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Abstract

environments.

Background: The sinorhizobia are amongst the most well studied members of nitrogen-fixing root nodule bacteria
and contribute substantial amounts of fixed nitrogen to the biosphere. While the alfalfa symbiont Sinorhizobium
meliloti RM 1021 was one of the first rhizobial strains to be completely sequenced, little information is available
about the genomes of this large and diverse species group.

Results: Here we report the draft assembly and annotation of 48 strains of Sinorhizobium comprising five
genospecies. While S. meliloti and S. medicae are taxonomically related, they displayed different nodulation patterns
on diverse Medicago host plants, and have differences in gene content, including those involved in conjugation
and organic sulfur utilization. Genes involved in Nod factor and polysaccharide biosynthesis, denitrification and
type I, IV, and VI secretion systems also vary within and between species. Symbiotic phenotyping and mutational
analyses indicated that some type IV secretion genes are symbiosis-related and involved in nitrogen fixation
efficiency. Moreover, there is a correlation between the presence of type IV secretion systems, heme biosynthesis
and microaerobic denitrification genes, and symbiotic efficiency.

Conclusions: Our results suggest that each Sinorhizobium strain uses a slightly different strategy to obtain
maximum compatibility with a host plant. This large genome data set provides useful information to better
understand the functional features of five Sinorhizobium species, especially compatibility in legume-Sinorhizobium
interactions. The diversity of genes present in the accessory genomes of members of this genus indicates that
each bacterium has adopted slightly different strategies to interact with diverse plant genera and soil

Background

The rhizobia are symbiotic nitrogen-fixing bacteria that
form root and/or stem nodules on leguminous plants.
Within nodules rhizobia convert atmospheric dinitrogen
(N,) gas into ammonia, resulting in improved plant
growth and productivity, even under N-limiting environ-
mental conditions. These bacteria are among the largest
fixers of atmospheric N, gas in the biosphere and account
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for the deposition of nearly 100 to 195 teragrams per year.
The effective use of biological nitrogen fixation via appli-
cation of rhizobia leads to sustainable cropping systems
with a net positive impact on the environment [1]. Most
currently recognized legume-nodulating bacteria belong to
the o.-proteobacteria and are members of the genera Allor-
hizobium, Azorhizobium, Mesorhizobium, Rhizobium,
Sinorhizobium (renamed Ensifer), or Bradyrhizobium [2,3].
Recently, some members of the - and y-proteobacteria
have also been shown to nodulate legume plants [4].
Members of the genus Sinorhizobium are among the
most studied and first sequenced rhizobia. Sinorhizobium
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meliloti (previously Rhizobium meliloti and now Ensifer
meliloti) and its close relative Sinorhizobium medicae
induce the formation of root nodules on Medicago species,
including Medicago truncatula and Medicago sativa
(alfalfa) [5]. In contrast, Sinorhizobium saheli and Sinorhi-
zobium terangae form root and stem nodules with woody
leguminous plants, such as Sesbania or Acacia [6], while
Sinorhizobium fredii has a very wide host range, nodulat-
ing more than 79 plant genera representing all three sub-
families of the family Leguminosae. Although whole
genome sequences of some strains of S. meliloti, S. medi-
cae and S. fredii have been published [7-12], and many of
their genetic features have been well characterized, only a
limited number of strains of each species have been well
characterized at the genome level. Recently, Tian et al.
[12] reported the comparative genomics of nine strains of
S. fredii and Baily et al. [13] reported the population geno-
mics of 12 S. medicae strains analyzed using Roche 454
technology. Moreover, only limited comparative genomics
studies among each species exist and there are no reports
of genomic feature of other species of Sinorhizobium,
including the important symbionts of Sesbania/Acacia.
Most rhizobial nodulation genes (nod, noe, and nol) are
involved in the synthesis of host-specific lipochitinoligo-
saccharide (LCO) Nod factors essential for initial infection
[14]. Bacterial genes encoding various polysaccharides,
cyclic B-glucans, and type III, IV and VI secretion systems
are also involved in symbiosis and host specificity [15-17].
Most of the genes involved in symbiosis are located on
large self-transmissible megaplasmids (pSym), or within
large genomic symbiotic islands [18]. The megaplasmid
pSymA, which has the most symbiosis-related genes in S.
meliloti, is a more variable replicon than the chromosome
or pSymB in this bacterium [10]. Symbiosis-related genes
have previously been shown to be highly variable among
rhizobial species and strains [10,19] and acquired by via
horizontal gene- and plasmid-transfer events. This results
in gene replacement and rearrangements leading to gen-
ome plasticity [18] and recombination [12] and, ultimately,
specificity of symbiotic interactions with their legume
hosts. This suggests that gene content in Sinorhizobium
strains should vary among strains or species and these
alterations could influence their symbiotic phenotype on a
host plant. However, few comparative genomic studies
have focused on gene content or symbiotic function of
multiple strains within or between species of sinorhizobia.
Here we describe the assembly and annotation of the
whole genomes of 48 strains of Sinorhizobium described
previously [20], with primary focus on S. meliloti and S.
medicae. While we previously examined 44 of these gen-
omes to characterize population diversity at the single
nucleotide level and to determine the forces driving adap-
tive evolution, our overall goal here was to compare gene
content among a large number of strains within a single
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sinorhizobial species. This was done to better understand
functional features in each species and to identify symbio-
sis-associated genes contributing to symbiotic phenotypes
as part of large genome-wide association, SNP, and Hap-
map studies [20-22]. Here we show: 1) the genomic fea-
tures of each Sinorhizobium species; 2) the differences in
gene content between S. meliloti and the taxonomically
and symbiotically related species S. medicae; and 3) the
differences among strains and species in genes involved in
Nod factor biosynthesis, polysaccharide biosynthesis, pro-
tein secretion systems, anaerobic denitrification, and
organic sulfur utilization. We also report pair-wise ana-
lyses of symbiotic associations of these 46 S. meliloti and
S. medicae strains with 27 diverse M. truncatula genotypes
to better understand the relationship of symbiotic pheno-
type with bacterial genome content.

