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Abstract

Micro-indels (insertions or deletions shorter than 21 bps) constitute the second most frequent class of human gene
mutation after single nucleotide variants. Despite the relative abundance of non-frameshifting indels, their
damaging effect on protein structure and function has gone largely unstudied. We have developed a support
vector machine-based method named DDIG-in (Detecting disease-causing genetic variations due to indels) to
prioritize non-frameshifting indels by comparing disease-associated mutations with putatively neutral mutations
from the 1,000 Genomes Project. The final model gives good discrimination for indels and is robust against
annotation errors. A webserver implementing DDIG-in is available at http://sparks-lab.org/ddig.

Background

The largest class of human gene mutation is the single
nucleotide variant (SNV) which comprises approximately
67% of known pathological mutations [1]. This is followed
by microinsertions and microdeletions (micro-indels of
<20 bp) which together comprise approximately 22% of
known pathological mutations [2]. In addition, with the
broad implementation of next generation sequencing tech-
nology in genetic studies, several million polymorphic
micro-indels have been identified and analyzed in the
human genome [3-7]. Many more genetic variants, includ-
ing micro-indels, are currently being discovered at an
unprecedented rate. Obviously, it is impractical to examine
the impact of each variant on biological function individu-
ally. Hence, there is a critical need for effective bioinfor-
matics tools that are capable of distinguishing potentially
disease-causing variants from those that are functionally
neutral.
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Most available tools for prioritizing genetic variants are
however limited to non-synonymous SNVs. Examples are
SIFT [8], POLYPHEN [9], and MutPred [10] (for recent
reviews, see [11-15]). These tools are not however applic-
able to indels because indels change the number of
nucleotides in the gene and hence may be expected to
have a much greater impact on molecular function than
single nucleotide substitutions. There are two main types
of indel within exons: frameshifting (FS) and non-frame-
shifting (NFS). NES-indels insert/delete multiples of three
nucleotides leading to the addition or removal of specific
amino-acid residues at the indel site. FS-indels, on the
other hand, insert/delete a discrete number of nucleotides
that are indivisible by three and therefore alter the entire
reading frame resulting in either a completely different
amino-acid sequence C-terminal to the indel site, or pre-
mature termination of translation. Two bioinformatics
methods were recently designed to discriminate between
functional and non-functional FS-indels [16,17] and non-
sense mutations (premature stop codons) [16]. However,
to our knowledge, there is no technique available that is
capable of analyzing NFS-indels. Methods for interrogat-
ing FS-indels would not be applicable to NFS-indels
because FS-indels modify the entire amino-acid sequence
C-terminal to the indel site (unless a second indel were to
exist), whereas NFS-indels simply alter the amino-acid
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sequence at the indel site. Such a technique for NFS-indel
prioritization is urgently required because NFS-indels con-
stitute a significant fraction of all exonic indels (theoreti-
cally, it is about one-third). In practice, we found that only
26% of 9,327 exonic micro-indels are NFS indels in the
1,000 Genomes Project data [18].

In this paper, we have developed a method that we have
termed DDIG-in (Detecting DIsease-causing Genetic var-
iants due to microinsertions/microdeletions) to prioritize
NFS-indels by comparing disease-causing indels from the
Human Gene Mutation Database (HGMD) [1] with puta-
tively neutral NFS-indels from the 1,000 Genomes Project
[18], respectively. We developed and examined a total of
58 sequence- and structure-based features of indel sites
and found that the feature based on predicted unstruc-
tured regions by disorder predictor SPINE-D [19] was the
most discriminating one. This feature can, on its own,
achieve a value of 0.56 for the Matthews Correlation
Coefficient (MCC), and 0.82 for the area under the recei-
ver-operating characteristic (ROC) curve (AUC). We
developed two separate support vector machines (SVM)
methods for NFS-microdeletions and NFS-microinsertions
that were 10-fold cross-validated and independently tested
on microinsertions and microdeletions, respectively. A
similar level of accuracy between independent testing and
10-fold cross-validation indicates not only the robustness
of our training procedure but also a similar deleterious
impact of NFS microdeletions and microinsertions. Of the
58 features tested (listed in Table 1), nine features were
selected by maximizing the discriminatory roles for detect-
ing disease-causing NFS microinsertions and microdele-
tions in a non-redundant dataset of micro-indels. Our
DDIG-in method received further confirmation from the
observation that NFS-indel variants with higher predicted
disease-causing probabilities were characterized by lower
average minor allele frequencies in the general population
(based on data from the 1,000 Genomes Project).

