other genes (such as ATP2C2 and CMIP) 

associated with speech and language disorders, in part 
because no protein-coding variants have been pin
pointed. As noted above, some cases of persistent stutter
ing carry coding variants in genes (GNPTAB, GNPTG 
and NAGPA) involved in lysosomal targeting of hydrolase 
enzymes. Interestingly, loss-of-function mutations of this 
pathway cause mucolipidosis disorders, which involve 
severe abnormalities affecting multiple systems, includ
ing skeletal, respiratory and cardiovascular tissues. Cell-
based assays were recently used to analyze Mannose 
6-phosphate-uncovering enzyme variants found in 
people who stutter, and were reported to yield incorrect 
protein folding, decreased enzymatic activity and degra
dation by the proteasome [103].

It is not always feasible to carry out experimental assess
ments of putative risk variants. The nature of assessment 
is highly dependent on the type of gene product; it is 
difficult to test protein function if there are no known 
measurable properties. In contrast to NGS technologies, 
functional experiments typically remain high cost, time-
consuming and laborious, and are less amenable for up
scaling. Nevertheless, as NGS reveals additional variants 
potentially implicated in language impairments and other 
neurodevelopmental traits, we will inevitably need access 
to high-throughput techniques for simultaneous muta
tion testing to define disease-causing variants across the 
genome [104]. Indeed, several multiplex approaches for 
characterizing the functional effects of genetic variation 
in proteins [105], mammalian regulatory elements 
[106,107] and RNA [108] have recently been developed. 
More and more emphasis will be placed on possible 
functional variants that lie outside protein-coding 
regions. Various efforts are underway to facilitate this 
transition, most notably the ENCODE project, which 
aims to characterize all functional elements at a genome-
wide scale, including non-coding RNA and cis-regulatory 
elements [109]. RegulomeDB is of particular interest, as 
it combines data from the ENCODE project, GEO and 
published literature into a single, integrated database that 
can be used to query the functional significance of 
variants in both coding and non-coding regions of the 
genome [110].

Integrating data networks
Beyond establishing causality, functional characterization 
of candidate risk variants in model organisms may also 
help highlight pathways implicated in the origins and 
bases of language. For example, studies of FOXP2 across 
different species (mouse, bird, human) have given us 
initial clues into neurogenetic networks facilitating human 
spoken language [22,111]. FOXP2 expression is enriched 
in several brain areas, including the basal ganglia, deep 
cortical layers, thalamus and cerebellum [112], some of 
which display subtle structural and functional abnormalities 
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in people carrying FOXP2 mutations [19,112-114]. From 
an evolutionary perspective, this is a highly conserved 
gene with regard to both the amino acid sequence of the 
encoded protein and the neural sites where it is expressed 
[95,115]. These data suggest that ancestral forms of FOXP2 
were involved in important aspects of brain development 
long before the emergence of spoken language. There is 
evidence that the functions of the gene may have been 
modified during human evolution ([116]; also see below), 
but it remains clear that its roles in the human brain are 
built on evolutionarily ancient pathways [1].

Extensive characterization of rodent models carrying 
etiological Foxp2 variants indicates roles in synaptic 
plasticity, motor-skill learning, and processing and inte
gration of auditory information [117-120]. When mice 
are heterozygous for the mutation that causes speech 
problems in the human KE family, they display decreased 
synaptic plasticity in corticostriatal circuits and motor-
skill learning deficits [117]. These mouse findings are 
intriguing given that affected humans have problems 
learning to master the rapid coordinated orofacial move
ments underlying speech [121]. In vivo electrophysiology 
recordings in awake-behaving mice revealed more about 
the impacts of Foxp2 on corticostriatal circuitry; mice 
heterozygous for the KE mutation displayed higher basal 
striatal activity than wild-type controls, and medium 
spiny neurons showed aberrant negative modulation of 
their firing rates during motor-skill learning [118]. 
Separate studies used mouse models to explore whether 
impairments in auditory processing and auditory-motor 
integration might also be relevant to FOXP2-related 
disorders [119,120]. Mice carrying the KE mutation were 
reported to have altered auditory brainstem responses to 
sound, although this finding was not replicated in mice 
carrying a different mutation associated with speech/
language problems in another family [119]. Mice carrying 
either etiological mutation have deficits in learning to 
associate auditory stimuli with motor outputs [120].