Results and discussion

General features of Sinorhizobium genomes

Annotated draft genome assemblies of 48 Sinorhizobium
strains comprising five genospecies - S. meliloti, S. medi-
cae, S. fredii, S. saheli and S. terangae - are presented here
(Table S1 in Additional file 1). These assemblies were gen-
erated from raw reads used previously to call SNPs in a
population genetics analysis [20]. A phylogenetic tree
based on 645 protein-coding genes (Figure 1) showed that
S. meliloti and S. medicae are more closely related to each
other than to three other species included in this study. A
phylogenetic tree based on the 16S rRNA gene sequence
(Figure S1 in Additional file 2) was similar to that shown
in Figure 1, but the bootstrap values did not support the
nodes to the extent of the tree made from protein coding
genes. Genome characteristics are summarized in Table
S2 in Additional file 1. Total genome sizes varied between
species and strains and ranged from 6.2 to 7.8 Mb. The
number of predicted protein coding sequences (CDSs;
6,436 to 8,858), and mean mole percentage G+C content
(61.0 to 63.5%) also varied among sequenced genomes
(Figure 2; Table S2 in Additional file 1). The mean percen-
tage G+C content of S. meliloti strains (61.8 to 62.2% for
all 32 strains) was greater than those seen in S. medicae
(60.9 to 61.1% for all 12 strains) (Figure 2). Genome sizes
and CDS counts varied greatly among strains in the same
species. While S. meliloti M270 had the largest genome
size (7.8 Mb) and number of CDSs (8,858) among all the
tested strains, the genome of S. sakeli USDA 4893 had the
smallest genome size (approximately 6.2 Mb) and highest
G+C content (63.5%). The genomes of S. fredii and S. ter-
angae were similar to those of S. meliloti or S. medicae,
respectively (Figure 2; Table S2 in Additional file 1).
Recently, Tian et al. [12] reported a comparative analysis
of nine S. fredii genomes and found that the average gen-
ome size was approximately 6.6 Mb, and consisted of a
large number of accessory genes likely acquired by



Sugawara et al. Genome Biology 2013, 14:R17 Page 3 of 19
http://genomebiology.com/2013/14/2/R17

S. terangae USDA4894
S. fredii USDA207) 100

S. fredii USDA205'
S. saheli USDA4893
MZZ] 100

M161

M1
M2
M58 99

S. medicae WSM419
Sinorhizobium KHSSbE

medicae KH53a

A321
KH36b
KH36¢
KH36d 100

M102

M195

HMO006-1
HMO007-12
KH16b

KH46b
HMO007-17|
HMO013-1

TO073

KH46¢

S. meliloti 1021
M210

M156 100

M249

M268
USDA1002
Sinorhizobium USDA[JJgé;'
meliloti N6B1

M162
M270

M30
HMO15—1F

100

M243
Rm41
T094-

KH48e

KH12gh
TOZ?} 100
KH30a

KH350~»

0.05

HMO007-10
M10
KH35b

R. leguminosarum WSM3125

100

Figure 1 Neighbor-joining tree based on concatenated sequences for 645 protein coding genes. Strains that were sequenced in other
studies are in bold font and type strains are in italic font. Support for splits was assessed using 1,000 bootstraps, and splits with less than 60%
support were collapsed to polytomies. For clarity, the bootstrap values are only shown for the deep branches. Bar indicates number of
substitutions per site.
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Figure 2 Three-dimensional plots of genome size, coding sequence number and GC content of the 48 Sinorhizobium strains

horizontal gene transfer. This is similar to what we report
here. All of the strains examined contained from two to
five plasmids as determined by Eckhart gel electrophoresis.

Gene contents in Sinorhizobium strains

To understand the pan-genome of Sinorhizobium more
deeply, 380,371 protein CDSs obtained from the 48 newly
sequenced genomes plus two reference strains (S. meliloti
1021 and S. medicae WSM419) were clustered using the
CD-HIT algorithm with a 70% sequence identity cut-off.
A total of 34,150 clusters were identified, and of these,
2,751 orthologs (8%) were identified in all 50 strains as the
Sinorhizobium core genome (Figure 3a). The remaining
variable 31,399 clusters were defined as the Sinorhizobium
accessory genome. Species-specific genes were identified
among the five tested species (Figure 3a).

Species core orthologous genes and strain-specific
unique genes within a given Sinorhizobium species were
examined in 33, 13, and 2 strains of S. meliloti, S. medicae,
and S. fredii, respectively (Figure 3b-d). In the S. meliloti
strains, 21,118 orthologous genes were identified from 33
strains, and of these, 4,680 orthologs were present in all
tested S. meliloti strains as the species core genome (Fig-
ure 3b). The number of unique genes in each S. meliloti
strain varied from 25 to 840 (Figure 3b). S. meliloti strain
M270 had the largest genome (7.8 Mb) and the largest
number (840) of unique genes. The M270 genome
uniquely contained well-correlated regions of the nopa-
line-type plasmid, pTiC58, found in the plant pathogen

Agrobacterium tumefaciens C58. This included complete
sets of trb genes (encoding type IV secretion system pro-
teins involved in conjugal transfer) and nopaline utilization
genes (n0c).

Functional features of the core and accessory
sinorhizobial genomes

To define possible differences in functions encoded by
the core and/or accessory genome in each species group,
the proportion of proteins in each COG (Clusters of
Orthologous Groups) category was plotted versus COG
function. Figure 4 shows that the core-genomes in each
Sinorhizobium species group were commonly enriched in
COG categories C, F, H, M, ], and V relative to those
seen in the accessory genomes. In contrast, accessory
genomes were commonly enriched in COG categories Q,
D, K, and L relative to those of the core genome. There
was no major difference in COG category proportion
between S. meliloti and S. medicae, but the abundances
of genes in category G (carbohydrate transport and meta-
bolism) in the accessory genomes were greater in both of
these species strains compared to those seen in other
sinorhizobia.

Functional differences between S. meliloti and S. medicae

While S. meliloti and S. medicae are taxonomically
related (Figure 1) with somewhat similar host ranges [5],
421 out of 4,680 S. meliloti core orthlogous genes were
not found in the tested 13 strains of S. medicae. Similarly,
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Figure 3 The pan-genome of Sinorhizobium. The flower plots and Venn diagrams illustrate the number of shared and specific (accessory)
genes based on clusters of orthologs. (a) Flower plot showing numbers of species-specific genes commonly found in each genome of each
species (in the petals), and Sinorhizobium core orthologous gene number (in the center). (b) Flower plots showing numbers of unique
orthologous genes in each S. meliloti strain (in the petals), and S. meliloti core orthologous gene number (in the center). (c) Flower plots
showing numbers of unique orthologous gene in each S. medicae strain (in the petals), and S. medicae core orthologous gene number (in the
center). (d) Venn diagram showing numbers of unique orthologous genes in each S. fredii strain, and S. fredii core orthologous gene number.

M161

396 out of 5,036 S. medicae core orthologous genes were
not found in the 33 tested strains of S. meliloti. Selected

metabolism, detoxification, and cellular process were spe-
cifically identified in the core genomes of each species. In

S. meliloti- or S. medicae-specific genes in each species
are shown in Table 1 and all species-specific genes are
presented in Tables S3 and S4 in Additional file 1. These
results show that genes involved in conjugation, C1

addition, S. meliloti specifically possesses genes encoding
a nitrate transporter (nrtABC), a nitrogen regulatory pro-
tein (n¢rR), and a succinoglycan biosynthetic gene (exol;).
In contrast, S. medicae species specifically contain many
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arylsulfatase genes (Figure S2 in Additional file 2) asso-
ciated with transporter genes. Of particular interest is the
prevalence of genes involved in organic sulfur utilization
in S. medicae, which are also present and expressed in
Bradyrhizobium japonicum when in symbiosis with soy-
bean [23]. This is likely to be of functional importance as
organic sulfur in the form of sulfur esters and sulfonates
constitute approximately 95% of the total sulfur in aero-
bic soils [24].