Table 1 List of all features considered.
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Results

Single feature performance

We first examined the ability of a single feature to discri-
minate between disease-causing and neutral NES-indels.
Table 2 compares the top five performing features for
microdeletions and microinsertions, separately, based on a
half-window size of 2 (nyindow = 2). A more complete list
can be found in Additional file 1, Tables S1 (deletion) and
S2 (insertion). Similar results were obtained with different
window sizes (see Discussion). The results indicated that
the top two performing features for microinsertions and
microdeletions were both the same (disorder and solvent
accessible surface area). This was followed by DNA con-
servation or effective number of homologous sequences
aligned to residues instead of gaps. Both features represent
evolutionary conservation scores but at the nucleotide and
amino-acid residue levels, respectively. The effective num-
ber of homologous sequences aligned to amino-acid resi-
dues can be regarded as the conservation of amino-acid
sequence position (not aligned to microdeletion or micro-
insertion regions). The fifth most discriminative feature
was predicted sheet probabilities for microdeletions and
transition probabilities between microinsertion and match
for microinsertions. Inspection of Table 2 reveals that a
single disorder feature alone can achieve an MCC value of
0.56 and an AUC of 0.82. At this MCC value, it has 74%
precision and 85% recall (or sensitivity). Figure 1 depicts
the distributions of DNA conservation score, disorder
probability, and solvent accessible surface area (ASA) for
the disease-causing and putatively neutral microdeletions
(Figure 1 top) and microinsertions (Figure 1 bottom),
respectively. It is clear that the disease-causing NFS-indels
occur more frequently within regions characterized by a
greater degree of evolutionary conservation at the nucleo-
tide level, lower disorder probability (structural regions),
and lower ASA (buried core regions). The results sum-
marized in Table 2 and Figure 1 support the view that

Features Description

Nucleotide level

Microdeletion/microinsertion
positions (2)

DNA conservation scores (3) Maximum, minimum, average
Protein level

Evolution feature (30)

Distances to nearest 5" and 3’ splicing positions

Maximum, minimum, average values (7 transition probabilities between match (M), microdeletion (D), and

microinsertion (I) (MM, MI, MD, IM, 1l, DM, DD), 3 effective numbers of match/microinsertion/microdeletion)

Length (4)

AS (1)

Disorder score (3) Maximum, minimum, average
Secondary structure (12)

Accessible surface area (3) Maximum, minimum, average

Protein length, Microdeletion/microinsertion length, Distances to terminals
The indel-induced change to the HMM match score

Maximum, minimum, average probability (C, H, E), Predicted secondary structure (C, H, E)
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Table 2 Top five performing features for microdeletion and microinsertion discrimination.

Features mcc® AuUC® Precision Recall
Deletion

Disorder (Min, Ave, Max) 0.558, 0.557, 0.551 0.824, 0.825, 0.818 74%, 74%, 73% 859%, 85%, 84%
ASAS (Min, Ave, Max) 0.542, 047, 0.302 0.81, 0.781, 0.659 73%, 71%, 68% 88%, 81%, 57%
DNA conservation (Max, Ave, Min) 0468, 0.367, 0.144 0.781, 0.742, 0,561 68%, 72%, 66% 79%, 71%, 23%
Neff® (Min, Ave, Max) 0449, 0439, 043 0.735, 0.749, 0.729 68%, 66%, 67% 85%, 87%, 85%
Probability of sheet (Max, Min Ave) 0.32, 0.305, 0.284 0.678, 0658, 0.632 69%, 69%, 64% 60%, 53%, 51%
Insertion

Disorder (Min, Max, Ave) 0.556, 0.546, 0.545 0.813, 0.816, 0.80 78%, 80%, 79% 75%, 74%, 75%
ASAS (Min, Ave, Max) 0.501, 0454, 0317 0.80, 0.78, 0.670 71%, 78%, 71% 859, 65%, 52%
Neff ¢ (Min, Ave, Max) 0467, 0455, 0438 0.751, 0.747, 0.742 68%, 68%, 67% 869, 85%, 84%
DNA conservation (Max, Ave, Min) 0453, 0422, 0.234 0.758, 0.752, 0.597 72%, 74%, 76% 75%, 65%, 27%
Transition probability of microinsertion to match (Min) 0372 0.708 72% 62%

Note: Max, min, and ave are arranged in the order of MCC values.
ASA, Solvent accessible surface area; AUC, Area under the curve; MCC, Matthews correlation coefficient; Neff, the number of effective homologous sequences
aligned to residues, irrespective of residue type.