Songbirds carry their own version of FOXP2, referred 
to as FoxP2, and it appears to make important contri
butions to the functions of a striatal nucleus called Area 
X [122]. In zebra finches, Area X is critical for auditory-
guided vocal learning, a process in which young male 
birds learn their song by imitating an adult tutor. Vocal 
learning is also a key component of human speech 
acquisition. FoxP2 mRNA levels in Area X are enriched 
in young birds during the critical song-learning period 
[123] and show rapid downregulation when adult birds 
practice their songs outside the context of courtship 
[124-126]. Furthermore, selective knockdown of FoxP2 in 
Area X disrupts the song-learning process [127] and 
alters dendritic spine density in this region [128].

Functional studies of genes implicated in language-
related disorders may also give us entry points into 

mechanisms involved in language function in the general 
population. As discussed above, variants of CNTNAP2, a 
direct target of FOXP2, were associated with linguistic 
deficits in clinically distinct neurodevelopmental dis
orders [44,88,89,129-131]. Subsequent studies revealed 
that CNTNAP2 may contribute to language processing in 
healthy individuals [132-134]. The cluster of CNTNAP2 
SNPs that is associated with language phenotypes in SLI 
and ASDs has also been reported to correlate with assess
ments of early language development in general popula
tion samples [132]. Neuroimaging genetics studies of 
common CNTNAP2 SNPs in healthy samples have 
proposed associations with functional brain measures 
related to language [133,134] and with altered structural 
connectivity patterns [135]. However, imaging genetics of 
language is a field that is only in its infancy; reports thus 
far involved small sample sizes with limited power, as 
well as a substantial multiple-testing burden, and results 
of different studies have been largely inconsistent. 
Additional analyses are required to elucidate how FOXP2, 
CNTNAP2 and other language-related genes influence 
brain circuits at multiple levels of description - molecular, 
cellular, structural and functional.

Insights from ancient genomes
The reach of NGS technologies extends well beyond 
living species. These innovations have allowed molecular 
anthropologists to reconstruct large portions of nuclear 
genomes from extinct hominins that co-existed with our 
ancestors, such as Neanderthals [136] and Denisovans 
[137]. By comparing modern human sequences to ancient 
hominin genomes, as well as to our closest extant 
relatives, chimpanzees, it is possible to identify molecular 
variants that arose during human evolution, and roughly 
date them with regard to branches of the primate phylo
genetic tree. As for other NGS projects, our capacity to 
generate large amounts of sequence data exceeds our 
ability to interpret it. So although scientists have 
successfully catalogued many of the DNA changes that 
occurred on our lineage, an extraordinary feat in itself, it 
is still a major challenge to determine which of these 
evolutionary events were relevant for the emergence of 
traits such as speech and language acquisition [1]. Here, 
success may depend on the integration of findings from 
evolutionary genomics with data from molecular studies 
of language-related disorders.

The best illustration of this approach comes again from 
work on the FOXP2 gene, which was targeted for evolu
tionary investigations, based on its prior link to a severe 
speech and language disorder. Comparative primate 
genomics suggests that FOXP2 probably underwent at 
least two interesting evolutionary events on the lineage 
that led to modern humans. After splitting from the 
chimpanzee (several million years ago) there were 
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changes in the coding region of the locus that yielded two 
amino acid substitutions in the encoded protein [138]. 
Although these are minor changes outside the known 
functional domains, when such substitutions are inserted 
into the endogenous Foxp2 gene of a mouse, they have 
subtle detectable effects on brain structure and function, 
including altered connectivity and plasticity of cortico
striatal circuits [116]. NGS approaches indicate that these 
amino acid substitutions are shared by Neanderthals 
[136] and Denisovans [137]. (It is worth emphasizing 
here that status of a single gene is not enough to deter
mine whether or not a species can speak.) Researchers 
went on to identify a number of non-coding variants in 
intronic regions of FOXP2 that had occurred more 
recently on the human lineage, after splitting from 
Neanderthal/Denisovan a few hundred thousand years 
ago [139]. One of these changes lies in a region that 
underwent a recent selective sweep, and alters a putative 
binding site for the POU class 3 homeobox 2 (POU3F2) 
transcription factor, such that it may have affected 
regulation of FOXP2 expression; cell-based analyses are 
consistent with this hypothesis [139]. Thus, just like 
sequence-based analyses of language-related disorders, 
evaluation of the biological significance of interesting 
variants from ancient genomics requires functional 
studies using model systems.

Conclusion
The advent of whole genome NGS means that data 
generation will no longer be the limiting factor in under
standing how genetic factors contribute to mechanisms 
underlying complex neurodevelopmental traits. Coupling 
NGS approaches to functional validation in model 
systems will facilitate network mapping and pathway 
investigation in speech and language disorders, and 
ultimately in normal linguistic development.
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