Nod factor biosynthetic genes

Most nodulation genes (nod, noe, and nol) are involved in
the synthesis of host-specific lipo-chito-oligosaccharide
(LCOs) Nod factors that are essential for initiation of the
symbiosis [14]. Nearly all rhizobia contain the common
nod genes [25], which encode Nod factors secreted from
rhizobial cells [14,26]. Figure 5 shows a physical map of
Nod factor biosynthesis genes in all five Sinorhizobium
species. The S. meliloti and S. medicae strains contain a
nodABCIJ operon that is closely linked to nodD; (encod-
ing positive transcriptional regulator of nod genes),
whereas nodD; of S. fredii, S. saheli and S. terangae is
not closely linked to the common nod genes. S. meliloti
and S. medicae had three copies of nodD (nodD;-3) while
the other sinorhizobia examined had two copies of nodD.
Interestingly, the annotated nodN (encoding a dehydra-
tase enzyme) was found to be fragmented in many strains
of S. medicae. The genome of the S. medicae WSM419
contained noe/,K,, whereas S. meliloti KH46b had two
copies of the noe/K genes and a noeLnolK gene cluster

involved in the fucosylation of the Nod factors at the C-6
position. Since both WSM419 and KH46b strains did not
contain a nodZ homolog, our data suggest that these
strains may not fucosylate their Nod factors. In contrast,
S. saheli and S. fredii strain USDA 207 possessed a
complete set of noeJK-nodZ-noeLK genes. The nodZ in
S. fredii is also found in B. japonicum and is involved in
host-specific nodulation of soybean [27].

The sequenced S. saheli and S. terangae strains con-
tained the nodSU genes, which are involved in the N-
methylation and 6-O-carbamoylation of Nod factors [28],
inserted between nodABC and nodIJ genes. In addition,
nolO and noel, which are involved in 3-O-carbamoylation
and 2-O-methylation of Nod factors, respectively, were
localized downstream of the nodABCIJ cluster in only the
genome of S. fredii strains. This organization was similar
to that reported for the broad host range Rhizobium sp.
strain NGR234 [29], but the 70lO gene was fragmented in
the closely related strains USDA 205 and 207. In contrast,
the S. meliloti and S. medicae strains contained nodGP,;Q);,
nodM and noeAB, and S. saheli had a noeCHOP gene clus-
ter, and only S. fredii had a noel gene.

Strains of S. meliloti are known to synthesize sulfated
Nod factors via two copies of nodPQ (producing the sul-
fate donor molecule PAPS) and a nodH sulfotransferase.
As PAPS is also a central metabolite for sulfate assimila-
tion, S. meliloti has additional copies of genes for sulfur
metabolism and uses nodPQ exclusively for sulfation of
Nod factor. In contrast, S. saheli and S. fredii had only
one copy of nodPQ and did not contain nodH, consistent
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Table 1 Selected S. meliloti- or S. medicae-specific genes among both species®

Species Gene ID° Gene name Function

Conjugation

S. meliloti SMa0929 traG Conjugal transfer coupling protein TraG

S. meliloti SMa0934 traA; Conjugal transfer protein TraAl

S. meliloti SMa1302 virB; Type IV secretion protein VirB11

S. meliloti SMa1303 virB;o Type IV secretion protein VirB10

S. meliloti SMa1306 virBo Type IV secretion protein VirB9

S. meliloti SMa1308 virBg Type IV secretion protein VirB8

S. meliloti SMa1311 virBs Type IV secretion protein VirB6

S. meliloti SMa1313 VirBs Type IV secretion protein VirB5

S. meliloti SMa1315 virB, Type IV secretion protein VirB4

S. meliloti SMa1318 VirB; Type IV secretion protein VirB3

S. meliloti SMa1319 virB> Type IV secretion protein VirB2

S. meliloti SMa1321 virB; Type IV secretion protein VirB1

S. meliloti SMa1323 IctA Negative transcriptional regulator of vir genes

S. medicae Smed_5050 traD Conjugal transfer TraD family protein

S. medicae Smed_5051 traC Conjugal transfer protein TraC

S. medicae Smed_5375 tral Acyl-homoserine-lactone synthase

S. medicae Smed_5377 trbC Conjugal transfer protein TrbC

S. medicae Smed_5387 traR Transcriptional activator protein TraR

S. medicae Smed_5388 tram Transcriptional repressor TraM

S. medicae Smed_5391 traB Conjugal transfer protein TraB

Nitrogen metabolism

S. meliloti SMa0228 gdhA Glutamate dehydrogenase

S. meliloti SMa0581 nrtC Nitrate transport ATP binding protein

S. meliloti SMa0583 nrtB Nitrate ABC transporter permease

S. meliloti SMa0585 nrtA Nitrate ABC transporter substrate-binding protein
S. meliloti SMa0981 ntrR, NtrR2 transcription regulator

S. meliloti SMc01521 ntrR; Nitrogen regulatory protein

S. medicae Smed_1742 fnrN Nitrogen fixation regulatory protein

Organic sulfur utilization

S. medicae Smed_1128 ssuB-like Aliphatic sulfonates import ATP-binding protein
S. medicae Smed_1129 ssuA-like Aliphatic sulfonates family ABC transporter, periplasmic ligand-binding protein
S. medicae Smed_1130 atsA-like Arylsulfatase

S. medicae Smed_3146 atsA-like Arylsulfatase

S. medicae Smed_3147 SSUA Aliphatic sulfonates family ABC transporter, periplasmic ligand-binding protein
S. medicae Smed_3148 ssuB Sulfonate ABC transporter, ATP-binding protein
S. medicae Smed_3150 ssuC Alkanesulfonate transport protein; membrane component
S. medicae Smed_3151 tauC-like Putative taurine transport system permease protein TauC
S. medicae Smed_2065 atsA Arylsulfatase

Detoxification

S. meliloti SMb21552 aacCy Aminoglycoside 6-N-acetyltransferase

S. meliloti SMb20505 tixG Trifolitoxin immunity protein

S. meliloti SMc02649 arsC Arsenate reductase protein ArsC

S. meliloti SMc02650 arsH Arsenical resistance protein ArsH

S. medicae Smed_0125 aacA Aminoglycoside N(6')-acetyltransferase type 1

S. medicae Smed_2292 aphE Streptomycin 3"-kinase

S. medicae Smed_5053 arsH Arsenate resistance protein ArsH

S. medicae Smed_5054 arsB Arsenite resistance protein ArsB

S. medicae Smed_5055 arsC Arsenate reductase

C1 metabolism
S. meliloti SMa0002 fdoG FdoG formate dehydrogenase-O, alpha subunit
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Table 1 Selected S. meliloti- or S. medicae-specific genes among both species® (Continued)

S. meliloti SMa0005 fdoH FdoH formate dehydrogenase-O, beta subunit

S. meliloti SMa0007 fdol Fdol formate dehydrogenase-O, gamma subunit

S. meliloti SMa0009 fdhE Formate dehydrogenase accessory protein FdhE

S. meliloti SMa0011 selA L-seryl-tRNA(Sec) selenium transferase

S. meliloti SMa0015 selB Selenocysteine-specific elongation factor

S. meliloti SMa0028 selD Selenide, water dikinase

S. medicae Smed_2095 folD Bi-functional; 5,10-methylene-tetrahydrofolate dehydrogenase and cyclohydrolase
S. medicae Smed_2096 glyA Serine hydroxymethyltransferase