disruption of protein structure (and hence protein func-  SVM for microdeletions only

tion) is the single most important reason why the NFS-  To combine different features for improving indel discri-
indels are deleterious from the various features examined.  mination, we first employed support vector machines for
Similar top-ranked features for microdeletions and micro-  the microdeletions. The microdeletion database included
insertions suggest that a single predictive method may be = 1,998 disease-causing and 1,944 neutral NFS-indels.
developed for microinsertions and microdeletions When all 58 features (listed in Table 1 and described in

combined. Methods) were employed, LIBSVM achieved an MCC
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Figure 1 Distributions of the average DNA conservation score from phyloP (phylogenetic P values) (left), the average solvent
accessible surface area (ASA, middle), and the average disorder probability (right) of disease-causing (red) and neutral (blue) indels
(microdeletions (top panel) and microinsertions (bottom panel)).
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value of 0.682, an accuracy of 84% and an AUC of 0.90
by 10-fold cross-validation. To avoid overtraining, and
remove redundant features, we utilized a greedy feature
selection method (see Methods) and selected 10 features
as shown in Table 3. They were minimum disorder,
maximum DNA conservation, microdeletion length,
minimum ASA, average HHBIits match-to-microdeletion
transition probability, the minimum effective number of
aligned sequence to amino-acids, the distance to the
nearest downstream splice site, maximum ASA, indel-
induced change to matching score, and average ASA.
The MCC and AUC values for this reduced feature set
were 0.675 and 0.90, respectively. The precision and
recall rates were 81% and 89%, respectively. The ROC
curve from the 10-fold cross-validated result of the
10-feature model was compared to the results obtained
from single features in Figure 2 (top panel). We tested
the above models on the microinsertion dataset. We
were able to treat the microinsertion dataset as a quasi-
independent test set because only 21 proteins (from 743
proteins) harbored microinsertions and microdeletions at
the same location. The full 58-feature model yielded an
MCC value of 0.59, an accuracy of 74%, a precision of
82%, a recall of 76%, and an AUC of 0.84. By comparison,
the above 10-feature model yielded an MCC value of
0.654, an accuracy of 83%, a precision of 82%, a recall of
85%, and an AUC of 0.86. This result is indicative of the
same highly discriminating power of the microdeletion-
trained model for microinsertions and highlights the
importance of feature selection to avoid overtraining.
Quantitatively similar behavior is observed in the preci-
sion-recall curve (Additional file 1, Figure S1).

SVM for microinsertions only

In a similar vein, we applied SVM to perform 10-fold
cross-validation on the microinsertion set and employed

Table 3 List of selected features for different training sets
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the greedy feature selection to remove redundant features
and avoid overtraining. This yielded a total of eight best
performing features listed in Table 3. Three features (the
minimum disorder probability, the DNA conservation,
and indel-induced change to HMM match score) were
the same as those in the 10-feature model for microdele-
tions. This eight-feature model achieved an MCC of 0.71,
an accuracy of 86%, a precision of 85%, a recall of 86%,
and an AUC of 0.88. This may be compared to 0.654 for
MCC, 83% for accuracy, 82% for precision, 85% for recall,
and 0.86 for AUC, the independent test result for the 10-
feature model trained on the microdeletion dataset. The
10-fold cross-validation is more accurate than the inde-
pendent test, in all probability due to the smaller size of
the microinsertion dataset (only 481 and 446 disease-
causing and putatively neutral microinsertions available
for this analysis).

Application of this eight-feature model to the microdele-
tion dataset as an independent test set yielded an MCC of
0.64, an accuracy of 82%, a precision of 78%, a recall of
89%, and an AUC of 0.89. This result was comparable to
0.675 for MCC, 84% for accuracy, 81% for precision, 89%
for recall, and 0.90 for AUC based on thel0-fold cross-
validation with 90% microdeletions as the training set for
the 10-feature model. The ROC curve for microinsertions
given by the eight-feature model (10-fold cross-validation)
is compared to the ROC curves from single features of dis-
order and DNA conservation and the independent test
result from the 10-feature model trained on microdele-
tions in Figure 2 (bottom panel). Essentially the same
result is obtained in the precision-recall curve (Additional
file 1, Figure S2).

SVM for both microinsertions and microdeletions
The high discriminatory power of the microdeletion-
trained model for microinsertions (and vice versa)

Deletions Insertions indels Non-redundant
indels
Disorder(min) Disorder(min) Disorder(min) Disorder(min)
DNA conservation(max) DNA conservation DNA conservation(max) DNA conservation(max)
(max)
Deletion length P(m-i)¢ (min) ASY ASY
ASA® (min) ASe Neff“(ave) Neff“(min)
P(m-d)°(ave) P(m-i)° (ave) indel length ASA® (ave)
Neff<(min) Disorder(ave) Distance to the nearest splicing site indel length
(upstream)
Distance to the nearest splicing site Helical probability(max) ASA? (max) ASA? (max)
(downstream)
ASA%(max) P(m-m)f(ave) Neff<(min) P(m-m)f(max)
ASY DNA conservation(ave)
ASA(ave)

2ASA, solvent accessible surface area. °P(m-d), match-to-deletion transition probability. “Neff: the number of effective homologous sequences aligned to residues.
9AS, indel-induced change to alignment score. °P(m-i), match-to-insertion transition probability. P(m-m), match-to-match transition probability.
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suggested that it should be possible to treat microinser-  microdeletions as shown in Table 3. This set of features
tions and microdeletions as a single dataset. The same yielded 0.670 for MCC, 83% for accuracy and 0.89 for
feature selection procedure yielded a total of eight best- AUC. When we examined microdeletions and microin-
performing features for combined microinsertions and  sertions separately, the results were 0.671 for the MCC,
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84% for accuracy, and 0.89 for AUC in the case of
microdeletions, 0.663 for the MCC, 83% for accuracy,
and 0.88 for AUC in the case of microinsertions. The
ROC curves given by the SVM model trained by both
microinsertions and microdeletions yielded similarly
accurate ROC curves given by independent tests for
microdeletions or microinsertions, as shown in Figure 2.
This further confirms the robustness of the SVM model.

Effect of homologous sequences

The above results are based on datasets which had not
had any homologous sequences removed. If a method is
trained on one sequence and tested on a highly homolo-
gous sequence, the resulting accuracy estimate of the
method may be inflated because of the similarity of the
two sequences. The presence of homologous sequences
may also bias training toward a particular type of pro-
tein. To explore such a possible effect, we reconstructed
the SVM model based on the non-redundant set of
NEFS-indels (2,207 disease-causing and 2,241 neutral) in
which all protein sequences exhibited <35% sequence
identity between each other (see Methods). For this
non-redundant set, the greedy-feature selection yielded
nine best-performing features as shown in Table 3 and
the final model with a 10-fold cross-validated MCC
value of 0.684, accuracy of 84% precision of 81%, recall
of 89%, and an AUC of 0.886. Application of this model
back to the set without removing homologous sequences
yielded an MCC of 0.71, an accuracy of 85%, precision
of 81%, recall of 92%, and an AUC of 0.91. This result
represented a marked improvement over 0.67 for MCC,
83% for accuracy, and 0.89 for AUC by training and
cross-validating the same set. This confirms the impor-
tance of removing homologous proteins prior to training
our SVM model. This SVM model is provided in Addi-
tional file 2.

Minor allele frequency

We obtained allele frequencies for all putatively neutral
NEFS-microdeletions and -microinsertions derived from
the 1,000 Genomes Project data. The allele frequency in
the population should in general reflect the fitness of that
allele with respect to its intended biological function
[20-24]. Figure 3 compares average predicted disease
probabilities with average allele frequencies grouped into
20 bins (bin size, 0.05). The predicted disease probabil-
ities are based on the 10-fold cross-validation by the
nine-feature model trained on both microinsertions and
microdeletions after removing homologous sequences.
As expected, there was a strong negative correlation (cor-
relation coefficient, -0.84), indicating that NFS-indels
with higher predicted disease-causing probabilities tend
to occur with lower allele frequencies in the general
population.

Page 6 of 13

Discussion

We have developed a method, termed DDIG-in, for
prioritizing NFS-indels by predicting the disease-causing
probability for a given micro-indel. The method is based
on nucleotide and amino-acid sequences and predicted
structural features of proteins. The result suggests that
highly accurate and robust prediction for both microin-
sertions and microdeletions can be made with only nine
features. They are minimum disorder score, maximum
DNA conservation score, the indel-induced change to
the HMM alignment score, minimum effective number
of aligned sequence to amino acids, average ASA, micro-
insertion/microdeletion length, maximum ASA, maxi-
mum HHBIits match-to-match transition probability, and
average DNA conservation score. Interestingly, predicted
ASA and DNA conservation are employed twice, once as
the average value and a second time as the maximum
value for the entire NFS-indel region. The difference
between these two ASA or DNA conservation features
measures the fluctuation of ASA or conservation for the
indel region. The method was examined by 10-fold
cross-validation as well as by an independent test. The
consistency between 10-fold cross-validations and inde-
pendent tests (84-85% for accuracy, 0.88-0.90 for AUC)
supports the robustness of the final method developed.