Sugars and polysaccharides

S. meliloti SMb20951 exol Succinoglycan biosynthesis protein Exol

S. meliloti SMb21416 ddhA Glucose-1-phosphate cytidylyltransferase

S. meliloti SMb21417 ddhB CDP-glucose 4,6-dehydratase

S. meliloti SMb21418 NDP-hexose 3-C-methyltransferase

S. medicae Smed_5910 otsB Trehalose-phosphate phosphatase

Cellular processes

S. meliloti SMc03854 ftsY Putative cell division protein

S. meliloti SMc03044 motD Chemotaxis protein (motility protein D)

S. medicae Smed_1943 ftsZ Cell division protein FtsZ homolog 2

S. medicae Smed_0273 motD Chemotaxis protein motD

Others

S. meliloti SMc04203 fecl Putative RNA polymerase sigma factor Fecl protein
S. meliloti SMc04204 fecR Putative IRON transport regulator transmembrane protein
S. meliloti SMc04205 Putative IRON/HEME transport protein

S. medicae Smed_2092 dsdA D-serine dehydratase

S. medicae Smed_3282 fopB Ferric transport system permease protein FbpB

S. medicae Smed_3284 fopC Ferric transporter subunit

2All genes are presented in Tables S3 and S4 in Additional file 1. PID of annotated gene in S. meliloti 1021 or S. medicae WSM419.
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Figure 5 Gene organization and correlation of Nod factor biosynthetic genes in each Sinorhizobium species. Blue arrows indicate the
genes encoding enzymes for Nod factor synthesis commonly detected in all tested Sinorhizobium strains. Yellow arrows indicate the genes
involved in Nod factor secretion. Green arrows indicate specifically detected genes involved in Nod factor synthesis in an individual species. Red
arrows indicate the genes encoding transcriptional regulators of nodulation genes. White arrows indicate genes involved in Nod factor
biosynthesis that are not in common.
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with the Nod factor structure of S. saheli reported earlier
[30]. While the Acacia symbiont S. terangae strain USDA
4894 had a nodH gene, it contained fewer Nod factor
adornment genes than those seen in other species.

The nolR gene, which encodes a negative transcrip-
tional regulator of core Nod factor biosynthesis and is a
global regulator in rhizobia [31,32], was detected in all
species of Sinorhizobium, although the gene in the refer-
ence strain S. meliloti 1021 is not functional [32]. Taken
together, these results indicated Nod factor biosynthetic
gene content varied among strains of the same species
and suggest that LCOs produced by sinorhizobia might
be modified in a strain-specific manner. These results
are also the first report of genetic organization of nodu-
lation genes in the woody legume symbionts S. saheli
and S. terangae.

Secretion system gene clusters among Sinorhizobium
members

Clusters of genes encoding bacterial type III, IV, and VI
protein secretion systems (T3SS, T4SS, and T6SS, respec-
tively) play crucial roles in animal- and plant-bacterial
interactions [33]. In rhizobia, these secretion systems are
involved in host range determination with their cognate
effector proteins modulating host defense reactions [17].
A T3SS gene cluster has been characterized in Rhizobium
spp- (S. fredii) NGR234, S. fredii USDA 257 and S. fredii
HH103 (USDA 207), and T3SS mutants have symbiotic
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phenotypes [34,35]. However, there are no reports on the
roles of T4SS and T6SS systems in sinorhizobial-legume
symbioses. Figure 6 shows the structure of the different
T3SS, T4SS and T6SS genes found in all the sequenced
strains with substantial differences in genomic organiza-
tion and deduced protein sequences. Notably, the S. sakeli
genome contained T3SS, T4SS, and T6SS gene clusters, as
did one of the two S. fredii strains, while S. medicae strains
only contained a T4SS.

Three types of T3SS clusters (types a, b, and c) were
identified from several Sinorhizobium strains and all clus-
ters contained the canonical rhic/-nollUV-rhcNQRST gene
cassette (Figure 6a). The T3SSa cluster was detected in
nine strains of S. meliloti and S. saheli USDA 4893 and
contained rhcCjy, rhcC,, rhell, and rhcV (Figure 6b). While
most of the genes in the main cluster showed 58 to 94%
protein identity with the corresponding genes in Rhizo-
bium spp. (S. fredii) strain NGR234, gene organization of
the flanking regions were different. The T3SSb cluster
contained the effector genes (nop) in S. fredii HH103
strain (USDA 207) and was also identified in S. fredii
USDA 205 and S. terangae USDA 4894. Strains having a
T3SSc cluster had genes in the main cluster with 40 to
87% protein identity with those of Rhizobium etli CIAT
652 and were only observed in the genomes of S. meliloti
M195 and S. terangae USDA 4894. The T3SS types a and
c gene clusters found in S. meliloti, S. saheli and S. teran-
gae had a different gene organization from any published
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Rhizobium T3SS clusters and did not contain the well-
characterized nop genes, encoding T3SS-dependent sur-
face appendage or effector proteins. The unique T3SS
apparatus found in these strains may encode novel secre-
tion proteins involved in host-specific interactions.

Agrobacterium tumefaciens C58 also uses T4SS for con-
jugation and DNA transfer [36] and strain C58 possesses
three types of T4SS genes: vir, avh, and trb. The virB gene
of S. meliloti 1021 (grouped in T4SSa) is involved in con-
jugation, but is not required for symbiosis with alfalfa [37].
In contrast, vir genes of Mesorhizobium loti strain R7A are
involved in protein translocation and have a host-depen-
dent effect on symbiosis [38]. While seven types of T4SS
gene clusters (designated T4SSa-g) were identified in the
Sinorhizobium genomes (Figure 6a), they were not present
in all strains (Figure 6b), suggesting these genes were likely
acquired by horizontal gene or plasmid transfer events. To
explore the potential function of each Sinorhizobium T4SS
gene cluster, a phylogenetic tree was created using selected
T4SS protein sequences from diverse bacteria known to
infect plant and mammalian hosts (Figure 6c¢). A total of
five clades were detected in the phylogenetic tree and
T4SSb and T4SSc were present in clade I, including the
Vir proteins of M. loti R7A and A. tumefaciens C58. In
contrast, proteins in T4SSa, T4SSd, and T4SSg were in
clades IT or V and were similar to conjugation transfer
proteins Trb or Avh of A. tumefaciens. Since the Sinorhi-
zobium VirB proteins are similar to the symbiotically effec-
tive VirB in M. loti R7A, these results indicate that the
T4SSb and T4SSc genes in Sinorhizobium strains may also
influence symbiosis. The T4SSb gene cluster was found in
9 and 11 strains of S. meliloti and S. medicae, respectively,
and the T4SSc cluster was only found in the Sesbania and
Acacia symbionts (S. saheli and S. terangae), suggesting
that the cluster plays a role in host-specific interactions.