One point to consider is that the most discriminating
feature was predicted disordered (or structured) regions
by SPINE-D. As Table 2 shows, the disorder feature
alone can achieve an MCC value of 0.56 for both micro-
insertions and microdeletions. Although predicted disor-
der probabilities have previously been found to be useful
in SNP discrimination [10,25], with disease-causing mis-
sense mutations being shown to be less likely to occur
within disordered regions [26], its importance has never
before been shown to be so prominent. This is probably
due, at least in part, to the improvement of SPINE-D
over previous algorithms [19]. It may also suggest the
uniqueness of NFS-indel classification. This result is not
unexpected because fully disordered regions (disorder
probability, approximately 1) are structurally flexible and
hence more permissive of modification by microinsertion
or microdeletion as long as functional residues within the
disordered regions remain intact. Indeed, we found that
binding sites at intrinsically disordered regions of pro-
teins are often located in semi-disordered regions
(regions with a disorder probability of approximately 0.5)
[27], consistent with near equal probability of disease-
causing or neutral NFS-indels at disorder probability of
approximately 0.5 in Figure 1.

Here, we assumed from the outset that the microdele-
tion and microinsertion variants identified during the
course of the 1,000 Genomes Project are neutral. Although
this assumption is not unreasonable, it should be appre-
ciated that the training set may contain false negatives,
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especially for some late-onset disorders. To examine the
effect of this, we removed those neutral variants with a
minor allele frequency (MAF) of <2% and examined the
effect of the removal of those variants on the accuracy and
training of our NFS-indel discriminatory tool. This yielded
1,609 neutral cases plus 2,207 positive cases from the non-
redundant set. The 10-fold cross-validation with the same
nine features, but retrained without indels with a MAF of
<2%, yielded an MCC of 0.70, an accuracy of 85%, and an
AUC of 0.883. By comparison, application of the original
nine-feature model (trained with neutral indels with a
MATF of <2%) to the set of neutral indels without a MAF
of <2% yielded an MCC of 0.74, an accuracy of 87%, and

an AUC of 0.92. The fact that the nine-feature model
trained without MAF <2% indels was less accurate than
the nine-feature model trained with MAF <2% indels sug-
gests that including MAF <2% indels (which potentially
contained false negatives) facilitated machine learning. In
other words, potential false negatives within the small fre-
quency putatively neutral NFS-indels did not adversely
affect SVM training. This is supported by strong negative
correlations between the MAF and the disease-causing
probability (Figure 3).

To further examine the effect of potential annotation
errors in our datasets, we randomly introduced 5% or
10% errors to nine-folds by assigning neutral to disease-
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causing and disease-causing to neutral indels and testing
the method for the remaining one fold. This was
repeated 10 times. We also randomly introduced 5% or
10% errors 10 separate times to obtain an average effect.
As described above, the 10-fold cross-validation with the
same nine features (Table 3) but retrained without
indels with a MAF of <2% yielded an MCC of 0.696.
Adding 5% and 10% errors to nine training folds yielded
the average MCC values for the test set of 0.684 and
0.674, respectively. This small change in MCC values
due to 5% to 10% errors confirms that our method is
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robust against potential assignment errors in the train-
ing set.

Another way to examine the robustness of a method
is to test its dependence on various parameters. Figure 4
shows the Matthews correlation coefficient as a func-
tion of SVM gamma and cost parameters and the half-
window size for the NFS-indel dataset for the case
when all features were employed. It shows that MCC
values change a little for the entire range of nyindow
from 0 to 7 and for a large range of gamma and cost
parameters.
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Figure 4 Ten-fold cross-validated Matthews correlation coefficient for the NFS-indel set as a function of SVM gamma and cost
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Recently, Kumar et al. [28] found that most commonly
used tools for non-synonymous SNV classification yield
high false positive rates for ultra conserved sites. To
examine the dependence of the accuracy of our method
upon conservations of indel sites, we calculated conserva-
tion scores according to relative entropy (RE) [29]

20 .
[= 100 Zi= \Pi log (IC)11>] where Pj is the probability

1
of amino acid types at a sequence position obtained from

PSI-BLAST [30], and q; is the background probability
from the blosum62 matrix [31]. We divided our dataset
into three portions (high, median, low) according to the
average relative entropy of deleted residues or two resi-
dues around the insertion position (RE>150, 70<RE<150,
RE<70). As in Kumar et al. [28], we also observed an ele-
vated false positive rate at highly conserved sites (33%),
relative to poorly conserved sites (14%). Interestingly, the
true positive rate at highly conserved sites is also higher
(95% at high RE sites versus 72% at low RE sites). Thus,
the overall performance of our method is not strongly
dependent upon conservation of indel sites. The MCC
values are 0.67, 0.63 and 0.58 for high, median and low
RE indels, respectively. The relative independence of our
method on the conservation of indel sites reflects the fact
that sequence conservation is not the dominant feature
in our indel discrimination technique. It should be noted
that the threshold for indel discrimination can be modi-
fied for high RE sites to reduce the somewhat elevated
false positive rate.