The T6SS locus (referred to as imp) is a determinant of
host specificity in Rhizobium leguminosarum [39]. The
S. saheli strain USDA 4893 had two types of T6SS gene
clusters, and T6SSb was also present in S. fredii USDA
207. The T6SSa cluster is very similar to that seen in R.
leguminosarum at the amino acid level. No T6SS gene
cluster was found in the S. meliloti, S. medicae, and S. ter-
angae strains. Taken together, these results suggest that
each sinorhizobial species utilizes different protein secre-
tion strategies to modulate host-specific interactions,
although further mutational and functional studies are
needed to determine the role of these secretion systems in
symbiosis.

General regulatory systems of T3SS and T4SS genes in
rhizobia

In general, the expression of T3SS genes (riic and nop) or
T4SS genes (vir) is induced by the positive regulators
TtsI (for T3SS) and VirA (for T4SS). TtsI and VirA bind
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to a tts- or vir-box in the promoter region of T3SS genes
(rhc and nop) and T4SS genes (vir), respectively. In addi-
tion, the ttsI and virA genes have a nod box in front of
them, indicating that these genes are likely induced by
the NodD protein.

The homologous genes of T3SS effector proteins
(NopABCJLMPTX from S. fredii NGR234) and the Ttsl
transcriptional regulator of T3SS genes were searched by
BLAST analysis. Results of this analysis indicated that
while the nop genes and tts/ were found in the genome of
S. fredii USDA 205 and USDA 207 and in S. terangae
strain USDA4894, which have the T3SSb gene cluster
(Table S5 in Additional file 1), they were not found in the
genomes of any S. meliloti strains. Moreover, a canonical
nod box consensus sequence was not identified around
any region of T3SS-related genes (rkc, nop and ttsl),
although tts boxes were found upstream of some nop
genes in the genomes of S. fredii USDA205 and USDA207
and the S. terangae strain USDA4894 (Table S6 in Addi-
tional file 1), which have the T3SSb cluster.

Blast analyses were used to search the sequenced gen-
omes for genes homologous to those encoding the T4SS
effector proteins Msi059 and Msi061 from M. loti R7A
and a VirA transcriptional regulator of T4SS genes.
While the Msi061 homolog was found in the T4SSb and
T4SSc gene clusters, Msi059 was not found in the gen-
omes of any of the Sinorhizobium strains (Table S7 in
Additional file 1). A VirA homolog was only found in the
genomes of S. saheli strain USDA 4893 and S. terangae
strain USDA 4894, in the T4SSc cluster (Table 3). In
contrast, nod and vir box-like sequences were not identi-
fied in the T4SSb and T4SSc clusters of any of the
sequenced strains. Taken together, these results suggest
that the expression of identified T3SS and T4SS genes
might not be regulated by the previously reported nod
box inducers. However, further analysis is needed to
examine the regulation of these genes.

Symbiotic phenotypes of T4SSb mutants of S. meliloti and
S. medicae

To further investigate the role of T4SSb in nodulation,
deletion mutants of virBg to virBy, predicted to encode
essential components of the T4SS apparatus in S. meliloti
KH46c and S. medicae M2, were constructed and inocu-
lated onto nine genotypes of M. truncatula and one geno-
type each of M. sativa, Medicago tricycla and Medicago
littoralis. A few symbiotic differences between the wild-
type strains and the KH46c and M2 virBs-o mutants were
detected in certain Medicago genotypes (Table 2). M. trun-
catula cv. A17 and M. tricycla inoculated with the virBs-o
mutant of S. meliloti KH46¢ formed significantly fewer
nodules and had lower nodule and plant biomass than that
seen in plants inoculated with the wild-type strain. Unex-
pectedly, however, the virBs-o mutation in S. medicae M2
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Table 2 Symbiotic phenotypes of Medicago plants inoculated with virB mutants of S. meliloti KH46c and S. medicae M2

Host plant Inoculated strain Nodule Nodule dry mass Plant dry mass Plant height Chlorophyll content
number? (mg) (mg) (cm) (SPAD unit)

M. truncatula  KH46c wild-type 79 6.6 208 12.2 44

A17 KH46c AvirBso 38% 4.3% 145% 9.5% 43
M2 wild-type 102 84 229 11.0 41
M2 AvirBg- 51 6.2% 202 1.2 44
Uninoculated 0 0 37 33 17
control

M. truncatula  KH46c wild-type 35 6.1 174 10.3 42

F83005-5 KH46¢ AvirBs-o 24 55 158 9.8 39
M2 wild-type 29 49 156 9.5 43
M2 AvirBg-o 22 6.7% 243% 10.7* 41
Uninoculated 0 0 44 33 16
control

M. tricycla KH46¢ wild-type 24 12.2 315 10.5 36

R108-C3 KH46c AvirBso 12* 9.9 230 103 34
M2 wild-type 11 28 33 42 19
M2 AvirBs-o 12 31 33 42 21
Uninoculated 0 0 26 35 16
control

M. satvia cv KH46¢ wild-type 56 1.6 95 85 54

Agate KH46c AvirBso 42 6.8% 55 7.2 45%
M2 wild-type 31 2.5 69 13.7 31
M2 AvirBg-o 28 2.5 85 14.6 28%
Uninoculated 0 0 79 125 21
control

Values are per plant. The asterisk indicates a significant difference compared with the wild-type strain by t-test (P < 0.05) of three biological replicates.

significantly increased nodule and plant biomass on M.
truncatula cv. F83005-5. The KH46¢ AvirBg-o mutant pro-
duced about four-fold greater nodule mass on M. sativa cv.
Agate than did the wild-type strain (Table 2), but had
about three- fold less acetylene reduction activity (432 +
376 pmol CyH, produced/h/g nodule dry weight) than the
wild-type (1,132 + 163 pmol C,H, produced/h/g nodule
dry weight), suggesting a less effective symbiotic interaction.
While further experiments are needed to better understand
the function of T4SSb in symbiosis, these results indicate
that the T4SSb in Sinorhizobium may indeed play a role in
host specificity. Observations from phenotype tests and
gene content differences found in the genome data set sug-
gested that the T4SSb secretion system is likely involved in
symbiotic nitrogen fixation with specific M. truncatula gen-
otypes. In particular, VirB proteins were postulated as sym-
biotic effector proteins in M. [oti R7A [38]. However, we
cannot rule out the possibility that other genes are impor-
tant for host-determination and/or symbiotic efficiency.

Anaerobic denitrification genes

The ability of rhizobia to denitrify depends on the nap,
nir, nor, and nos gene clusters that encode nitrate-,
nitrite-, nitric oxide-, and nitrous oxide-reductases,
respectively [40,41]. Denitrification plays an important

role in nitrogen-fixing soybean-Bradyrhizobium japoni-
cum symbiosis and S. meliloti has been shown to deni-
trify under free-living and symbiotic conditions [41].
Genomic data presented here show that while the gen-
omes of S. fredii, S. saheli, and S. terangae strains con-
tained napEFDABC, nirKV, and norECBQD, they did
not have the nosRZDFYLX genes that are involved in
the terminal step of converting nitrous oxide to N,. In
contrast, the nosRZDFYLX gene cluster was identified in
22 S. meliloti strains (Table 3), 19 of which had a com-
plete gene set allowing for the production of N, gas
from nitrate.

Species differences in organic sulfur utilization genes

The majority of sulfur in agricultural soils is in organic
form, such as sulfonates and sulfur-esters [24], and
assimilation of these compounds by rhizobia is impor-
tant for bacterial survival, competition in soils, and dur-
ing symbiosis [23]. While Koch et al. [42] proposed that
sulfonate monooxygenase is involved in host-specific
adaptation by B. japonicum, little is known about
organic sulfur utilization in sinorhizobia. Genome anno-
tation indicated the presence of organic sulfur utilization
genes (Table 3) and likely species-specific differences in
the presence of genes for sulfonate monooxygenases
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Table 3 Presence of accessory genes involved in polysaccharide biosynthesis, microaerobic denitrification, lithotrophic
growth, and organic sulfur utilization in the genomes of each Sinorhizobium species

Gene present in each Sinorhizobium species®

Gene or gene cluster Function meliloti medicae fredii saheli terangae
(n = 33) (n=13) (n=2) n=1) (n=1)
Polysaccharide biosynthesis
exof, Succinoglycan biosynthesis 7 0 2 0 0
exoH Succinoglycan biosynthesis 33 13 0 0 0
exol Succinoglycan biosynthesis 33 0 0 1 0
exol, Succinoglycan biosynthesis 11 0 2 0 0
exoP, Succinoglycan biosynthesis 7 0 2 0 0
exoTWV Succinoglycan biosynthesis 33 13 0 0 0
expA;-10.expGCD;D-expE;-g Galactoglucan biosynthesis 33 13 0 0 1
rkp-3; rkoLMNOPQ Capsular polysaccharides 4 0 2 0 1
biosynthesis
rkpZ,; Capsular polysaccharides 33 13 1 1 1
biosynthesis
rkpZ Capsular polysaccharides 5 0 2 1 1
biosynthesis
rkpT, Surface polysaccharide export 29 13 1 1 1
cgmB Cyclic B-glucan biosynthesis 1 0 0 0 0
Microaerobic denitrification
napEFDABC Nitrate reductase 32 13 2 1 1
nirkV Nitrite reductase 19 9 2 1 1
norECBQD Nitric oxide reductase 21 2 1 1
nosRZDFYLX Nitrous oxide reductase 22 0 0 0
Lithotroph
hupSLCDEFGHJKP-hypABFCDE-  Uptake hydrogenase 0 0 0 0 1
hoxX
SoxYZEF-like Sulfur oxidation 7 0 2 0
soxZ Sulfur oxidation 33 13 2 0
Organic sulfur utilization®
I: ssuDABCE Alkanesulfonate degradation 33 13 0 0 1
Il: tauRABCXD Taurine degradation 33 13 0 0 0
Ill: ssuCBA-atsA-like Arylsulfatase 0 13 0 0 0
IV: tauC-ssuCBA-ats- like Arylsulfatase 0 13 0 0 0
V: ssuADCB Alkanesulfonate degradation 0 0 2 0 0

2Values in a column indicate number of strains possessing a gene or gene cluster in a species. “The genes in each gene cluster are orthologs of Smed_4212-4216
(1), Smed_4858-4863 (Il), Smed_1127-1130 (lll), Smed_3146-3151 in S. medicae WSM419, and U205v1_247004-247007 (V) in S. fredii USDA 205.

(sulfonate sulfur utilization) or sulfatases (ester-sulfur
utilization). S. meliloti and S. medicae specifically had
cluster I (ssuDABCE encodes sulfonate transport and
desulfonation proteins) and cluster II (tauRABCXD
encodes taurine uptake and desulfonation proteins). In
contrast, only S. medicae strains contained clusters III
and IV, containing arylsulfatases (ester-sulfur utilization)
[43] and ssuCBA-like organic sulfur transporter genes
(Table 3; Figure S2 in Additional file 2). We tested for
sulfatase activity in nodules induced in Medicago geno-
types (HMO011, HM014, HM019, HM028, HM101) by
five S. meliloti (RM1021, M243, M210, M270, M30) and
five S. medicae strains (WSM419, M102, M161, A321,
M58). With few exceptions, sulfatase activity was greater
in nodules induced by S. medicae than by S. meliloti,

averaging 6.1 and 29.4 units/HMO11 nodule, respectively.
In addition, because S. medicae strains commonly have
arylsulfatase genes associated with transporter genes (in
clusters III and IV), strains of this species may uptake and
utilize a wider variety of organosulfur compounds than
S. meliloti.

Phenotypic interactions between sequenced
Sinorhizobium spp. strains and diverse M. truncatula
genotypes

We assessed the symbiotic interaction of 46 S. meliloti or
S. medicae strains with 27 M. truncatula genotypes. Sym-
biotic analyses indicated highly significant rhizobial-plant
genotype interactions among the tested Sinorhizobium
strains and M. truncatula genotypes (Figure 7; Tables S1
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and S8 in Additional file 1). Most strains formed nodules
on the roots of all M. truncatula genotypes, although S.
meliloti strain M162 did not form nodules on 17 of 27 M.
truncatula genotypes. The noeA gene, which was charac-
terized as a host-specific nodulation gene [44], was found
to be truncated in the nodulation-deficient strain S. meli-
loti M162, suggesting that the failure of this strain to
nodulate some Medicago genotypes might be caused by a
natural mutation in noeA. A cluster analysis using normal-
ized and averaged values for each phenotype category
obtained from all 27 M. truncatula genotypes is presented
as a heat map (Figure 7). Strains were divided into pheno-
type clusters I (PC I) and II (PC II). The PC I included 30
strains that showed high compatibility with M. truncatula
as measured by the increase in chlorophyll content and
plant biomass, significantly more than the 16 strains in the
PC IL Strains of both S. meliloti and S. medicae were pre-
sent in both PC I and II, suggesting that differences in the
symbiotic compatibility with M. truncatula were likely
caused by strain-specific differences in symbiotic genes.

To investigate the sinorhizobial genes that may affect
symbiosis and nitrogen fixation with M. truncatula, we
searched previously identified symbiosis-related genes in
Sinorhizobium or other rhizobia from the annotated
genome data set of 46 S. meliloti or S. medicae strains.
The proportion of strains having a full-length gene or
gene clusters in each phenotypic cluster were obtained
and compared to the proportions in other phenotypic
clusters (Table 4). The T4SSb gene cluster (Figure 6)
was conserved in 47% of S. meliloti and all S. medicae
strains grouped in PC I; however, it was absent in all
strains grouped in PC II (Table 4). In addition, #emN,
involved in heme biosynthesis, and nirKV, norECBQD,
and nosRZDFYLX, involved in microaerobic denitrifica-
tion, were also conserved in relatively greater numbers
of strains grouped in PC I (Table 4). In contrast, the
proportion of strain containing previously reported sym-
biosis-related genes, such as T3SSa, genes involved in
polysaccharide biosynthesis, and acdS (encoding 1-ami-
nocyclopropane-1-carboxylate deaminase), were not dif-
ferenct between among PC I and PC II strains. Taken
together, these results suggest that protein secretion by
the newly identified T4SSb and anaerobic respiration by
denitrification might have an important role in symbio-
tic compatibility with M. truncatula.