It is worthy of note that the indel length is one of the
top features selected by SVM. This is reasonable
because longer indels will likely have greater impact
upon protein structure and function. However, it could
also be due to bias in our datasets because, empirically,
the majority of indels involve short lengths of one or
two residues in both our datasets, a reflection of the
inherent bias of the underlying mutational mechanism
in vivo. Such an unbalanced dataset renders size-con-
trolled or stratified sampling impossible. Thus, to deter-
mine whether the length dependence is a result of
dataset bias or is instead of true functional origin would
require further studies employing much larger datasets
for both disease-causing and neutral indels. Neverthe-
less, the effect of this feature on the overall accuracy is
small. Removing this feature only decreases the MCC
value from 0.684 to 0.664 for our non-redundant indel
sets.

In addition to the features listed in Table 1 we also
performed a test for the usefulness of biochemical prop-
erties of amino acid residues such as residue size and
hydrophobicity scale for indel discrimination. This is in
part because such features have been found to be effec-
tive in protein secondary structure prediction [32,33].
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We examined seven representative physical parameters
including a steric parameter (graph shape index), hydro-
phobicity, volume, polarizability, isoelectric point, helix
probability, and sheet probability [32,33]. None of these
features were found to further improve the MCC value
for indel discrimination.

This work is consistent with various studies that have
examined the sequence context of microdeletions and
microinsertions. These studies found that indels
occurred non-randomly and were highly influenced by
the local DNA sequence context [2,34,35]. This probably
accounts for the success of our algorithm in NFS-indel
classification based upon local sequence and structural
information. Furthermore, microinsertions and microde-
letions exhibit strong similarities in terms of the charac-
teristics of their flanking DNA sequences, implying that
they are generated by very similar underlying mechan-
isms [2]. Again, this accords with our ability to design a
single tool capable of discriminating between microdele-
tions and microinsertions of pathological importance
and neutral microdeletions/microinsertions.

This study focused on NFS-indels only because FS-
indels would require a quite separate algorithm to effect
their classification. Such an algorithm would require fea-
tures based on the entire region after the indel site, rather
than simply the local region around the indel site. This is
because the frame-shift in FS-indels results either in a
completely different amino-acid sequence C-terminal to
the indel site or premature termination of translation.
Expansion of DDIG-in so as to include FS-indels is how-
ever in progress. In the meantime, our sequence- and
structure-based tool will complement two recently devel-
oped methods [16,17] that are based on information
derived only from nucleotide and amino-acid sequences.
In addition to extension to cover FS-indels, we intend to
incorporate new features other than sequence- and struc-
ture-based features. Other such features (for example,
predicted functional regions) may well be useful in
further improving the micro-indel classification as was
previously achieved for SNP classification [11-14].

Materials and methods

Dataset of positive indels

The positive (disease-causing) dataset was obtained from
the HGMD (HGMD Professional v. 2012.2) [1]. Initially,
a total of 25,384 indels were identified after mapped to
CCDS (20110907 version). After excluding frameshift
(FS) indels and those indels that were located in an
intron or at a stop codon, we obtained a dataset of
2,479 exonic disease-causing NFS-indels in 743 protein-
coding genes. Of these, 1,998 and 481 were microdele-
tions and microinsertions, respectively. To examine the
possible effect of homologous sequences on training our
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bioinformatics method, we also constructed a non-
redundant dataset lacking homologous sequences that
had >35% sequence identity between any pair of
sequences. This was accomplished by pairwise sequence
alignment and clustering by BlastClust [30] and only one
representative sequence was chosen from each cluster. A
35% protein sequence identity cutoff was employed
because this cutoff lies at the boundary that distinguishes
close homologs from remote homologs [36,37]. This
removal of homologous sequences yielded 1,762 micro-
deletions and 445 microinsertions from 680 protein-
coding genes. We also examined the overlap between
microinsertion and microdeletion datasets. We consid-
ered that a microinsertion and a microdeletion were
located at the same site if at least one of the two nearest
neighboring residues flanking the inserted residues in the
microinsertion contributed to the deleted residues in the
microdeletion. This definition yielded 21 of 743 proteins;
they were CCDS13330.1, CCDS8539.1, CCDS13989.1,
CCDS5313.1, CCDS2145.1, CCDS30981.1, CCDS747.1,
CCDS4306.1, CCDS13858.1, CCDS5773.1, CCDS6392.1,
CCDS1390.1, CCDS11892.1, CCDS14083.1, CCDS10
458.1, CCDS12198.1, CCDS2463.1, CCDS11453.1, CCDS
11127.1, CCDS1071.1, and CCDS45080.1. The minimal
overlap suggested that the microinsertion and microdele-
tion sets could to all intents and purposes be treated as
independent test datasets against each other.