Conclusions

The results of comparative genomics analysis of the Sinor-
hizobium genus provide useful information for under-
standing the genetic functional features of a wide variety
of Sinorhizobium species strains, and a tool to better
understand incompatibility in legume-rhizobia interac-
tions. The correlation between the presence of T4SS and
symbiotic efficiency suggest that each Sinorhizobium strain
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uses a slightly different strategy to obtain maximum com-
patibility with a host plant. Moreover, these large genomic
data sets provide the opportunity to understand the evolu-
tion of rhizobia [20] together with mechanisms of host
determination, nodulation, and nitrogen fixation. Our
overall goal is to combine these data with our previous
studies reporting SNPs in M. truncatula [21] and the
sinorhizobia reported here [20] to provide a resource for
genome-wide association mapping of genes and traits
associated with symbiosis and nodulation. Moreover, the
information provided here will be useful to study the
population genomics of this bacterium and its evolution
with Medicago.

Materials and methods

Bacteria used in this study

[lumina GAIIx sequencing was used to sequence the gen-
omes of 32 strains of S. meliloti, 12 strains of S. medicae, 2
strains of S. fredii, and 1 strain each of S. saheli and S. ter-
angae (Table S1 in Additional file 1). The S. meliloti and
S. medicae strains were chosen from the USDA-ARS Rhi-
zobium Germplasm Collection as representatives of differ-
ent multi-locus sequence types [45] or obtained from
nodules on M. truncatula trap hosts inoculated with slur-
ries of soils obtained from several locations in France [46].
Sinorhizobia were also obtained from nodules of seven M.
truncatula genotypes (HMO004, HMO006, HMO007,
HMO0013, HM014, HMO015 and A17) as trap hosts using
Salses soil from France. The type-strains of S. fredii
(USDA 205), S. saheli (USDA 4893) and S. terangae
(USDA 4894) were chosen from the USDA-ARS Rhizo-
bium Germplasm Collection, and S. fredii USDA 207 (syn.
HH103) was also included. The Sinorhizobium strains
were grown in TY medium at 30°C. DNA from each strain
was used for Illumina library construction and extracted
from culture grown cells using the Wizard Genomic DNA
Purification kit (Promega Corp. Madison, WI, USA) with
further purification by phenol extraction.

lllumina DNA sequencing

Paired end libraries were generated using Illumina’s
Phusion-based library kits following the manufacturer’s
protocols (Illumina, Hayward, CA, USA). Insert sizes
averaged 332 nucleotides (range = 245 to 443). Four
samples were multiplexed per lane and sequenced on
[lumina GAIIx machines and base-called following the
manufacturer’s protocols. Sequence reads were paired
90-nucleotide reads. Individual samples averaged just
over 1 Gb of sequence (range of 724 to 1,584 Mb per
genome for S. meliloti and S. medicae strains) translat-
ing into an average and minimum coverage of 174x and
108x, respectively, of the approximately 6.7 Mb genome
before aligning reads. Raw reads and derived SNP calls
were analyzed previously [20].
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Table 4 Presence of variable length symbiosis-related genes in each phenotype cluster of S. meliloti and S. medicae

Species and phenotype cluster (PC)®

S. meliloti S. medicae
Gene or gene cluster I (h=19) II(n=14 [(h=11) II(n=2
Nodulation
nodN 95 (18) 64 (9) 0 0
noeA 100 (19) 93 (13) 100 (11) 100 (2)
noel;K; 5() 0 0 0
noel>K; 0 0 9(1) 0
noelLnolK 5(1) 0 0 0
Nitrogen fixation
fixQ 100 (19) 86 (12) 100 (11) 100 (2)
fixR 100 (19) 93 (13) 0 0
fixU 95 (18) 79 (11) 100 (11) 100 (2)
nifD 100 (19) 100 (14) 100 (11) 50 (1)
nift 100 (19) 100 (14) 90 (10) 100 (2)
Succinoglycan (EPS 1) biosynthesis
exof, 26 (5) 14 (2)
exol 95 (18) 100 (14) 0
exol> 32 (6) 36 (5) 0
exoP5 26 (5) 14 (2) 0
exoW 100 (19) 93 (13) 100 (11) 100 (2)
Galactoglucan (EPS Il) biosynthesis
expD, 95 (18) 86 (12) 100 (11) 100 (2)
expkg 95 (18) 100 (14) 100 (11) 100 (2)
Cyclic B-glucan biosynthesis
cgmB 0 7(1) 0 0
Capusular polysaccharide biosynthesis
rkpL MNOPQ 16 (3) 7(1) 0 0
rkpRSTZ, 100 (19) 93 (13) 100 (11) 100 (2)
rkpT, 84 (16) 86 (12) 100 (11) 100 (2)
rkpZ 16 (3) 14 (2) 0 0
Type Il secretion system
T3SSa: rhe, nolUV 26 (5) 29 (4) 0 0
Type IV secretion system
T4SSa: rctA, vir 100 (19) 100 (14) 0
T4SSb: vir 47 (9) 0 100 (11)
T455d: tra, trb 0 7.(1) 100 (11) 100 (2)
T4SSe: tra, trb, virD,, cogG 0 14 (2) 0
T4SSf: avh 37.(7) 71 (10) 18 (2)
T4SSg: tra, trb 0 7 (M 0
Denitrification
napEFDABC 100 (19) 93 (13) 100 (11) 100 (2)
nirkV 84 (16) 29 (4) 82 (9) 0
norECBQD 84 (16) 29 (4) 82 (9) 0
nosRZDFYLX 89 (17) 36 (5) 0
Heme biosynthesis
hemA, 16 (3) 29 (4) 0 0
hemN 74 (14) 36 (5) 73 (8)
1-Aminocyclopropane-1-carboxylate
deaminase
acdsS (Smed_5532 ortholog) 21 (4) 0 36 (4) 100 (2)
acdS (Smed_6456 ortholog) 5() 36 (5) 36 (4) 0

“The percentage and number (in parentheses) of strains possessing a gene or gene cluster are shown for each species group and phenotype cluster.
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Sequences were de novo assembled using ABySS [47].
For each strain, several kmers were run and the best
resulting assembly was chosen based on assembly conti-
guity statistics, placement of a subset of high quality read
pairs in the assembly with correct spacing, orientation,
and comparisons to reference genome sequences.