Dataset of putatively neutral indels

The putatively neutral dataset was retrieved from the
micro-indel variants identified during the 1,000 Gen-
omes Project (20101123 release), in which apparently
healthy individuals from five major populations were
sequenced [38]. As with the HGMD data, the indels
were located using hgl9 as the reference genome. From
9,327 exonic indels (excluding more than 3 million
intronic indels), we identified a total of 2,413 NFS-indels
of which 1,944 were microdeletions and 469 were
microinsertions. These 2,413 NFS-indels were derived
from 1,929 protein-coding genes after excluding FS-
indels and those indels that were located in an intron or
at a stop codon. Removal of homologous sequences
(based on a protein sequence identity cut-off of 35%),
yielded 1,795 microdeletions and 446 microinsertions (a
total of 2241 neutral micro-indels) from 640 protein-
coding genes. Unlike the disease-causing NFS-indel
dataset, there was no overlap between the positions of
the microdeletions and those of the microinsertions in
this dataset. Minor allele frequencies were retrieved for
all 2,241 NFS-indels from the 1,000 Genomes Project.
Both datasets (with and without homologous sequences)
were employed to train and test our models to examine
the effect of homologous sequences. It should be noted
however that we cannot wholly exclude the possibility
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that a small subset of this putatively neutral dataset
could still be of functional importance (more in the Dis-
cussion section).

Structural and sequence features

We tested many features for their potential roles in
indel discrimination. These features are summarized in
Table 1 and are described in detail below.

Nucleotide sequence-level features

We examined the following nucleotide sequence-level fea-
tures as potential discriminators between disease-causing
and neutral NFS-indels: the distances from the indel site
to the nearest upstream and downstream splice sites and
the DNA conservation score derived from phyloP (phylo-
genetic P values) [39]. We examined the distances from
nearest splice sites because mutations near splice sites
have the potential to give rise to alternative splicing pat-
terns [40]. All DNA conservation scores downloaded from
[41]were based on multiple alignments of 45 vertebrate
genomes to the human genome. To calculate a DNA con-
servation score for a microdeletion, we considered all the
deleted bases (nge;) plus a fixed number of bases before
and after the deleted bases (the half-window size, n,indow)-
We obtained the average, minimum, and maximum DNA
conservation scores based on phylogenetic P values over
the specified bases around the deleted bases (that is, ng
+2Nyindow). FOr microinsertions, we considered the two
bases flanking the microinsertion plus a fixed number of
additional neighboring upstream and downstream bases
(that is, 2+2nyindow). The maximum, minimum and aver-
age conservation scores for 2+2ny;,q0w bases were also
obtained. These five nucleotide sequence-level features (2
distances+3x1 DNA conservation scores) were studied
here to assess their utility in indel classification.

Protein sequence-level features

We obtained features at the amino-acid sequence level
using a program called HHBIits that derives multiple pro-
tein sequence alignments based on profiles generated
from hidden Markov chain models (HMM) [42] (down-
loaded from [43]).This program compares two sequences
at the HMM profile level and searches for homologous
sequences from the UniProt sequence database. It is a
more sensitive technique than the sequence-to-profile
homolog search tool PSI-BLAST [30] commonly used in
classifications of non-synonymous SNVs (for example,
SIFT [8]) because HHBIits employs a position-dependent
gap penalty and calculates transition probabilities not
only between matches of two residues (that is, two resi-
dues from two sequences are aligned) but also between
other states (match to microdeletion, match to microin-
sertion, microdeletion to match, microinsertion to
match, microinsertion to microinsertion, and microdele-
tion to microdeletion). That is, there are a total of seven
position-dependent transition probabilities. In addition,
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for each position, we can obtain three effective numbers
of homologous sequences (n.g) aligned to microinser-
tion, to microdeletion and to amino-acid residues, irre-
spective of residue type. The maximum, minimum, and
average of all these amino-acid residue level properties
(3%(7+3)=30 features) were obtained for a specified
region. For the microdeletions, this region included
deleted residues plus several residues before and after
the deleted residues (ngej+2nyindow). FOr microinser-
tions, this region comprised the two nearest neighboring
residues flanking the inserted residues plus a fixed num-
ber of residues before and after these two residues (2+
2Nyindow)- In addition, we calculated a global protein
feature: the change to the HMM-HMM alignment score
by the whole protein sequence before and after the
microdeletion or microinsertion. We also examined
four features of microinsertion/microdeletion length,
protein length and distances to the protein amino and
carboxyl terminal ends. A total of 35 features (30+1+4)
were generated from protein sequences.

Protein structure-level features

The first protein structure-level feature was based on
amino acid sequence-based prediction of structured and
unstructured regions by a neural-network-based disor-
der predictor, SPINE-D [19]. We employed SPINE-D
because it is among the most accurate methods based
on benchmarks [19] according to the 9th Meeting for
Critical Assessment of Structure Prediction Techniques
(CASP 9, 2010) [19,44]. We examined the maximum,
minimum and average values of disorder probabilities
over the specified region described above (ngej+2nyindow
for microdeletion, 2+2nyinqow for microinsertion). In
addition, we obtained predicted secondary structures,
secondary structure probability, and solvent accessible
surface area for the same specified region from SPINE-
X [33]. SPINE-X has achieved 82% accuracy in second-
ary structure prediction [33] and 0.74 for the correlation
coefficient between predicted and measured solvent
accessible surface area (ASA) [45] based on large-scale
benchmark tests. As with the disorder feature, we
obtained the maximum, minimum, and average values
of predicted secondary probabilities in three states and
predicted real-value solvent accessibility over the speci-
fied region for microdeletions or microinsertions. We
also studied the fractions of three secondary structure
types over the same specified region. A total of 18 struc-
ture-based features (3x1 disorder, 3 fractions of second-
ary structure types, 3x3 secondary structure probability,
and 3x1 ASA) were generated for studies.

Parameter optimization for SVM

We employed LIBSVM (LIBSVM: a library for support
vector machines (SVM)) [46] to combine the features
listed above for NFS-indel classification. There are two
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parameters for SVM: a non-linear kernel of radial basis
function with a gamma parameter and the cost para-
meter (C) that allows a soft region for misclassification.
In addition, we employed a half-window size (nyindow)
to include several amino-acid residues before and after
the microdeletion/microinsertion site as defined above.
For example, a half-window size of 0 would contain all
residues deleted in a microdeletion and two residues
flanking the inserted residues for a microinsertion. To
reduce the number of parameters, a uniform widow size
was applied to all features requiring a window size. A
simple grid search was done with a grid of 2 ranging
from -5 to 15 for logC and ranging -15 to 3 for log
(gamma), and a window size ranging from 0 to 7. That
is, we searched for the parameters that yielded the high-
est Matthews correlation coefficient (MCC) for 10-fold
cross-validations (nine-fold for training and one- fold
for testing) while employing all features. We also exam-
ined the dependence of MCC values on C, gamma, and
Nyindow and found that MCC values change little across
a wide range of C, gamma, and nyingoyw values (see Dis-
cussion). This served to confirm the robustness of the
parameters we found.

Evaluation of overall performance

The overall performance of NFS-indel classifications was
assessed by the ROC curve and area under the ROC
curve (AUCQ) for training and test sets. In addition, we
also calculated recall (also called sensitivity) (TP/(TP+
EN)), precision (TP/(TP+FP)), accuracy (ACC= (TP+
TN)/(TP+FP+ FN+TN)), and Matthews correlation coef-
ficient MCC = (TP x TN — FP x FN)/\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
where TP, FP, TN, and FN denote true positives (cor-
rectly predicted disease-causing NFS-indels), false posi-
tives (neutral NFS-indels predicted to be disease-
causing), true negatives (correctly predicted neutral
NFES-indels), and false negatives (disease-causing NFS-
indels predicted to be neutral), respectively. The Mat-
thews correlation coefficient, 1 for perfect prediction
and 0 for random prediction, is a balanced measure of
true/false positives and negatives [44]. It served as the
key parameter for performance measurement.

Training and cross-validation

The training set (positive and putatively neutral datasets)
was randomly divided into 10 parts, nine of which were
used for training, the rest for testing. This process was
repeated 10 times (10-fold cross-validation). We per-
formed 10-fold cross-validation on SVM models for
microdeletions or microinsertions only, as well as for the
combined set of microdeletions and microinsertions.
Microinsertion and microdeletion datasets were also
used as independent test sets against each other in order
to evaluate the overall robustness of the classification
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technique employed. In other words, the methods trained
with the microinsertion set never ‘saw’ the microdeletion
dataset and vice versa.

Feature selections

To identify the most informative subset of features, a
previously described greedy feature selection algorithm
for SNV classification [47] was employed. This iterative
greedy algorithm starts with the feature shown to have
the highest discriminatory power (disease versus neutral)
based on the MCC value. The second feature was then
selected on the basis that the combination of the first
and the second features yielded the highest MCC value
among all combinations between the first and other fea-
tures. Similarly, the third feature was added to the first
two if the addition of the third feature further improved
MCC and the improvement was the largest obtained by
comparison with the other remaining features. The
iteration of adding an additional feature from the
remaining features was halted if the MCC value failed to
increase. Here, the MCC value was derived from the 10-
fold cross-validation.

Additional material

Additional file 1: Tables S1 and S2; Figures S1 and S2.
Additional file 2: The text file for the SVM model.
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