Automatic gene annotation and clustering CDSs found in

the Sinorhizobium genomes

CDSs were predicted using AMIGene (Annotation of
Microbial Genomes) software [48] and predicted genes
were functionally annotated as described by Vallenet
et al. [49]. More than 20 bioinformatics methods were
used for functional and relational analyses: homology
search in a generalist databank (UniProt) and in more
specialized databases (COG, InterPro, and PRIAM pro-
files for enzymatic classification), prediction of protein
localization using TMHMM, SignalP and PsortB tools,
computation of synteny groups with all available com-
plete and incomplete (WGS section at NCBI) proteomes,
and metabolic network reconstruction using Pathway
Tools [49]. This fully automated first round of annotation
ended with a functional assignment procedure to infer
specific function(s) for each individual gene. This func-
tional assignment was first based on annotations of the S.
meliloti 1021 reference genome [50] for strong orthologs
(>85% identity over at least 80% of the length of the
smallest protein). All data (syntactic and functional anno-
tations and results of comparative analysis) were stored
in the relational database SinorhizoScope. Complete
sequence data for the 48 Sinorhizobium genomes are
publicly available via the MaGe interface [51]. The SRA
sequences have also been deposited under accession
SRA048718 and sequences and annotation data have
been deposited in GenBank under project number
PRJNA172127.

All protein sequences, including automatic and manu-
ally annotated CDSs from the 48 sinorhizobial strains
and those of reference strains (S. meliloti 1021 and
S. medicae WSM419), were clustered by the CD-HIT
algorithm [52] using a 70% cut-off for protein identity.
Twenty-eight truncated CDSs in the reference strain gen-
omes and 32 annotated CDSs having less than 11 amino
acids identified from all strains were removed from
analyses.

Phylogenetic analyses

Sinorhizobium phylogenetic trees were first created based
on 645 concatenated protein-coding sequences; genes
were included if they were present in a single copy in all
strains and the outgroup (Rhizobium leguminosarum bv.
trifolii WSM1325). Homologous sequences were identified
in the outgroup by using the MaGe phyloprofile tool to
search for bidirectional best hits with at least 70% protein
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identity across at least 80% of the length of both sequences
between the outgroup and S. meliloti 1021. A phylogenetic
tree was also created based on 16S rRNA gene sequences
and alignment to reference genomes in GenBank. Dis-
tances between strains were calculated using the dnadist
program in phylip [53] v3.69 with the F84 model of evolu-
tion, and a neighbor-joining tree was assembled using the
neighbor program. Support for the splits in the neighbor-
joining tree was assessed by constructing neighbor-joining
trees on 1,000 bootstrapped datasets created with seqboot,
then mapping the support values on to the tree created
from the whole dataset using the sumtrees program [54].
The tree was rooted by treating the R. leguminosarum
strain as an outgroup, and splits with less than 60%
support were collapsed to polytomies.

Sinorhizobium symbiotic phenotype assays

The Sinorhizobium strains and Medicago genotypes used
for phenotype analyses are listed in Table S1 in Additional
file 1. Medicago seeds were prepared as described by Buc-
ciarelli et al. [55]. Plant assays were run as a completely
randomized block design with three replications in sterile
Leonard jar assemblies containing a 1:1 mixture of
Sunshine mix #5 (SunGro Horticulture Inc., Vancouver,
Canada) and Turface MVP (Profile Product LLC, IL, USA)
and inoculated approximately 10’ TY-grown Sinorhizo-
bium cells as described previously [56]. Nodulation studies
were done at different times, with six plant genotypes
tested each time, with one genotype in common. Plants
were watered with nitrogen-free plant nutrient solution
[55] and incubated in a plant growth chamber at 25°C
with a 16-h light condition and at 21°C for 8-h in the dark.
Nodule number, color (pink or white), and dry weight,
plant dry weight and height, and chlorophyll content of
each plant were determined 5 weeks after inoculation.
Chlorophyll content in top trifoliate leaves was measured
by using a SPAD-502 Chlorophyll Meter (MINOLTA Inc.)
and values were averaged. The phenotype data were statis-
tically analyzed by analysis of variance (ANOVA) and
Duncan-Waller test using the SAS software package at o
= 0.05. A heatmap was created by using default setting of
the ‘heatmap.2’ program in R 2.14.1 software [57].

Construction of type IV secretion system gene mutants

S. meliloti strain KH46c¢ and S. medicae strain M2 were
selected as recipients for mutation of T4SSb since these
strains formed effective nodules on all tested M. trunca-
tula genotypes. Mobilizable virBg-o inactivation plasmids
were constructed as follows. The 2.9-kb virBs-¢ coding
regions from both Sinorhizobium strains were amplified
by PCR using the oligonucleotide primers virB Xbal F (5'-
GCTCTAGAAGTCTGGGCTCGTTTCAGA-3’) and
virB_Xbal_R (5-CGTCTAGAGCGGACGTCTTGAGG-
TAGAA-3’) containing the newly created Xbal sites
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(underlined). The PCR products were digested by Xbal
and followed by ligation into suicide vector pK18mob to
create pMS21 (for KH46c virB) or pMS22 (for M2 virB).
These plasmids were digested by Sspl and Scal to delete a
1.6-kb fragment containing the virBs to virBy coding
region, and the Q) cassette from pHP45Q) was inserted to
create pMS25 (KH46¢ virB:Q2), or pMS26 (M2 virB:Q)).
The plasmids pMS25 or pMS26 were introduced into S.
meliloti KH46¢ or S. medicae M2 by triparental mating.
Mutated strains were selected on TY agar plates contain-
ing 20 pg of chloramphenicol (Cm) per ml and 100 pg of
spectinomycin/streptomycin (Sp/Sm) per ml. Gene repla-
cement, double crossover mutants were verified by their
antibiotic resistance phenotype (Cm and Sp/Sm resistant,
and neomycin sensitive), and by PCR amplification using
primers that spanned the insertion sites.

Acetylene reduction assay

The nodulated plant roots were removed aseptically with
scissors. Detached roots were placed in air-tight 150 ml
serum bottles. Three ml of the air volume in each bottle
was replaced by pure acetylene gas (99.8%) using hypoder-
mic syringes. The bottles were incubated at room tem-
perature for 60 minutes. The ethylene concentration in
each bottle, before and after incubation, was analyzed by
gas chromatography using a Nucon-5765 gas chromato-
graph (AIMIL Instruments, New Delhi, India) equipped
with a flame ionization detector (FID) and a Rt-Alumina
BOND/Na,SO, column (30 m x 0.53 mm) (Restek Corp.,
Bellefonte, PA, USA). Nitrogen was used as the carrier gas.
The operation temperatures for oven, injector, and detec-
tor were set at 50°C, 20°C and 104°C, respectively. All the
experiments were conducted in triplicate.

Sulfatase activity test

Enzyme solutions were prepared by crushing 10 nodules
aseptically in 150 pl sterilized 0.85% NaCl and the mix-
ture was homogenized by votexing for 15 s. Sulfatase
assays were done as previously described [58]. The
method was modified by using 50 mM phosphate buffer,
pH 7.0, instead of 0.5 M Tris acetate buffer, pH 8.75.

Additional material

Additional file 1: Tables S1 to S8.
Additional file 2: Figure S1 and S2.
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